UML Tutorial: Part 1 -- Class Diagrams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using the UML for Architectural Description?
Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support. -
The Guide to Succeeding with Use Cases
USE-CASE 2.0 The Guide to Succeeding with Use Cases Ivar Jacobson Ian Spence Kurt Bittner December 2011 USE-CASE 2.0 The Definitive Guide About this Guide 3 How to read this Guide 3 What is Use-Case 2.0? 4 First Principles 5 Principle 1: Keep it simple by telling stories 5 Principle 2: Understand the big picture 5 Principle 3: Focus on value 7 Principle 4: Build the system in slices 8 Principle 5: Deliver the system in increments 10 Principle 6: Adapt to meet the team’s needs 11 Use-Case 2.0 Content 13 Things to Work With 13 Work Products 18 Things to do 23 Using Use-Case 2.0 30 Use-Case 2.0: Applicable for all types of system 30 Use-Case 2.0: Handling all types of requirement 31 Use-Case 2.0: Applicable for all development approaches 31 Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39 Conclusion 40 Appendix 1: Work Products 41 Supporting Information 42 Test Case 44 Use-Case Model 46 Use-Case Narrative 47 Use-Case Realization 49 Glossary of Terms 51 Acknowledgements 52 General 52 People 52 Bibliography 53 About the Authors 54 USE-CASE 2.0 The Definitive Guide Page 2 © 2005-2011 IvAr JacobSon InternationAl SA. All rights reserved. About this Guide This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of the art to present an evolution of the use-case technique that we call Use-Case 2.0. -
UML : Introduction
UML : introduction Achref El Mouelhi Docteur de l’universite´ d’Aix-Marseille Chercheur en programmation par contrainte (IA) Ingenieur´ en genie´ logiciel [email protected] H & H: Research and Training 1 / 16 UML : introduction Achref El Mouelhi Docteur de l’universite´ d’Aix-Marseille Chercheur en programmation par contrainte (IA) Ingenieur´ en genie´ logiciel [email protected] H & H: Research and Training 2 / 16 UML © Achref EL MOUELHI © Pour construire cette maison Il faut etablir´ un plan avant H & H: Research and Training 3 / 16 UML La realisation´ d’une application peut passer par plusieurs etapes´ Definition´ des besoins Analyse Conception Developpement´ Test Validation© Achref EL MOUELHI © Deploiement´ Maintenance ... H & H: Research and Training 4 / 16 UML Ou` est UML dans tout c¸a ? UML permet de modeliser´ toutes les etapes´ du developpement´ d’une application de l’analyse au deploiement´ (en utilisant plusieurs diagrammes). © Achref EL MOUELHI © H & H: Research and Training 5 / 16 UML UML : Unified Modeling Language Un langage de modelisation´ unifie´ Ce n’est pas un langage de programmation Independant´ de tout langage de programmation (objet ou autre) Un langage base´ sur des notations graphiques Constitues´ de plusieurs graphes (diagrammes) permettant de visualiser© la Achref future application EL MOUELHI de plusieurs angles © differents´ Une norme maintenue par l’OMG (Object Management Group : organisation mondiale cre´ee´ en 1989 pour standardiser le modele` objet) H & H: Research and Training 6 / 16 Exemple -
Plantuml Language Reference Guide (Version 1.2021.2)
Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants -
Semantic Based Model of Conceptual Work Products for Formal Verification of Complex Interactive Systems
Semantic based model of Conceptual Work Products for formal verification of complex interactive systems Mohcine Madkour1*, Keith Butler2, Eric Mercer3, Ali Bahrami4, Cui Tao1 1 The University of Texas Health Science Center at Houston, School of Biomedical Informatics, 7000 Fannin St Suite 600, Houston, TX 77030 2 University of Washington, Department of Human Centered Design and Engineering Box 352315, Sieg Hall, Room 208 Seattle, WA 98195 3 Brigham Young University Computer Science Department, 3334 TMCB PO Box 26576 Provo, UT 84602-6576 4 Medico System Inc. 10900 NE 8th Street Suite 900 Bellevue, WA 98004 * Corresponding author, email: [email protected], phone: (+1) 281-652-7118 Abstract - Many clinical workflows depend on interactive computer systems for highly technical, conceptual work 1. Introduction products, such as diagnoses, treatment plans, care Many critical systems require highly complex user interactions coordination, and case management. We describe an and a large number of cognitive tasks. These systems are automatic logic reasoner to verify objective specifications common in clinical health care and also many other industries for these highly technical, but abstract, work products that where the consequences of failure can be very expensive or are essential to care. The conceptual work products risky to human safety. Formal verification through model specifications serve as a fundamental output requirement, checking could reduce or prevent system failures, but several which must be clearly stated, correct and solvable. There is technical obstacles must be solved first. strategic importance for such specifications because, in We focus here on the abstract products of conceptual work turn, they enable system model checking to verify that that are foundational requirements that must be part of machine functions taken with user procedures are actually verification in a modern health care systems. -
Sysml Distilled: a Brief Guide to the Systems Modeling Language
ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML. -
A Study on Process Description Method for DFM Using Ontology
Invited Paper A Study on Process Description Method for DFM Using Ontology K. Hiekata1 and H. Yamato2 1Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan 2Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan [email protected], [email protected] Abstract A method to describe process and knowledge based on RDF which is an ontology description language and IDEF0 which is a formal process description format is proposed. Once knowledge of experienced engineers is embedded into the system the knowledge will be lost in the future. A production process is described in a proposed format similar to BOM and the process can be retrieved as a flow diagram to make the engineers to understand the product and process. Proposed method is applied to a simple production process of common sub-assembly of ships for evaluation. Keywords: Production process, DFM, Ontology, Computer system 1 INTRODUCTION (Unified Resource Identifier) is assigned to all the objects, There are many research and computer program for and metadata is defined for all objects using the URI. supporting optimization of production process in Metadata is defined as a statement with subject, shipyards. And knowledge of experienced engineers is predicate and object. The statement is called triple in embedded into the system. Once the knowledge is RDF. Two kinds of elements, Literal or Resource, can be embedded into computer system, the knowledge is not a component of a statement. -
UML Why Develop a UML Model?
App Development & Modelling BSc in Applied Computing Produced Eamonn de Leastar ([email protected]) by Department of Computing, Maths & Physics Waterford Institute of Technology http://www.wit.ie http://elearning.wit.ie Introduction to UML Why develop a UML model? • Provide structure for problem solving • Experiment to explore multiple solutions • Furnish abstractions to manage complexity • Decrease development costs • Manage the risk of mistakes #3 The Challenge #4 The Vision #5 Why do we model graphically? " Graphics reveal data.! " Edward Tufte$ The Visual Display of Quantitative Information, 1983$ " 1 bitmap = 1 megaword.! " Anonymous visual modeler #6 Building Blocks of UML " The basic building blocks of UML are:! " model elements (classes, interfaces, components, use cases, etc.)! " relationships (associations, generalization, dependencies, etc.)! " diagrams (class diagrams, use case diagrams, interaction diagrams, etc.)! " Simple building blocks are used to create large, complex structures! " eg elements, bonds and molecules in chemistry! " eg components, connectors and circuit boards in hardware #7 Example : Classifier View #8 Example: Instance View #9 UML Modeling Process " Use Case! " Structural! " Behavioural! " Architectural #10 Use Case Visual Paradigm Help #11 Structural Modeling Visual Paradigm Help #12 Behavioural Modeling Visual Paradigm Help #13 Architectural Modeling Visual Paradigm Help #14 Structural Modeling " Core concepts! " Diagram Types #15 Structural Modeling Core Elements " a view of an system that emphasizes -
Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes
Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes “The Business Driven Application Lifecycle” Bob Sherman Procter & Gamble Pharmaceuticals [email protected] Michael Sutherland Galactic Solutions Group, LLC [email protected] Prepared for the Telelogic 2005 User Group Conference, Americas & Asia/Pacific http://www.telelogic.com/news/usergroup/us2005/index.cfm 24 October 2005 Abstract: The fact that most Information Technology (IT) projects fail as a result of requirements management problems is common knowledge. What is not commonly recognized is that the widely haled “use case” and Object Oriented Analysis and Design (OOAD) phenomenon have resulted in little (if any) abatement of IT project failures. In fact, ten years after the advent of these methods, every major IT industry research group remains aligned on the fact that these projects are still failing at an alarming rate (less than a 30% success rate). Ironically, the popularity of use case and OOAD (e.g. UML) methods may be doing more harm than good by diverting our attention away from addressing the real root cause of IT project failures (when you have a new hammer, everything looks like a nail). This paper asserts that, the real root cause of IT project failures centers around the failure to map requirements to an accurate, precise, comprehensive, optimized business model. This argument will be supported by a using a brief recap of the history of use case and OOAD methods to identify differences between the problems these methods were intended to address and the challenges of today’s IT projects. -
Extreme Programming and Rational Unified Process – Contrasts Or Synonyms?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics EXTREME PROGRAMMING AND RATIONAL UNIFIED PROCESS – CONTRASTS OR SYNONYMS? Ionel IACOB, PhD Faculty of Computer Science for Business Management, Romanian – American University, Bucharest, Romania ABSTRACT The agile movement has received much attention in software engineering recently. Established methodologies try to surf on the wave and present their methodologies a being agile, among those Rational Unified Process (RUP). In order to evaluate the statements we evaluate the RUP against eXtreme Programming (XP) to find out to what extent they are similar end where they are different. We use a qualitative approach, utilizing a framework for comparison. RUP is a top-down solution and XP is a bottom-up approach. Which of the two is really best in different situations has to be investigated in new empirical studies. 1. INTRODUCTION The agile movement has appeared the last years as an alternative direction for software engineering [1]. Among the agile methodologies, eXtreme Programming (XP) is the most well known [2]. In the current agile boom, many established software engineering methodologies try to present themselves as being agile. The Rational Unified Processes (RUP) [16] is among those, providing “plugins” to RUP for eXtreme Programming1. Thereby they offer a downsized version of RUP, which is stated to be lightweight, agile style. Both methodologies share some common characteristics; they are iterative, customer-oriented and role- based. RUP is generally not considered agile; rather it is criticized for being too extensive and heavyweight [21]. RUP comprises 80 artifacts while XP only stresses the code. -
Course Structure & Syllabus of B.Tech Programme In
Course Structure & Syllabus of B.Tech Programme in Information Technology (From the Session 2015-16) VSSUT, BURLA COURSE STRUCTURE FIRST YEAR (COMMON TO ALL BRANCHES) FIRST SEMESTER SECOND SEMESTER Contact Contact Theory Hrs. Theory Hrs. CR CR Course Course Subject L .T .P Subject L. T. P Code Code Mathematics-I 3 - 1 - 0 4 Mathematics-II 3 - 1 - 0 4 Physics/Chemistry 3 - 1 - 0 4 Chemistry/ Physics 3 - 1 - 0 4 Engineering Computer /CS15- CS15- Mechanics/Computer 3 - 1 - 0 4 Programming/Engineering 3 - 1 - 0 4 008 008/ Programming Mechanics Basic Electrical Engineering/ Basic Electronics/Basic 3 - 1 - 0 4 3 - 1 - 0 4 Basic Electronics Electrical Engineering English/Environmental Environmental 3 - 1 - 0 4 3 - 1 - 0 4 Studies Studies/English Sessionals Sessionals Physics Laboratory/ Chemistry Lab/ Physics 0 - 0 - 3 2 0 - 0 - 3 2 Chemistry Lab Laboratory Workshop-I/Engineering Engineering Drawing/ 0 - 0 - 3 2 0 - 0 - 3 2 Drawing Workshop-I Basic Electrical Engineering Basic Electronics Lab/Basic 0 - 0 - 3 2 0 - 0 - 3 2 Lab/Basic Electronics Lab Electrical Engineering Lab Business Communication Programming Lab/ /CS15- CS15- and Presentation Skill/ 0 - 0 - 3 2 Business Communication 0 - 0 - 3 2 984 984/ Programming Lab and Presentation Skill Total 15-5-15 28 Total 15-5-15 28 SECOND YEAR THIRD SEMESTER FOURTH SEMESTER Contact Contact Theory Hrs. Theory Hrs. CR CR Course Subject L .T .P Course Code Subject L. T. P Code Mathematics-III Computer Organization 3 - 1 - 0 4 CS15-007 and Architecture 3 - 1 - 0 4 Digital Systems 3 - 1 - 0 4 CS15-032 Theory -
Generating Text with a Theorem Prover
Generating Text with a Theorem Prover Ivfin I. Garibay School of Computer Science University of Central Florida Orlando, FL [email protected] Statechart Abstract ~ Theoreml The process of documenting designs is tedious and Content Planning Question tree + Tree transformations often error-prone. We discuss a system that au- , _?_T;_J Text Planning i Hypermxt~s implicittext planner(user)[ tomatically generates documentation for the single step transition behavior of Statecharts with particu- I.oa!izatioo Tomp,ato I lar focus on the correctness of the result in the sense that the document will present all and only the facts Hyper-t exit Document corresponding to the design being documented. Our approach is to translate the Statechart into Figure 1: Conceptual view Of the system. a propositional formula, then translate this formula into a natural language report. In the later transla- spective, this problem is distinguished in that the tion pragmatic effects arise due to the way the in- formal correctness of the document being generated formation is presented. Whereas such effects can be is crucial while felicitousness of the style is rela- difficult to quantify, we account for them within an tively unimportant. This leads us to a solution abstract framework by applying a series of transfor- based on formally verifiable theorem-proving tech- mations on the structure on the report while pre- niques which allows us to approach strategic NLG is- serving soundness and completeness of the logical sues within a highly abstract and conceptually clear content. The result is an automatically generated framework. hypertext report that is both logically correct and, The system takes a statechart in the form of a to a relatively high degree of confidence, free of mis- labeled directed graph and translates it into a set leading implicatures.