To Control House Flies in Confined Animal Facilities Using

Total Page:16

File Type:pdf, Size:1020Kb

To Control House Flies in Confined Animal Facilities Using E-224 12-04 Using Parasitoids to Control House Flies in Confi ned Animal Facilities Confi ned a lt fl ies emerge once their can use biologica House fl ies’ natural enemies keep house fl ies at les and mites that feed on eggs are part of integrated eral parasitoid wasp species that designed to (1) avoid, pr and (2) minimize environm are unlike most parasitic insects caused by misuse of pesticide y usually kill their hosts. Adult parasitoids pest control alternative. iving; only their immature stages are parasitic, Biological controls use pests’ nat g on or inside their hosts. The most common suppress them, reducing both pest num use fl y parasitoids belong to the family Pteromalidae damage. Using biological controls in CA (Hymenoptera), a large group of benefi cial wasps basic knowledge about the pest’s biology an that will not sting people. Some of these parasitoid enemies in order to evaluate commercially ava species are native to Texas, and many are available biological control agents and select the best one. This commercially for purchase and release. fact sheet will update managers about using biological The female parasitoid wasp seeks out house fl y control practices in their CAFs to combat house fl ies. pupae. Using her ovipositor, she probes the pupa and feeds on it, then deposits one or more eggs inside the House Flies and Their Parasitoid Enemies pupal shell. (An ovipositor is a stinger-like appendage Like all insects, house fl ies, Musca domestica, used to lay eggs.) The female wasp’s probing kills the undergo metamorphosis. Adult fl ies lay eggs on fl y pupa, then a wasp larva emerges from the eggs manure and other substrates such as calf bedding laid in the pupal shell and feeds on the dead fl y inside. materials, wet feed or silage. The eggs hatch, and When fully developed, an adult wasp emerges from maggots emerge to feed for a few days on the the pupal shell to mate and search for new fl y pupae. substrate. Once maggots ingest suffi cient nutrients, The most important parasitoids for biological they transform into pupae protected by reddish- control of house fl ies include several species of Muscidifurax, Nasonia, and Spalangia. These parasitoid attack hosts located as deep as fi ve inches into species have slight but important differences in biology the substrate. Each adult female may produce and host preferences, described as follows: up to 25 viable offspring during her lifetime. • Muscidifurax raptor is the most commonly Little is known about its dispersal from a used parasitoid for biological control of house release point. fl ies. Found naturally throughout the year in • Spalangia endius also is distributed throughout Texas and the rest of the United States, it also the United States; it is one of the parasitoids parasitizes blow fl ies and fl esh fl ies. Female M. preferred for biological control of house fl ies in raptor most actively search for pupae located in North Carolina, where it is active from summer the top two inches of a fl y-breeding substrate; through fall. It attacks house fl ies and other fl y typically they do not attack fl y pupae below species. Searching extends to hosts located up this level. Females deposit one egg per pupa; to fi ve inches below the surface of the soil or each female can lay up to 100 eggs in a lifetime. fl y-breeding substrate. Females deposit one egg Adults are strong fl iers and may disperse from per house fl y pupa, and each female lays an CAFs after release. average of 34 eggs during its lifetime. Little is • Muscidifurax zaraptor is biologically similar to known about its dispersal from a release point. M. raptor. It primarily searches for host pupae • Other species. There are several other house located on surfaces of house fl y-breeding fl y parasitoid species in Texas, including habitats, down to approximately one-inch deep Muscidifurax uniraptor, Pachycrepoideus vindemiae into substrates. Adults may disperse 30 to 70 and Spalangia chontalensis, S. drosophilae, feet from a release point. S. nigra, S. masi and S. nigroaenea. However, • Muscidifurax raptorellus, considered a warm- these species have not received much attention weather wasp, actually may be the species most as biological control agents. commonly produced for sale in the United States. Female M. raptorellus may deposit more Using Parasitoids for Biological Control than one egg per house fl y pupa, laying as Many species of house fl y parasitoids occur many as 150 eggs during a lifetime. The ability naturally in Texas but not in suffi cient numbers or to produce more than one individual per host at the right times to provide desired control levels. pupa accounts for rapid population growth. Native parasitoid populations can be conserved by This species also does not disperse far from using compatible insecticides, such as bait products its release point, so it is more likely to remain containing methomyl and space-treatment products within CAFs after initial release. containing pyrethrin. Purchasing and releasing natural • Nasonia vitripennis, distributed throughout enemies is called “augmentation biological control”; its North America, is easily raised in the intent is suppression of pest populations by increasing laboratory. It parasitizes several fl y species and pest mortality due to these agents. Effective biological can search for pupae located deeper into the control through augmentation requires: fl y-breeding substrate. A single adult female • Selecting parasitoid species adapted to local may produce up to 140 to 200 eggs during her conditions lifetime and may deposit several eggs into • Purchasing high-quality natural enemies a single house fl y pupa. However, Nasonia • Releasing parasitoids at the correct rate, vitripennis is considered generally ineffective frequency and time at suppressing house fl y populations because it cannot locate hosts under fi eld conditions. • Using release methods that ensure parasitoid Consequently, this species is not recommended survival and dispersal for release into CAFs such as dairies. Before purchasing and releasing parasitoids, make • Spalangia cameroni is distributed throughout sure you have answers to these important questions: North America; in southern states like North 1. What species do I have already in my facilities? Carolina, it is active primarily from late Are my natural populations effective at summer through fall. It attacks house fl ies and suppressing house fl ies? other fl y species. Females can discriminate Native populations already may be present in between hosts and prefer un-parasitized hosts your facilities, so inoculation with purchased to previously parasitized ones. Generally, this material might not be necessary. During the species confi nes its searching to the top two summer, collect samples of 10 to 15 house fl y inches of fl y-breeding substrate, but it may pupae from various fl y-breeding sites around your CAF to assess natural control by native Percent emergence can be estimated by counting parasitoids. Collect only old (mature) pupae (dark the number of pupae with wasp emergence brown or black), because they are more likely to holes relative to the total number of pupae in be parasitized then are young pupae (tan or light your sample. Insect diseases may contaminate brown). Place samples in a closed container and insectaries and reduce product quality; it is store them at room temperature. Assess parasitism important to obtain only high-quality, disease-free approximately 2 weeks after sample collection by parasitoids. observing house fl y and parasitoid emergence. 5. Are parasitoid releases cost-effective? Adult house fl ies break off one end of the pupal Sampling methods described above can be used shell upon emergence; adult parasitoids emerge to monitor parasitization rates and house fl y through pinholes. Contact your local county suppression. Compare numbers of fl ies observed Extension agent for help identifying parasitoid in suppression areas to those observed in areas species. without released parasitoids or with previous 2. What parasitoid species should I purchase and infestation records. Monitoring programs also release? help to identify the best release methods to Consider time of year, house fl y-breeding achieve house fl y suppression in particular substrate and infestation levels. Some parasitoids production systems. Prices of parasitoids vary, will attack only those house fl y pupae located averaging about $13.00 per 10,000, plus shipping on substrate surfaces. Muscidifurax raptor and M. and handling costs. Release rates are suggested at zoraptor are more effective at killing house fl ies 200 per cow, which translates into $2.40 to $4.70 than other species. Avoid purchasing N. vitripennis per cow per season. because it is not considered a good biological 6. Where can I purchase parasitoids? control agent. A complete list of suppliers is posted at http:// 3. How many parasitoids should I release? www.cdpr.ca.gov/docs/impinov/ben_supp/fi lthpar.htm. Research in other states has indicated effective 7. How does the company-of-interest compare with weekly release rates of either 200 parasitoids other insectaries? per milking cow or 1,000 parasitoids per calf. Always check the competition and compare However, every situation is different; release rates effectiveness, product quality and per-unit prices. should be adjusted to achieve cost-effectiveness. Check for consistency between shipments, and be 4. What is the quality of the parasitoid product aware of unsupported claims of effectiveness. sold? Parasitoid wasps are sold in the form of Acknowledgements parasitized house fl y pupae. High-quality The authors would like to thank A. Knutson, Texas products will produce high ratios of adult Cooperative Extension, Department of Entomology, wasps to released pupae. Assess product Texas A&M University, and L. Tomberlin for quality frequently by taking a sample of 50 to their helpful comments on earlier versions of this 100 pupae from each shipment and placing it publication.
Recommended publications
  • Effect of Habitat Depth on Host Location by Five Species Of
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2002 Effect of Habitat Depth on Host Location by Five Species of Parasitoids (Hymenoptera: Pteromalidae, Chalcididae) of House Flies (Diptera: Muscidae) in Three Types of Substrates Christopher Geden USDA-ARS, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Geden, Christopher, "Effect of Habitat Depth on Host Location by Five Species of Parasitoids (Hymenoptera: Pteromalidae, Chalcididae) of House Flies (Diptera: Muscidae) in Three Types of Substrates" (2002). Publications from USDA-ARS / UNL Faculty. 982. https://digitalcommons.unl.edu/usdaarsfacpub/982 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOLOGICAL CONTROL Effect of Habitat Depth on Host Location by Five Species of Parasitoids (Hymenoptera: Pteromalidae, Chalcididae) of House Flies (Diptera: Muscidae) in Three Types of Substrates CHRISTOPHER J. GEDEN1 Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Environ. Entomol. 31(2): 411Ð417 (2002) ABSTRACT Four species of pteromalid parasitoids [Muscidifurax raptor Girault & Sanders, Spal- angia cameroni Perkins, Spalangia endius Walker, Spalangia gemina Boucek, and the chalcidid Dirhinus himalayanus (Masi)] were evaluated for their ability to locate house ßy pupae at various depths in poultry manure (41% moisture), ßy rearing medium (43% moisture), and sandy soil (4% moisture) from a dairy farm.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Modification of Insect and Arachnid Behaviours by Vertically Transmitted Endosymbionts: Infections As Drivers of Behavioural Change and Evolutionary Novelty
    Insects 2012, 3, 246-261; doi:10.3390/insects3010246 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Modification of Insect and Arachnid Behaviours by Vertically Transmitted Endosymbionts: Infections as Drivers of Behavioural Change and Evolutionary Novelty Sara L. Goodacre 1,* and Oliver Y. Martin 2 1 School of Biology, University of Nottingham, NG7 2RD, UK 2 ETH Zurich, Experimental Ecology, Institute for Integrative Biology, Universitätsstrasse 16, CH-8092 Zurich, Switzerland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-115-8230334. Received: 29 January 2012; in revised form: 17 February 2012 / Accepted: 21 February 2012 / Published: 29 February 2012 Abstract: Vertically acquired, endosymbiotic bacteria such as those belonging to the Rickettsiales and the Mollicutes are known to influence the biology of their arthropod hosts in order to favour their own transmission. In this study we investigate the influence of such reproductive parasites on the behavior of their insects and arachnid hosts. We find that changes in host behavior that are associated with endosymbiont infections are not restricted to characteristics that are directly associated with reproduction. Other behavioural traits, such as those involved in intraspecific competition or in dispersal may also be affected. Such behavioural shifts are expected to influence the level of intraspecific variation and the rate at which adaptation can occur through their effects on effective population size and gene flow amongst populations. Symbionts may thus influence both levels of polymorphism within species and the rate at which diversification can occur.
    [Show full text]
  • Recent Advances and Perspectives in Nasonia Wasps
    Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dittmer, Jessica, Edward J. van Opstal, J. Dylan Shropshire, Seth R. Bordenstein, Gregory D. D. Hurst, and Robert M. Brucker. 2016. “Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps.” Frontiers in Microbiology 7 (1): 1478. doi:10.3389/ fmicb.2016.01478. http://dx.doi.org/10.3389/fmicb.2016.01478. Published Version doi:10.3389/fmicb.2016.01478 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408381 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA fmicb-07-01478 September 21, 2016 Time: 14:13 # 1 REVIEW published: 23 September 2016 doi: 10.3389/fmicb.2016.01478 Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps Jessica Dittmer1, Edward J. van Opstal2, J. Dylan Shropshire2, Seth R. Bordenstein2,3, Gregory D. D. Hurst4 and Robert M. Brucker1* 1 Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA, 2 Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA, 3 Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA, 4 Institute of Integrative Biology, University of Liverpool, Liverpool, UK The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis.
    [Show full text]
  • Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2001 Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary Jerome A. Hogsette USDA-ARS Róbert Farkas Szent Istvan University Csaba Thuróczy Systematic Parasitoid Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Hogsette, Jerome A.; Farkas, Róbert; and Thuróczy, Csaba, "Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary" (2001). Publications from USDA-ARS / UNL Faculty. 991. https://digitalcommons.unl.edu/usdaarsfacpub/991 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOLOGICAL CONTROL Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary 1 2 JEROME A. HOGSETTE, RO´ BERT FARKAS, AND CSABA THURO´ CZY Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Environ. Entomol. 30(1): 107Ð111 (2001) ABSTRACT This Þeld survey, the second noting the occurrence and diversity of Þlth ßy pupal parasitoid fauna in Hungary, was performed on beef and dairy feedlots and swine facilities in the southern and eastern parts of the country.
    [Show full text]
  • Hymenoptera: Chalcidoidea) of Morocco
    Graellsia, 77(1): e139 enero-junio 2021 ISSN-L: 0367-5041 https://doi.org/10.3989/graellsia.2021.v77.301 ANNOTATED CHECK-LIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) OF MOROCCO. PART II Khadija Kissayi1,*, Mircea-Dan Mitroiu2 & Latifa Rohi3 1 National School of Forestry, Department of Forest Development, B.P. 511, Avenue Moulay Youssef, Tabriquet, 11 000, Salé, Morocco. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-3494-2250 2 Alexandru Ioan Cuza, University of Iaşi, Faculty of Biology, Research Group on Invertebrate Diversity and Phylogenetics, Bd. Carol I 20A, 700 505, Iaşi, Romania. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-1368-7721 3 University Hassan II, Faculty of Sciences Ben M’sik, Laboratory of ecology and environment, Avenue Driss El Harti, B.P. 7955, Casablanca, 20 800 Morocco. Email: [email protected] / or [email protected] – ORCID iD: https://orcid.org/0000-0002-4180-1117 * Corresponding author: [email protected] ABSTRACT In this second part, we present the subfamily Pteromalinae in Morocco, which includes 86 species belonging to 50 genera. Fifteen genera and 37 species are listed for the first time in the Moroccan fauna, among which 9 have been newly identified, 24 have been found in the bibliography and 4 deposited in natural history museums. An updated list of Moroccan species is given, including their distribution by regions, their general distribution and their hosts. Keywords: Pteromalinae; distribution; hosts; new record; Morocco; Palaearctic Region. RESUMEN Lista comentada de Pteromalidae (Hymenoptera: Chalcidoidea) de Marruecos. Parte II En esta segunda parte, presentamos la subfamilia Pteromalinae en Marruecos, que incluye 86 especies pertenecientes a 50 géneros.
    [Show full text]
  • Literature Review of Parasitoids of Filth Flies in Thailand: a List of Species with Brief Notes on Bionomics of Common Species
    SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH LITERATURE REVIEW OF PARASITOIDS OF FILTH FLIES IN THAILAND: A LIST OF SPECIES WITH BRIEF NOTES ON BIONOMICS OF COMMON SPECIES Chamnarn Apiwathnasorn Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Abstract. We reviewed the literature for surveys of parasitoid of filth flies in Thai- land. We found 5 families, with 9 genera and 14 species identified in Thailand. We describe the ecological niches and biology of common species, including Spalangia cameroni, S. endius, S. nigroaenea and Pachycrepoideus vindemmiae. Keywords: pupal parasitoids, synanthropic flies, garbage dump, Thailand INTRODUCTION are among the most important and com- mon natural enemies of filth flies associ- Human activities produce large quan- ated with animals and humans (Rutz tities of organic waste suitable as breeding and Patterson, 1990). Parasitoids are of sites for calyptrate fly species. Synan- interest due to the emergence of pesticide thropic flies and their association with resistance among fly populations and a unsanitary conditions are important for growing demand by the public for more public health reasons since they may be environmentally safe methods of control carriers of enteric pathogens (Greenberg, (Meyer et al, 1987; Scott et al, 1989; Cilek 1971; Olsen, 1998; Graczyk et al, 2001; Ber- and Greene, 1994; Legner, 1995). Bio- nard, 2003, Banjo et al, 2005). During their logical control includes release of natural lifecycle, flies are exposed to a wide range enemies into the ecosystem to reduce fly of natural enemies (Legner and Brydon, populations to below annoyance levels. 1966; Morgan et al, 1981; Axtell, 1986).
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • International Conference Integrated Control in Citrus Fruit Crops
    IOBC / WPRS Working Group „Integrated Control in Citrus Fruit Crops“ International Conference on Integrated Control in Citrus Fruit Crops Proceedings of the meeting at Catania, Italy 5 – 7 November 2007 Edited by: Ferran García-Marí IOBC wprs Bulletin Bulletin OILB srop Vol. 38, 2008 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2008 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Julius Kuehn Institute (JKI), Federal University of Gent Research Centre for Cultivated Plants Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Montfavet Cedex (France) ISBN 978-92-9067-212-8 http://www.iobc-wprs.org Organizing Committee of the International Conference on Integrated Control in Citrus Fruit Crops Catania, Italy 5 – 7 November, 2007 Gaetano Siscaro1 Lucia Zappalà1 Giovanna Tropea Garzia1 Gaetana Mazzeo1 Pompeo Suma1 Carmelo Rapisarda1 Agatino Russo1 Giuseppe Cocuzza1 Ernesto Raciti2 Filadelfo Conti2 Giancarlo Perrotta2 1Dipartimento di Scienze e tecnologie Fitosanitarie Università degli Studi di Catania 2Regione Siciliana Assessorato Agricoltura e Foreste Servizi alla Sviluppo Integrated Control in Citrus Fruit Crops IOBC/wprs Bulletin Vol.
    [Show full text]
  • Pteromalidae
    Subfamily Genus/Tribe Species Author Near Neot Pala Afro Orie Aust USA CAN AB BC MB NB NF NS NWT ON PEI QC SK YT AK GL Asaphinae Asaphes brevipetiolatus Gibson & Vikberg x x x x x x x x Asaphinae Asaphes californicus Girault x x x x x x x Asaphinae Asaphes californicus complex xxxx Asaphinae Asaphes hirsutus Gibson & Vikberg x x x x x x x x x x x x x x Asaphinae Asaphes petiolatus (Zetterstedt) x x x x x x x x x Asaphinae Asaphes pubescens Kamijo & Takada x x Asaphinae Asaphes suspensus (Nees) x x x x x x x x x x x x x x x Asaphinae Asaphes vulgaris Walker x x x x x x x x x x Asaphinae Asaphes Walker x x x x x x x Asaphinae Ausasaphes Boucek x Asaphinae Enoggera polita Girault x Asaphinae Enoggera Girault x Asaphinae Hyperimerus corvus Girault x x x x x Asaphinae Hyperimerus pusillus (Walker) x x x x x x x x x Asaphinae Hyperimerus Girault x x x Asaphinae x Austrosystasinae Austroterobia iceryae Boucek x Austroterobiinae Austroterobia partibrunnea Girault x Austroterobiinae Austroterobia Girault x x Austroterobiinae xx Ceinae Bohpa maculata Darling x Ceinae Cea pulicaris Walker x x x Ceinae Cea Walker x x x Ceinae Spalangiopelta albigena Darling x x x Ceinae Spalangiopelta apotherisma Darling & Hanson x x x x x x x Ceinae Spalangiopelta canadensis Darling x x x x x x x Ceinae Spalangiopelta ciliata Yoshimoto x x x x x x Ceinae Spalangiopelta felonia Darling & Hanson x x Ceinae Spalangiopelta hiko Darling x Ceinae Spalangiopelta laevis Darling x Ceinae Spalangiopelta Masi x x x x x x x x x Cerocephalinae Acerocephala Gahan x x Cerocephalinae
    [Show full text]
  • Irreversible Thelytokous Reproduction in Muscidifurax Uniraptor
    Entomologia Experimentalis et Applicata 100: 271–278, 2001. 271 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Irreversible thelytokous reproduction in Muscidifurax uniraptor Yuval Gottlieb∗ & Einat Zchori-Fein Department of Entomology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew Uni- versity of Jerusalem, P.O.Box 12, Rehovot 76100, Israel; ∗Current address: The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th St. Chicago, IL 60637, USA (Phone: 1 (773) 834-0264; Fax: 1 (773) 834-3028; E-mail: [email protected]) Accepted: May 1, 2001 Key words: thelytoky, Wolbachia, Muscidifurax uniraptor, symbiosis, reproductive barriers Abstract Vertically transmitted bacteria of the genus Wolbachia are obligatory endosymbionts known to cause thelytokous (asexual) reproduction in many species of parasitic Hymenoptera. In these species production of males can be induced, but attempts to establish sexual lines have failed in all but one genus. We have found three reproductive barriers between antibiotic-induced males and conspecific females of Muscidifurax uniraptor Kogan and Legner (Hymenoptera: Pteromalidae): males do not produce mature sperm, females are reluctant to mate, and a major muscle is absent from the spermatheca. These findings suggest that Wolbachia-induced thelytokous reproduction in M. uniraptor is irreversible, and are consistent with the idea that since sexual reproduction has ceased, selection on sexual traits has been removed leading to the disappearance or reduction in these traits. Because under these circumstances asexual reproduction is irreversible, the host has become totally dependent on the symbiont for reproduction. Introduction more than 16% of all the insects surveyed (For review, see Stouthamer et al., 1999).
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]