L 123 Official Journal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kerguelen Plateau: Marine Ecosystem + Fisheries
THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Important readjustments in the biomass and distribution of groundfish species in the northern part of the Kerguelen Plateau and Skiff Bank Guy Duhamel1, Clara Péron1, Romain Sinègre1, Charlotte Chazeau1, Nicolas Gasco1, Mélyne Hautecœur1, Alexis Martin1, Isabelle Durand2 and Romain Causse1 1 Muséum national d’Histoire naturelle, Département Adaptations du vivant, UMR 7208 BOREA (MNHN, CNRS, IRD, Sorbonne Université, UCB, UA), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France 2 Muséum national d’Histoire naturelle, Département Origines et Evolution, UMR 7159 LOCEAN (Sorbonne Université, IRD, CNRS, MNHN), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France Corresponding author: [email protected] Abstract The recent changes in the conservation status (establishment and extension of a marine reserve) and the long history of fishing in the Kerguelen Islands exclusive economic zone (EEZ) (Indian sector of the Southern Ocean) justified undertaking a fish biomass evaluation. This study analysed four groundfish biomass surveys (POKER 1–4) conducted from 2006 to 2017 across depths ranging from 100 to 1 000 m. Forty demersal species were recorded in total and density distributions of twenty presented. However, only seven species account for the majority of the biomass (96%). Total biomass was 250 000 tonnes during the first three surveys (POKER 1–3), and 400 000 tonnes for POKER 4 due to a high catch of marbled notothen (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari) (accounting for 44% and 17% of the 400 000 tonnes biomass respectively). -
A GUIDE to IDENTIFICATION of FISHES CAUGHT ALONG with the ANTARCTIC KRILL Author(S) 1) Iwami, T
Document No. [ to be completed by the Secretariat ] WG-EMM-07/32 Date submitted [ to be completed by the Secretariat ] 1 July 2007 Language [ to be completed by the Secretariat ] Original: English Agenda Agenda Item No(s): 4.3 Title A GUIDE TO IDENTIFICATION OF FISHES CAUGHT ALONG WITH THE ANTARCTIC KRILL Author(s) 1) Iwami, T. and 2) M. Naganobu Affiliation(s) 1) Laboratory of Biology, Tokyo Kasei Gakuin University 2) National Research Institute of Far Seas Fisheries Published or accepted for publication elsewhere? Yes No x If published, give details ABSTRACT A field key to early life stages of Antarctic fish caught along with the Antarctic krill is produced. The key includes 8 families and 28 species mainly from the Atlantic sector of the Southern Ocean and uses distinguished characters which permit rapid field identification. In some cases, however, it is impossible to discriminate among species of the same family by remarkable characters. A species key is not shown for such resemble species and a brief summary of the main morphological features of species and genera is provided. SUMMARY OF FINDINGS AS RELATED TO NOMINATED AGENDA ITEMS Agenda Item Finding 4.3 We are producing a practical field key to juvenile fish caught along with the Antarctic Scientific krill. To our knowledge more than 40 species of fish have been found as by-catch. Observation However, the number of dominant fish species found in the krill catch never exceeds 20 species. An useful and practical identification key to these dominant species maybe facilitate the quantitative assessment of fish in the krill catch. -
A Stalked Jellyfish (Calvadosia Campanulata)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles A stalked jellyfish (Calvadosia campanulata) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Harvey Tyler-Walters & Jessica Heard 2017-02-22 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/2101]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Heard, J.R. 2017. Calvadosia campanulata A stalked jellyfish. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.2101.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2017-02-22 A stalked jellyfish (Calvadosia campanulata) - Marine Life Information Network See online review for distribution map Calvadosia campanulata. -
The Southern Ocean 118 Worldwide Review of Bottom Fisheries in the High Seas
THE SOUTHERN OCEAN 118 Worldwide review of bottom fisheries in the high seas 30°W 15°W 0° 15°E 30°E °S °S 10 10 47 °S a n t i c °S A t l O c e a 20 n 20 t h o u 41 S Bouvet Prince Edward 51 Island Islands R i d i a g So t e ut S o hern Crozet °S c O o °S S South Georgia ce 30 Island an Islands u 30 t h 48 I n d Kerguelen e Islands g i id a McDonald R g Islands r n Weddell e Heard b Sea Island ss u O 5858 a -G en c el u e rg Bellingshausen e a K 87 n 87 Sea Davis Amundsen Sea n a Sea e c S O o n Ross r e u h S Sea t t outh u o h e 88 S rn O P c ea a n c i °S f °S i M 30 c 30 a O c c qu Macquarie e a a r Island 81 n ie R 57 i d g e °S °S 20 20 Tasman 77 Sea °S °S 10 150°W 165°W 180° 165°E 150°E 10 Antarctic Convergence FAO Fishing Areas 200 nautical miles arcs CCAMLR Regulatory Area Map Projection: Lambert Azimuthal equal area FAO, 2008 MAP 1 The Southern Ocean 119 Southern Ocean FAO Statistical Areas 48, 58 and 88 GEOGRAPHIC DESCRIPTION OF THE REGION The Southern Ocean surrounds the continent of Antarctica, and constitutes about 15 percent of the world’s total ocean surface (CCAMLR, 2000). -
Annex 6 Report of the Working Group on Ecosystem
Annex 6 Report of the Working Group on Ecosystem Monitoring and Management (Bologna, Italy, 4 to 15 July 2016) Contents Page Opening of the meeting ...................................................................... 201 Adoption of the agenda and organisation of the meeting ............................... 201 The krill-centric ecosystem and issues related to management of the krill fishery ................................................................................ 202 Fishing activities ............................................................................ 202 Krill fishery notifications ............................................................... 203 Escape mortality ......................................................................... 204 Reporting interval for the continuous fishing system ................................ 204 Use of net monitoring cables ........................................................... 205 CPUE and fishery performance ........................................................ 206 Fishing season ........................................................................... 207 SG-ASAM report ........................................................................... 207 Scientific observation ...................................................................... 208 Observer coverage ...................................................................... 208 Krill biology, ecology and ecosystem interactions ...................................... 210 Krill ..................................................................................... -
Effects of Harvest and Climate Change on Polar Marine Ecosystems
Effects of Harvest and Climate Change on Polar Marine Ecosystems Case Studies from the Antarctic Peninsula and Hudson Bay by Carie Hoover B.Sc., The University of California Santa Barbara, 2002 M.Res., The University of St Andrews, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Resource Management and Environmental Studies) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2012 ⃝c Carie Hoover 2012 Abstract This thesis applies food web modelling to increase our understanding of how the interaction of climate change and exploitation have historically altered, and continue to alter, marine polar ecosystems. Understanding stressors responsible for ecosystem level changes is important not only to the people and industries reliant on the resources, but for managers to make future decisions on resource uses. The first two chapters develop models of Hud- son Bay (Arctic) and Antarctic Peninsula (Antarctic) marine ecosystems, focused on re-creating changes in the past 30 years. Both ecosystems have undergone changes due to environmental factors, which are incorporated into the models. While the Hudson Bay model exhibits a shift from benthic to pelagic species, the Antarctic Peninsula model is identified to have more uniform declines across all species, as the main trophic link in the ecosystem, Antarctic krill declines. Model simulations are continued in the next two chapters, whereby future environmental changes are tested in conjunction with multiple exploitation levels. For Hudson Bay, continued harvest of ma- rine mammals at current conditions results in large-scale declines for some species (narwhal, eastern Hudson Bay beluga, polar bears, and walrus), in- dicating current harvest levels are too high to sustain long term. -
Viewed in Barrera-Oro and Casaux, 2008)
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Fisheries Research 125–126 (2012) 206–213 Contents lists available at SciVerse ScienceDirect Fisheries Research jou rnal homepage: www.elsevier.com/locate/fishres Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983–2010 a a,b a,b c,∗ Enrique R. Marschoff , Esteban R. Barrera-Oro , Nadia S. Alescio , David G. Ainley a Instituto Antártico Argentino, Cerrito 1248, 1010 Buenos Aires, Argentina b CONICET and Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, División Ictiología, Angel Gallardo 470, C1405DJR Buenos Aires, Argentina c H.T. Harvey and Associates, 983 University Avenue, Los Gatos, CA, USA a r t i c l e i n f o a b s t r a c t Article history: Following seals and baleen whales prior to the 1970s, demersal fish stocks were depleted off the South Received 18 December 2011 Shetland Islands by intensive industrial fishing during the late 1970s to early 1980s. -
The Expedition of the Research Vessel "Polarstern" to the Antarctic in 2012 (ANT-XXVIII/4) Edited by Magnus Lucassen W
652 2012 The Expedition of the Research Vessel "Polarstern" to the Antarctic in 2012 (ANT-XXVIII/4) Edited by Magnus Lucassen with contributions of the participants ALFRED-WEGENER-INSTITUT FÜR POLAR- UND MEERESFORSCHUNG in der Helmholtz-Gemeinschaft D-27570 BREMERHAVEN Bundesrepublik Deutschland ISSN 1866-3192 Hinweis Notice Die Berichte zur Polar- und Meeresforschung The Reports on Polar and Marine Research are werden vom Alfred-Wegener-Institut für Polar- issued by the Alfred Wegener Institute for Polar und Meeresforschung in Bremerhaven* in un- and Marine Research in Bremerhaven*, Federal regelmäßiger Abfolge herausgegeben. Republic of Germany. They are published in irregular intervals. Sie enthalten Beschreibungen und Ergebnisse They contain descriptions and results of der vom Institut (AWI) oder mit seiner Unter- investigations in polar regions and in the seas stützung durchgeführten Forschungsarbeiten in either conducted by the Institute (AWI) or with its den Polargebieten und in den Meeren. support. Es werden veröffentlicht: The following items are published: — Expeditionsberichte — expedition reports (inkl. Stationslisten und Routenkarten) (incl. station lists and route maps) — Expeditions- und Forschungsergebnisse — expedition and research results (inkl. Dissertationen) (incl. Ph.D. theses) — wissenschaftliche Berichte der — scientific reports of research stations Forschungsstationen des AWI operated by the AWI — Berichte wissenschaftlicher Tagungen — reports on scientific meetings Die Beiträge geben nicht notwendigerweise die -
Antarctic Ocean Legacy: a Vision for Circumpolar Protection Executive Summary
ANTARCTIC OCEAN LEGACY: A VISION FOR CIRCUMPOLAR PROTECTION www.antarcticocean.org EXECUTIVE SUMMARY In October 2011, the Antarctic Ocean Alliance (AOA) proposed the creation of a network of marine protected areas (MPAs) and no-take marine reserves in 19 specific areas in the Southern Ocean around Antarctica1. This report, Antarctic Ocean Legacy: A Vision for Circumpolar Protection, now provides the AOA’s full vision for this network with particular reference to the ecological values of the chosen areas. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the body that manages the marine living resources of the Southern Ocean, has set a target date of 2012 for establishing an initial network of Antarctic MPAs. This report identifies areas for consideration as MPAs and no-take marine reserves, and describes the rationale for the 19 areas. The AOA report starts with an introduction to the region, followed by threats – most notably climate change and resource extraction – describes the geography, oceanography and ecology of the 19 areas identified, and outlines the case for protection. The report provides recommendations presenting the scale and scope of potential marine protection. Cover image: Emperor penguins, Eastern Antarctica. Image by John B. Weller. 2 This page:ANTA ChinstrapRCTIC OCE penguins.AN LEGA ImageCY: A VISIby JohnON F B.OR Weller. CIRCUMPOLAR PROTECTION Name of Section The Antarctic Ocean Alliance acknowledges that Areas that are particularly vulnerable to climate there remains a need for considerable effort in the change, such as the Western Antarctic Peninsula, international process for determining the final network. are included. The proposal should facilitate the For the past seven years, CCAMLR Member countries continuation and expansion of long-term datasets that and scientists have made progress in developing plans underpin crucial research into ecosystem function for MPAs and no-take marine reserves in the Southern and environmental change, including the impacts of Ocean. -
BIOMASS, ABUNDANCE and DISTRIBUTION of FISH in the KERGUELEN ISLANDS EEZ (CCAMLR Statistical DIVISION 58.5.1)
CCAMLR Science, Vol. 16 (2009): 1–32 BIOMASS, ABUNDANCE AND DISTRIBUTION OF FISH IN THE KERGUELEN ISLANDS EEZ (CCAMLR statistical DIVISION 58.5.1) G. Duhamel and M. Hautecoeur Muséum national d’histoire naturelle Département des milieux et peuplements aquatiques UMR 5178, USM 401, CP 26 43 rue Cuvier 75231 Paris Cedex 05, France Email – [email protected] Abstract ‘POKER 2006’, a bottom trawl fish biomass survey, was conducted from September to October 2006 in the northern part of the Kerguelen Plateau (CCAMLR Statistical Division 58.5.1). The swept-area method was used in the depth range from 100 to 1 000 m with 207 random stratified stations. Estimates of biomass and abundance were produced for eight commercial species. The total biomass was 245 000 tonnes and Patagonian toothfish (Dissostichus eleginoides) accounted for half of the value (124 000 tonnes). The fish biomass was distributed between the shelf and the deep sea. However, this evaluation remains incomplete as four of the species (D. eleginoides, bigeye grenadier (Macrourus carinatus), Eaton’s skate (Bathyraja eatonii) and Kerguelen sandpaper skate (B. irrasa)) extend deeper than 1 000 m, the limit of the POKER 2006 survey. Some shelf and slope species (mackerel icefish (Champsocephalus gunnari) and marbled rockcod (Notothenia rossii)) exhibit low levels of biomass when compared to the results of previous surveys (SKALP surveys, 1987 and 1988). Other species (unicorn icefish (Channichthys rhinoceratus) and grey rockcod (Lepidonotothen squamifrons)) seem to have increased, even doubled, their biomass during the period between the two surveys. In addition to the commercial species, Zanclorhynchus spinifer was abundant on the shelf and Alepocephalus cf. -
Trophic Links and the Parasites That Exploit Them: the Case of New Zealand’S Endemic Rough Skate
Trophic links and the parasites that exploit them: the case of New Zealand’s endemic Rough Skate Jerusha Dianna Louise Bennett A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science, Ecology University of Otago Dunedin, New Zealand March 15, 2018 Drawing of Zearaja nasuta, New Zealand’s rough skate. Picture courtesy of Taila Bennett Abstract Understanding how natural systems are structured and function is central to ecological theory. Although easily overlooked, parasites are ubiquitous and fundamental components of natural systems. Among their various roles, parasites strongly influence the flow of energy between and within food webs. Within marine food webs, elasmobranchs (sharks, skates and rays) are both important predators and hosts to tapeworm parasites. Feeding links are potential transmission routes for tapeworms to exploit, and resolving these pathways provides insight into the ecological role of predators and their parasites within ecosystems. Over 1000 tapeworms are known to parasitise elasmobranchs, although few life cycles are resolved. This thesis furthers our understanding of parasite trophic transmission through investigating the feeding ecology and parasitic links of a relatively understudied elasmobranch species, the New Zealand’s rough skate, Zearaja nasuta. Skates were obtained off the east coast of New Zealand. Their stomachs and intestines were analysed to determine their diet, their parasites, and the parasites of their prey. A fragment of the 28S gene was amplified from each different tapeworm morphotype recovered from either skates or their prey. Phylogenetic relationships were inferred from molecular data using Bayesian inference. Rough skates in this area between the Summer and Autumn months were found to be specialised predators, occupying a unique role in the benthic realm. -
Parasites of the Antarctic Toothfish (Dissostichus Mawsoni Norman, 1937) (Perciformes, Nototheniidae) in the Pacific Sector of the Antarctic Ilya I
RESEARCH NOTE Parasites of the Antarctic toothfish (Dissostichus mawsoni Norman, 1937) (Perciformes, Nototheniidae) in the Pacific sector of the Antarctic Ilya I. Gordeev1 & Sergey G. Sokolov2 1 Laboratory of Ecology and Bioresources of the Arctic and Antarctic, Russian Federal Research Institute of Fisheries and Oceanography, 17, V. Krasnoselskaya St.,107140 Moscow, Russia 2 Laboratory of Fauna and Ecology of Parasites, Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33, Leninsky pr.,119071 Moscow, Russia Keywords Abstract Toothfish; parasites; Antarctic fisheries; CCAMLR; infection; Southern Ocean. The Antarctic toothfish (Dissostichus mawsoni Norman, 1937) is one of the main target species of commercial fisheries in the Antarctic. It is an endemic and is Correspondence found along the shelf of Antarctica, as well as on the slopes of seamounts, Ilya I. Gordeev, Laboratory of Ecology and underwater elevations and islands in the sub-Antarctic. It feeds on a variety Bioresources of the Arctic and Antarctic, of fish and cephalopods and can be an intermediate/paratenic host of some Russian Federal Research Institute of helminthes, whose final hosts are whales, seals, large rays and sharks. This Fisheries and Oceanography, 17, article presents new data on toothfish infection in the Pacific sector of the V. Krasnoselskaya St., 107140 Moscow, Russia. E-mail: [email protected] Antarctic. Specimens were examined during commercial longline fishing in the Ross Sea and the Amundsen Sea in JanuaryÁFebruary 2013. Fourteen species of parasites were found using standard parasitological methods and genetic analysis. The Antarctic toothfish (Dissostichus mawsoni Norman, (Holloway & Bier 1968; Sokolov & Gordeev 2013, 1937) is one of two species in the genus and one of the 2015) as well as the copepod Eubrachiella antarctica main target species of commercial fisheries in the Quidor, 1906 (Smith et al.