Mobile Genetic Elements in Antibiotic Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Mobile Genetic Elements in Antibiotic Resistance J. Med. Microbiol. - Vol. 38 (1993). 157-159 0 1993 The Pathological Society of Great Britain and Ireland EDITORIAL . Mobile genetic elements in antibiotic resistance Chromosomally-mediated resistance, arising from of chromosome containing an origin of replication mutation during therapy or spread of a single or- with the subsequent acquisition of the genes we see ganism, can be a major contributor to the resistance today. This was, however, a very ancient event. encountered in bacterial infection. Chromosomal Resistance plasmids are similar to plasmids found in mutations may change membrane permeability, re- strains of gram-negative rods isolated before the ducing the efficacy of many antibacterial agents, antibiotic era that do not carry resistance mechanisms, induce the production of chromosomally encoded indicating that resistance genes must have been enzymes such as #?-lactamases, or alter the target acquired since the introduction of antibiotics into enzyme, e.g., dihydrofolate reductase (DHFR), the medi~ine.~How have plasmids accumulated such binding site of trimethoprim. The nature of these diversity of resistance genes? Some plasmids are not mechanisms is such that they can only be passed on essential for bacterial survival under normal circum- vertically to the progeny of the resistance organisms. stances; they are free to mutate without lethal effects Thus, they account for only a small proportion of on the cell. They can also move between cells and resistant isolates and generally mediate only low- species, accumulating genes by recombination. Homo- level resistance. Plasmid-mediated resistance accounts logous recombination, integration and excision from for most high-level resistance found in bacteria and the host chromosome must play some part in the has resulted in the rapid spread and accumulation of acquisition of genes by plasmids. However, trans- the most efficient resistance mechanisms with a con- position has been shown increasingly to be a major comitant challenge to antibacterial therapy. contribution to plasmid development since the first The evolution and spread of resistance plasmids has recognition of a transposon, Tnl, by Hedges and been promoted by the wide use of antibiotics in Jacob.' Complete and functional resistance genes can medicine and animal husbandry. In the presence of be transferred from one replicon to another by this antibiotics, the acquisition of a resistance plasmid by mechanism. the host cell is obviously beneficial. It will survive and Two major classes of transposon have been multiply, as will the plasmid, whilst non-plasmid identified ; class I or composite transposons and class carrying cells will be eliminated. Plasmids are passed I1 or complex transposons differ in structure and on vertically to the cell's progeny during cell division. function. They may originate from the use of modified However, many resistance plasmids are also capable of restriction endonucleases or recombinases which have mediating their transfer to other organisms, and acquired functions in recognition and recombination indeed to organisms of other species, by conjugation. of specific sequences. Class I transposons are a This greatly increases the potential for the spread of heterogeneous group of elements, carrying a variety of resistance genes situated on plasmids.The plasmid, resistance genes that share similar structural and which is separate from the cell in evolutionary terms, functional properties, but share little DNA homology.7 ensures its maintenance in the cell whether or not The class I1 transposons are more homogeneous, antibiotic selection pressure is present. Resistance comprising three different but related " families ", the plasmids seem to be stable in bacterial populations,' Tn3, Tn21 and Tn2.501 group^.*^^ Transposon 21 and even when there is no selective pressure; indeed their its group have been the most widely studied. These stability will benefit the progeny of the cell in future transposons usually carry more than one resistance encounters with the antibiotic, which may be likely in determinant ;'9 lo resistance to sulphonamide is usually the case of commonly used drugs. present ;the OXA and PSE #?-lactamasesare commons Most resistance plasmids mediate resistance to more as is enzymatic resistance to the aminoglycoside than one, sometimes as many as seven, antibiotim2 antibiotics." Resistance to mercury compounds12and Selective pressure applied by the use of a single trimethoprim resistance mediated by dhfr I1 and V are antibiotic will select for all the other resistance also associated with Tn2I.l3 The dhfr I gene which is mechanism^.^ Many outbreaks of plasmid-mediated usually associated with Tn7 has also been shown as resistance causing problems in hospital or clinical part of a Tn21-like transposon.14 environments have been documented and single or It is not immediately obvious how such a homo- closely related plasmids have often been shown to be geneous group of elements can harbour such a wide respon~ible.~ range of resistance mechanisms but it has been How have these problematic and promiscuous proposed that these structures were formed by the organelles evolved? Plasmids may have originated integration of discrete resistance elements into existing from an aberrant phage of from the excision of a piece transposons.10In these transposons, and plasmids that ~~ 157 11 JMM 38 1511 ELIITORIAL carry similar resistance mechanisms. e.g. R388 and ution of the integron, which has so far only been R46, highly conserved regions are found in sequences implicated in antibiotic resistance, seems also to have immediately surrounding the structural gene. Flanking been the result of antibiotic pressure. The use of many the structural gene are GTTA sequences which mark different antibiotics has resulted in the accumulation the insertion points for the resistance gene and of multiple resistance mechanisms on single plasmids represent recombination hot-spots necessary for cross- resulting in co-selection of different resistance over of resistance genes.’’ At the 5’-end of the mechanisms. The evolution of transposons, and resistance gene there is an open reading frame which perhaps integrons, allows flexibility in the genetic codes for a protein that shares homology with both response to a battery of antibiotics. transposon resolvases and phage site-specific S. TAIT integrases.I6 This integrase has been designated iizt or Department of Medical Microbiology, The Medical School, tnpP6 and is responsible for the recombination of UniLersitj of Edinburgh. Teviot Place, Edinburgh the resistance genes. At the 3’-end of the resistance gene is an imperfect palindromic region of 59 bp that is essential for control of integration and contains the References GTTA sequence which marks the point of excision.” A gene “cassette”. containing the resistance gene, 1. Bennett PM, Linton AH. Do plasmids influence the survival of the GTTA sequence and all but the last seven bases of bacteria? J Antimicrob Chernotlwr 1986: 18 Suppl C: 1 23- 126. the 59-bp region, has been proposed as the unit of 2. Foster TJ. Hasmid-determined resistance to antimicrobial recornbination.18 Circularisation of the element, after drugs and toxic metal ions in bacteria. Microbiol Reu 1983; excision from its original location, precedes its in- 47: 361409. 3. Amyes SGB, McMillan CJ, Drysdale JL. Transferable tegration in the new replicon.18 This small mobile trimethoprim resistance amongst hospital isolates. In: genetic element has been called an integron (In).16 The Grassi GG. Sabath LD (eds) New trends in antibiotics: GTTA and an incomplete 59-bp sequence have been research an therapy. New York, Elsevier/North-Holland Biomedical Press. 1981 : 325-327. identified in Tn7carrying the dhfrI gene. This gene has 4. Amyes SGB, Doherty CJ, Young H-K. High-levcl trimelhoprim also been characterised in Tn21 as part of an integron, resistance in urinary bacteria. Eur J Clin Microbioll986; 5: indicating an exchange between the two transposons.“ 287-29 1. 5. Datta N, Hughes VM. Plasmids of the same Inc groups in Evidence of an ancestral integron has been found in Enterobacteria before and after the medical use of the Pseudomonas aeruginosa plasmid pVS 1 ; this antibiotics. Nature 1983; 306: 616617. consists only of the integrase region and a single 6. Hedges RW, Jacob AE. Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 1974; 132: GTTA cross-over point.Ig It has been proposed that 3 1-40. the sulphonamide resistance gene (sulI) was initially 7. Schmitt R. Molecular biology of transposable elements. J integrated into this region at the 3’-end of the integrase. Antimicrob Chemother 1986; 18 Suppl C: 25-34. 8. Lafond M, Couture F, Vezina G, Levesque RC. Evolutionary This reflects the early clinical use of the sulphonamides, perspectives in multiresistance #Mactamase transposons. J since the sul gene is almost completely conserved in Bacteriol 1989; 171 : 6423-6429. these structures. This has been followed by site-specific 9. Wiedemann B, Meyer JF, Ziihlsdorf MT. Insertions of re- sistance genes into Tn21-like transposons. J Antimiiroh integration, mediated by the integrase, of multiple Chemother 1986; 18 Suppl C: 85-92, resistance genes in the form of “cassettes” and the 10. Martinez E, de la Cruz F. Transposon Tn21 encodes a RecA- 59-bp region at the original GTTA cross-over point independent site-specific integration system. Mol Gen Gener 1988; 211 : 320-325. which has formed the modern integron. Other recombi-
Recommended publications
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Comprehensive Analysis of Mobile Genetic Elements in the Gut Microbiome Reveals Phylum-Level Niche-Adaptive Gene Pools
    bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comprehensive analysis of mobile genetic elements in the gut microbiome 2 reveals phylum-level niche-adaptive gene pools 3 Xiaofang Jiang1,2,†, Andrew Brantley Hall2,3,†, Ramnik J. Xavier1,2,3,4, and Eric Alm1,2,5,* 4 1 Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, 5 Cambridge, MA 02139, USA 6 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 7 3 Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard 8 Medical School, Boston, MA 02114, USA 9 4 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General 10 Hospital and Harvard Medical School, Boston, MA 02114, USA 11 5 MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 12 02142, USA 13 † Co-first Authors 14 * Corresponding Author bioRxiv preprint doi: https://doi.org/10.1101/214213; this version posted December 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abstract 16 Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer 17 could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could 18 threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological 19 importance and medical relevance, MGEs from the gut microbiome have not been systematically 20 characterized.
    [Show full text]
  • The Association of Group IIB Intron with Integrons in Hypersaline Environments Sarah Sonbol1 and Rania Siam1,2*
    Sonbol and Siam Mobile DNA (2021) 12:8 https://doi.org/10.1186/s13100-021-00234-2 RESEARCH Open Access The association of group IIB intron with integrons in hypersaline environments Sarah Sonbol1 and Rania Siam1,2* Abstract Background: Group II introns are mobile genetic elements used as efficient gene targeting tools. They function as both ribozymes and retroelements. Group IIC introns are the only class reported so far to be associated with integrons. In order to identify group II introns linked with integrons and CALINS (cluster of attC sites lacking a neighboring integron integrase) within halophiles, we mined for integrons in 28 assembled metagenomes from hypersaline environments and publically available 104 halophilic genomes using Integron Finder followed by blast search for group II intron reverse transcriptases (RT)s. Results: We report the presence of different group II introns associated with integrons and integron-related sequences denoted by UHB.F1, UHB.I2, H.ha.F1 and H.ha.F2. The first two were identified within putative integrons in the metagenome of Tanatar-5 hypersaline soda lake, belonging to IIC and IIB intron classes, respectively at which the first was a truncated intron. Other truncated introns H.ha.F1 and H.ha.F2 were also detected in a CALIN within the extreme halophile Halorhodospira halochloris, both belonging to group IIB introns. The intron-encoded proteins (IEP) s identified within group IIB introns belonged to different classes: CL1 class in UHB.I2 and bacterial class E in H.ha.Fa1 and H.ha.F2. A newly identified insertion sequence (ISHahl1)ofIS200/605 superfamily was also identified adjacent to H.
    [Show full text]
  • The Obscure World of Integrative and Mobilizable Elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget
    The obscure world of integrative and mobilizable elements Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget To cite this version: Gérard Guédon, Virginie Libante, Charles Coluzzi, Sophie Payot-Lacroix, Nathalie Leblond-Bourget. The obscure world of integrative and mobilizable elements: Highly widespread elements that pirate bacterial conjugative systems. Genes, MDPI, 2017, 8 (11), pp.337. 10.3390/genes8110337. hal- 01686871 HAL Id: hal-01686871 https://hal.archives-ouvertes.fr/hal-01686871 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License G C A T T A C G G C A T genes Review The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems Gérard Guédon *, Virginie Libante, Charles Coluzzi, Sophie Payot and Nathalie Leblond-Bourget * ID DynAMic, Université de Lorraine, INRA, 54506 Vandœuvre-lès-Nancy, France; [email protected] (V.L.); [email protected] (C.C.); [email protected] (S.P.) * Correspondence: [email protected] (G.G.); [email protected] (N.L.-B.); Tel.: +33-037-274-5142 (G.G.); +33-037-274-5146 (N.L.-B.) Received: 12 October 2017; Accepted: 15 November 2017; Published: 22 November 2017 Abstract: Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements.
    [Show full text]
  • Virology Is That the Study of Viruses ? Submicroscopic, Parasitic Particles
    Current research in Virology & Retrovirology 2021, Vol.4, Issue 3 Editorial Bahman Khalilidehkordi Shahrekord University of Medical Sciences, Iran mobile genetic elements of cells (such as transposons, Editorial retrotransposons or plasmids) that became encapsulated in protein capsids, acquired the power to “break free” from Virology is that the study of viruses – submicroscopic, the host cell and infect other cells. Of particular interest parasitic particles of genetic material contained during a here is mimivirus, a huge virus that infects amoebae and protein coat – and virus-like agents. It focuses on the sub- encodes much of the molecular machinery traditionally sequent aspects of viruses: their structure, classification associated with bacteria. Two possibilities are that it’s a and evolution, their ways to infect and exploit host cells for simplified version of a parasitic prokaryote or it originated copy , their interaction with host organism physiology and as an easier virus that acquired genes from its host. The immunity, the diseases they cause, the techniques to iso- evolution of viruses, which frequently occurs together with late and culture them, and their use in research and ther- the evolution of their hosts, is studied within the field of apy. Virology is a subfield of microbiology.Structure and viral evolution. While viruses reproduce and evolve, they’re classification of Virus: A major branch of virology is virus doing not engage in metabolism, don’t move, and depend classification. Viruses are often classified consistent with on variety cell for copy . The often-debated question of the host cell they infect: animal viruses, plant viruses, fun- whether or not they’re alive or not could also be a matter gal viruses, and bacteriophages (viruses infecting bacte- of definition that does not affect the biological reality of vi- ria, which include the foremost complex viruses).
    [Show full text]
  • Pathological and Evolutionary Implications of Retroviruses As Mobile Genetic Elements
    Genes 2013, 4, 573-582; doi:10.3390/genes4040573 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Pathological and Evolutionary Implications of Retroviruses as Mobile Genetic Elements 1 2 Madeline Hayes , Mackenzie Whitesell and Mark A. Brown 3,* 1 Department of Biology, Colorado State University, 801 Oval Drive, Fort Collins, CO 80523, USA; E-Mail: [email protected] 2 Department of Environmental and Radiological Health Sciences, Colorado State University, 801 Oval Drive, Fort Collins, CO 80523, USA; E-Mail: [email protected] 3 Department of Clinical Sciences, Colorado State University, Colorado State University, 801 Oval Drive, Fort Collins, CO 80523, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-970-491-5782. Received: 15 July 2013; in revised form: 27 September 2013 / Accepted: 8 October 2013 / Published: 24 October 2013 Abstract: Retroviruses, a form of mobile genetic elements, have important roles in disease and primate evolution. Exogenous retroviruses, such as human immunodeficiency virus (HIV), have significant pathological implications that have created a massive public health challenge in recent years. Endogenous retroviruses (ERVs), which are the primary focus of this review, can also be pathogenic, as well as being beneficial to a host in some cases. Furthermore, retroviruses may have played a key role in primate evolution that resulted in the incorporation of these elements into the human genome. Retroviruses are mobile genetic elements that have important roles in disease and primate evolution. We will further discuss the pathogenic potential of retroviruses, including their role in cancer biology, and will briefly summarize their evolutionary implications.
    [Show full text]
  • Comparative Genomics Shows That Viral Integrations Are Abundant And
    Palatini et al. BMC Genomics (2017) 18:512 DOI 10.1186/s12864-017-3903-3 RESEARCH ARTICLE Open Access Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus Umberto Palatini1†, Pascal Miesen2†, Rebeca Carballar-Lejarazu1, Lino Ometto3, Ettore Rizzo4, Zhijian Tu5, Ronald P. van Rij2 and Mariangela Bonizzoni1* Abstract Background: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes. Results: We used a bioinformatic approach to analyse the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presentlyavailable22mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, in which they are approximately ~10-fold more abundant than in other mosquito species analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs. Conclusions: Differences in the number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exist.
    [Show full text]
  • Mobile Genetic Elements Explain Size Variation in the Mitochondrial Genomes of Four Closely-Related Armillaria Species Anna I
    Kolesnikova et al. BMC Genomics (2019) 20:351 https://doi.org/10.1186/s12864-019-5732-z RESEARCHARTICLE Open Access Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species Anna I. Kolesnikova1,2, Yuliya A. Putintseva1, Evgeniy P. Simonov2,3, Vladislav V. Biriukov1,2, Natalya V. Oreshkova1,2,4, Igor N. Pavlov5, Vadim V. Sharov1,2,6, Dmitry A. Kuzmin1,6, James B. Anderson7 and Konstantin V. Krutovsky1,8,9,10* Abstract Background: Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. Results: Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid- related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes.
    [Show full text]
  • Mobile Antimicrobial Resistance Genes in Probiotics
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.04.442546; this version posted May 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mobile antimicrobial resistance genes in probiotics Adrienn Greta´ Toth´ 1, Istvan´ Csabai2, Maura Fiona Judge3, Gergely Maroti´ 4,5, Agnes´ Becsei2,Sandor´ Spisak´ 5, and Norbert Solymosi3* 1Semmelweis University, Health Services Management Training Centre, 1125 Budapest, Hungary 2Eotv¨ os¨ Lorand´ University, Department of Phyisics of Complex Systems, 1117 Budapest, Hungary 3University of Veterinary Medicine Budapest, Centre for Bioinformatics, 1078 Budapest, Hungary 4Institute of Plant Biology, Biological Research Center, 6726 Szeged, Hungary 5University of Public Service, Faculty of Water Sciences, 6500 Baja, Hungary 6Department of Medical Oncology, Dana-Farber Cancer Institute, 02115 Boston, MA, USA *[email protected] ABSTRACT Even though people around the world tend to consume probiotic products for their beneficial health effects on a daily basis, recently, concerns were outlined regarding the uptake and potential intestinal colonisation of the bacteria that they transfer. These bacteria are capable of executing horizontal gene transfer (HGT) which facilitates the movement of various genes, including antimicrobial resistance genes (ARGs), among the donor and recipient bacterial populations. Within our study, 47 shotgun sequencing datasets deriving from various probiotic samples (isolated strains and metagenomes) were bioinformatically analysed. We detected more than 70 ARGs, out of which rpoB, tet(W/N/W) and potentially extended-spectrum beta-lactamase (ESBL) coding TEM-116 were the most common.
    [Show full text]
  • Mobile Genetic Elements and Their Contribution to the Emergence of Antimicrobial Resistant Enterococcus Faecalis and Enterococcus Faecium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2010.03226.x Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium K. Hegstad1,2, T. Mikalsen2, T. M. Coque3, G. Werner4 and A. Sundsfjord1,2 1) Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway and 2) Research group for Host-Microbe Interactions, Department of Medical Biology, University of Tromsø, Tromsø, Norway, 3) University Hospital Ramo´ny Cajal; Unidad de Resistencia a Antibio´ticos y Virulencia Bacteriana (RYC-CSIC), CIBER en Epidemiologı´a y Salud Pu´blica (CIBER-ESP), Madrid, Spain and 4) Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany Abstract Mobile genetic elements (MGEs) including plasmids and transposons are pivotal in the dissemination and persistence of antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium. Enterococcal MGEs have also been shown to be able to transfer resistance determinants to more pathogenic bacteria such as Staphylococcus aureus. Despite their importance, we have a limited knowledge about the prevalence, distribution and genetic content of specific MGEs in enterococcal populations. Molecular epidemiological studies of en- terococcal MGEs have been hampered by the lack of standardized molecular typing methods and relevant genome information. This review focuses on recent developments in the detection of MGEs and their contribution to the spread of antimicrobial resistance in clinically relevant enterococci. Keywords: antimicrobial resistance, enterococcus, insertion sequence, mobile genetic elements, plasmid, review, transposon Clin Microbiol Infect 2010; 16: 541–554 Corresponding author and reprint requests: K.
    [Show full text]
  • Mobile Genetic Elements in Protozoan Parasites
    Ó Indian Academy of Sciences REVIEW ARTICLE Mobile genetic elements in protozoan parasites SUDHA BHATTACHARYA1*, ABHIJEET BAKRE1 and ALOK BHATTACHARYA2 1School of Environmental Sciences and 2School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India Abstract Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids— Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtelomeric in location while one is chromosome- internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated muta- tions, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons.
    [Show full text]