Viewed in Barrera-Oro and Casaux, 2008)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Kerguelen Plateau: Marine Ecosystem + Fisheries
THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Important readjustments in the biomass and distribution of groundfish species in the northern part of the Kerguelen Plateau and Skiff Bank Guy Duhamel1, Clara Péron1, Romain Sinègre1, Charlotte Chazeau1, Nicolas Gasco1, Mélyne Hautecœur1, Alexis Martin1, Isabelle Durand2 and Romain Causse1 1 Muséum national d’Histoire naturelle, Département Adaptations du vivant, UMR 7208 BOREA (MNHN, CNRS, IRD, Sorbonne Université, UCB, UA), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France 2 Muséum national d’Histoire naturelle, Département Origines et Evolution, UMR 7159 LOCEAN (Sorbonne Université, IRD, CNRS, MNHN), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France Corresponding author: [email protected] Abstract The recent changes in the conservation status (establishment and extension of a marine reserve) and the long history of fishing in the Kerguelen Islands exclusive economic zone (EEZ) (Indian sector of the Southern Ocean) justified undertaking a fish biomass evaluation. This study analysed four groundfish biomass surveys (POKER 1–4) conducted from 2006 to 2017 across depths ranging from 100 to 1 000 m. Forty demersal species were recorded in total and density distributions of twenty presented. However, only seven species account for the majority of the biomass (96%). Total biomass was 250 000 tonnes during the first three surveys (POKER 1–3), and 400 000 tonnes for POKER 4 due to a high catch of marbled notothen (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari) (accounting for 44% and 17% of the 400 000 tonnes biomass respectively). -
A GUIDE to IDENTIFICATION of FISHES CAUGHT ALONG with the ANTARCTIC KRILL Author(S) 1) Iwami, T
Document No. [ to be completed by the Secretariat ] WG-EMM-07/32 Date submitted [ to be completed by the Secretariat ] 1 July 2007 Language [ to be completed by the Secretariat ] Original: English Agenda Agenda Item No(s): 4.3 Title A GUIDE TO IDENTIFICATION OF FISHES CAUGHT ALONG WITH THE ANTARCTIC KRILL Author(s) 1) Iwami, T. and 2) M. Naganobu Affiliation(s) 1) Laboratory of Biology, Tokyo Kasei Gakuin University 2) National Research Institute of Far Seas Fisheries Published or accepted for publication elsewhere? Yes No x If published, give details ABSTRACT A field key to early life stages of Antarctic fish caught along with the Antarctic krill is produced. The key includes 8 families and 28 species mainly from the Atlantic sector of the Southern Ocean and uses distinguished characters which permit rapid field identification. In some cases, however, it is impossible to discriminate among species of the same family by remarkable characters. A species key is not shown for such resemble species and a brief summary of the main morphological features of species and genera is provided. SUMMARY OF FINDINGS AS RELATED TO NOMINATED AGENDA ITEMS Agenda Item Finding 4.3 We are producing a practical field key to juvenile fish caught along with the Antarctic Scientific krill. To our knowledge more than 40 species of fish have been found as by-catch. Observation However, the number of dominant fish species found in the krill catch never exceeds 20 species. An useful and practical identification key to these dominant species maybe facilitate the quantitative assessment of fish in the krill catch. -
Review: the Energetic Value of Zooplankton and Nekton Species of the Southern Ocean
Marine Biology (2018) 165:129 https://doi.org/10.1007/s00227-018-3386-z REVIEW, CONCEPT, AND SYNTHESIS Review: the energetic value of zooplankton and nekton species of the Southern Ocean Fokje L. Schaafsma1 · Yves Cherel2 · Hauke Flores3 · Jan Andries van Franeker1 · Mary‑Anne Lea4 · Ben Raymond5,4,6 · Anton P. van de Putte7 Received: 8 March 2018 / Accepted: 5 July 2018 / Published online: 18 July 2018 © The Author(s) 2018 Abstract Understanding the energy fux through food webs is important for estimating the capacity of marine ecosystems to support stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, energy densities were highest in myctophid fshes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fsh families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly fsh (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals diferences in energy density within and between species related to size, age and other life cycle parameters. Important taxa in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled. -
The Antarctic Treaty
The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents. -
The Genome Sequence of the Antarctic Bullhead Notothen Reveals
Shin et al. Genome Biology 2014, 15:468 http://genomebiology.com/2014/15/9/468 RESEARCH Open Access The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment Seung Chul Shin1, Do Hwan Ahn1,2, Su Jin Kim3, Chul Woo Pyo4, Hyoungseok Lee1, Mi-Kyeong Kim1, Jungeun Lee1, Jong Eun Lee5, H William Detrich III6, John H Postlethwait7, David Edwards8,9, Sung Gu Lee1,2, Jun Hyuck Lee1,2 and Hyun Park1,2* Abstract Background: Antarctic fish have adapted to the freezing waters of the Southern Ocean. Representative adaptations to this harsh environment include a constitutive heat shock response and the evolution of an antifreeze protein in the blood. Despite their adaptations to the cold, genome-wide studies have not yet been performed on these fish due to the lack of a sequenced genome. Notothenia coriiceps, the Antarctic bullhead notothen, is an endemic teleost fish with a circumpolar distribution and makes a good model to understand the genomic adaptations to constant sub-zero temperatures. Results: We provide the draft genome sequence and annotation for N. coriiceps. Comparative genome-wide analysis with other fish genomes shows that mitochondrial proteins and hemoglobin evolved rapidly. Transcriptome analysis of thermal stress responses find alternative response mechanisms for evolution strategies in a cold environment. Loss of the phosphorylation-dependent sumoylation motif in heat shock factor 1 suggests that the heat shock response evolved into a simple and rapid phosphorylation-independent regulatory mechanism. Rapidly evolved hemoglobin and the induction of a heat shock response in the blood may support the efficient supply of oxygen to cold-adapted mitochondria. -
Fishery Bulletin/U S Dept of Commerce National Oceanic
FEEDING ECOLOGY OF SOME FISHES OFTHE ANTARCTIC PENINSULA1 ROBERT A. DANIELS2 ABSTRACT Feeding ecology of 19 species of Antarctic fishes is examined. All species are carnivorous; the most important prey are amphipods, polychaetes, and isopods. Seven of the species examined (Nowthenia neglecta, N. gibberifrons, N. nudifrons, N. larseni, N. kempi, Trematomus scotti, and T. bernacchii) are feeding generalists with diets varying with size of fish, season, and locality of capture. Seven other species (Trematomus newnesi, Pleuragramma antarcticum, Cryothenia peninsulae, Artedidraco skottsbergi, Harpagifer bispinis, Prionodraco evansii, and Parachaenichthys charcoti) are specialists, feeding predominantly upon prey either from a single taxon or from very few taxa. Five species (Nowthenia rossii, Trematomus eulepidotus, Cryodraco antarcticus, Pagetopsis macropterus, and Chaenocephalus aceratus) were not well represented in the samples, but a qualitative description of their diet is included. The fishes studied consume a wide variety of food types and use several feeding behaviors. Based on field and laboratory observations, most species are ambush predators. However some species use an indiscriminant slurp method, grazing, or a search and capture form of feeding. Some species switch feeding behaviors seasonally or with locality. Diet similarity is high only in morphologically similar species. Where a high degree of diet similarity occurs, overlap in distribution tends to be low. Although most species are high-level carnivores and at least some occur sympatrically, direct competition for food among the species does not appear to exist. This partitioning of food resources adds to the complexity of the structure of Antarctic communities. The position of these fishes in the Antarctic trophic structure should be further examined and considered before extensive exploitation is begun. -
THE OFFICIAL Magazine of the OCEANOGRAPHY SOCIETY
OceThe Officiala MaganZineog of the Oceanographyra Spocietyhy CITATION Detrich, H.W. III, B.A. Buckley, D.F. Doolittle, C.D. Jones, and S.J. Lockhart. 2012. Sub-Antarctic and high Antarctic notothenioid fishes: Ecology and adaptational biology revealed by the ICEFISH 2004 cruise of RVIB Nathaniel B. Palmer. Oceanography 25(3):184–187, http://dx.doi.org/10.5670/oceanog.2012.93. DOI http://dx.doi.org/10.5670/oceanog.2012.93 COPYRIGHT This article has been published inOceanography , Volume 25, Number 3, a quarterly journal of The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downloaded from http://www.tos.org/oceanography Antarctic OceanographY in A Changing WorLD >> SIDEBAR Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer BY H. WILLiam Detrich III, BraDLEY A. BUCKLEY, DanieL F. DooLittLE, Christopher D. Jones, anD SUsanne J. LocKhart ABSTRACT. The goal of the ICEFISH 2004 cruise, which was conducted on board RVIB high- and sub-Antarctic notothenioid fishes Nathaniel B. Palmer and traversed the transitional zones linking the South Atlantic to the Southern as we transitioned between these distinct Ocean, was to compare the evolution, ecology, adaptational biology, community structure, and oceanographic regimes. -
Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B
Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 9-2012 Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer H. William Detrich III Northeastern University Bradley A. Buckley Portland State University Daniel F. Doolittle Christopher D. Jones National Oceanic and Atmospheric Administration Susanne J. Lockhart Antarctic Ecosystem Research Division Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Aquaculture and Fisheries Commons, and the Biology Commons Let us know how access to this document benefits ou.y Citation Details Detrich, H.W. III, B.A. Buckley, D.F. Doolittle, C.D. Jones, and S.J. Lockhart. 2012. Sub-Antarctic and high Antarctic notothenioid fishes: cologyE and adaptational biology revealed by the ICEFISH 2004 cruise of RVIB Nathaniel B. Palmer. Oceanography 25(3):184–187. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Antarctic OceanographY in A Changing WorLD >> SIDEBAR Sub-Antarctic and High Antarctic Notothenioid Fishes: Ecology and Adaptational Biology Revealed by the ICEFISH 2004 Cruise of RVIB Nathaniel B. Palmer BY H. WILLiam Detrich III, BraDLEY A. BUCKLEY, DanieL F. DooLittLE, Christopher D. Jones, anD SUsanne J. LocKhart ABSTRACT. The goal of the ICEFISH 2004 cruise, which was conducted on board RVIB high- and sub-Antarctic notothenioid fishes Nathaniel B. Palmer and traversed the transitional zones linking the South Atlantic to the Southern as we transitioned between these distinct Ocean, was to compare the evolution, ecology, adaptational biology, community structure, and oceanographic regimes. -
A Stalked Jellyfish (Calvadosia Campanulata)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles A stalked jellyfish (Calvadosia campanulata) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Harvey Tyler-Walters & Jessica Heard 2017-02-22 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/2101]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Heard, J.R. 2017. Calvadosia campanulata A stalked jellyfish. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on- line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.2101.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2017-02-22 A stalked jellyfish (Calvadosia campanulata) - Marine Life Information Network See online review for distribution map Calvadosia campanulata. -
The Southern Ocean 118 Worldwide Review of Bottom Fisheries in the High Seas
THE SOUTHERN OCEAN 118 Worldwide review of bottom fisheries in the high seas 30°W 15°W 0° 15°E 30°E °S °S 10 10 47 °S a n t i c °S A t l O c e a 20 n 20 t h o u 41 S Bouvet Prince Edward 51 Island Islands R i d i a g So t e ut S o hern Crozet °S c O o °S S South Georgia ce 30 Island an Islands u 30 t h 48 I n d Kerguelen e Islands g i id a McDonald R g Islands r n Weddell e Heard b Sea Island ss u O 5858 a -G en c el u e rg Bellingshausen e a K 87 n 87 Sea Davis Amundsen Sea n a Sea e c S O o n Ross r e u h S Sea t t outh u o h e 88 S rn O P c ea a n c i °S f °S i M 30 c 30 a O c c qu Macquarie e a a r Island 81 n ie R 57 i d g e °S °S 20 20 Tasman 77 Sea °S °S 10 150°W 165°W 180° 165°E 150°E 10 Antarctic Convergence FAO Fishing Areas 200 nautical miles arcs CCAMLR Regulatory Area Map Projection: Lambert Azimuthal equal area FAO, 2008 MAP 1 The Southern Ocean 119 Southern Ocean FAO Statistical Areas 48, 58 and 88 GEOGRAPHIC DESCRIPTION OF THE REGION The Southern Ocean surrounds the continent of Antarctica, and constitutes about 15 percent of the world’s total ocean surface (CCAMLR, 2000). -
Different Feeding Strategies in Antarctic Scavenging Amphipods and Their
Seefeldt et al. Frontiers in Zoology (2017) 14:59 DOI 10.1186/s12983-017-0248-3 RESEARCH Open Access Different feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers Meike Anna Seefeldt1,2*, Gabriela Laura Campana3,4, Dolores Deregibus3, María Liliana Quartino3,5, Doris Abele2, Ralph Tollrian1 and Christoph Held2 Abstract Background: Scavenger guilds are composed of a variety of species, co-existing in the same habitat and sharing the same niche in the food web. Niche partitioning among them can manifest in different feeding strategies, e.g. during carcass feeding. In the bentho-pelagic realm of the Southern Ocean, scavenging amphipods (Lysianassoidea) are ubiquitous and occupy a central role in decomposition processes. Here we address the question whether scavenging lysianassoid amphipods employ different feeding strategies during carcass feeding, and whether synergistic feeding activities may influence carcass decomposition. To this end, we compared the relatively large species Waldeckia obesa with the small species Cheirimedon femoratus, Hippomedon kergueleni, and Orchomenella rotundifrons during fish carcass feeding (Notothenia spp.). The experimental approach combined ex situ feeding experiments, behavioural observations, and scanning electron microscopic analyses of mandibles. Furthermore, we aimed to detect ecological drivers for distribution patterns of scavenging amphipods in the Antarctic coastal ecosystems of Potter Cove. In Potter Cove, the climate-driven rapid retreat of the Fourcade Glacier is causing various environmental changes including the provision of new marine habitats to colonise. While in the newly ice- free areas fish are rare, macroalgae have already colonised hard substrates. Assuming that a temporal dietary switch may increase the colonisation success of the most abundant lysianassoids C. -
Induction of Heat Shock Proteins in Cold- Adapted and Cold
CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UA INDUCTION OF HEAT SHOCK PROTEINS IN COLD- ADAPTED AND COLD- ACCLIMATED FISHES By Laura Elizabeth Teigen Dr. Kristin O'Brien Advisory Committee Chair Dr. Diane Wagner Chair, Department of Biology and Wildlife APPROVED: ;t.-/ INDUCTION OF HEAT SHOCK PROTEINS IN COLD- ADAPTED AND COLD- ACCLIMATED FISHES A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Laura Elizabeth Teigen, B.A. Fairbanks, Alaska May 2014 v Abstract I examined the effects of oxidative stress and changes in temperature on heat shock protein (Hsp) levels in cold-adapted and cold-acclimated fishes. Adaptation of Antarctic notothenioids to cold temperature is correlated with high levels of Hsps, thought to minimize cold-induced protein denaturation. Hsp70 levels were measured in red- and white-blooded Antarctic notothenioid fishes exposed to their critical thermal maximum (CTMax), 4C warm acclimated, and notothenioids from different latitudes. I determined the effect of cold acclimation on Hsp levels and the role of sirtuins in regulating Hsp expression and changes in metabolism in threespine stickleback, Gasterosteus aculeatus, cold-acclimated to 8C. Levels of Hsps do not increase in Antarctic notothenioids exposed to their CTMax, and warm acclimation reduced levels of Hsp70. Hsp70 levels were higher in Antarctic notothenioids compared to a temperate notothenioid and higher in white-blooded notothenioids compared to red-blooded notothenioids, despite higher oxidative stress levels in red-blooded fish, suggesting Hsp70 does not mitigate oxidative stress.