On the Role of Einstein–Cartan Gravity in Fundamental Particle Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PHY 2404S Lecture Notes
PHY 2404S Lecture Notes Michael Luke Winter, 2003 These notes are perpetually under construction. Please let me know of any typos or errors. Once again, large portions of these notes have been plagiarized from Sidney Coleman’s field theory lectures from Harvard, written up by Brian Hill. 1 Contents 1 Preliminaries 3 1.1 Counterterms and Divergences: A Simple Example . 3 1.2 CountertermsinScalarFieldTheory . 11 2 Reformulating Scattering Theory 18 2.1 Feynman Diagrams with External Lines off the Mass Shell . .. 18 2.1.1 AnswerOne: PartofaLargerDiagram . 19 2.1.2 Answer Two: The Fourier Transform of a Green Function 20 2.1.3 Answer Three: The VEV of a String of Heisenberg Fields 22 2.2 GreenFunctionsandFeynmanDiagrams. 23 2.3 TheLSZReductionFormula . 27 2.3.1 ProofoftheLSZReductionFormula . 29 3 Renormalizing Scalar Field Theory 36 3.1 The Two-Point Function: Wavefunction Renormalization .... 37 3.2 The Analytic Structure of G(2), and1PIGreenFunctions . 40 3.3 Calculation of Π(k2) to order g2 .................. 44 3.4 The definition of g .......................... 50 3.5 Unstable Particles and the Optical Theorem . 51 3.6 Renormalizability. 57 4 Renormalizability 60 4.1 DegreesofDivergence . 60 4.2 RenormalizationofQED. 65 4.2.1 TroubleswithVectorFields . 65 4.2.2 Counterterms......................... 66 2 1 Preliminaries 1.1 Counterterms and Divergences: A Simple Example In the last semester we considered a variety of field theories, and learned to calculate scattering amplitudes at leading order in perturbation theory. Unfor- tunately, although things were fine as far as we went, the whole basis of our scattering theory had a gaping hole in it. -
Reference International Centre for C), Theoretical Physics
IC/88/346 REFERENCE INTERNATIONAL CENTRE FOR C), THEORETICAL PHYSICS ZETA FUNCTION REGULARIZATION OF QUANTUM FIELD THEORY A.Y. Shiekh INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/88/346 §1 Introduction International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization In generalizing quantum mechanics to quantum field theory one is generally INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS confronted with a scheme plagued by infinities. If one is to make sense of such an ailment, one must find a way to deal with those infinities. In the usual interpretation this difficulty is viewed as stemming from not having yet accounted for the self- interactions which modify the masses and coupling constants to their observed values. A sensible strategy, in order to be useful, must result in only a finite ZETA FUNCTION REGULARIZATION number of physical constants being left, undetermined. Not all theories can be dealt OF QUANTUM FIELD THEORY * with in this way; which has the beneficial consequence of eliminating certain, otherwise prospective, theories of nature. This follows the line of reasoning that physics is more than descriptive, but predictive by virtue of being limited by the A.Y. Shiekh "" requirement of consistency. International Centra foe Theoretical Physics, Tri.fste, Ltaly, In order to proceed with such a theory, the infinities must be restrained (regulated) while the self-interactions are accounted for. Visiting a different space- time dimension is a popular way to regulate (dimensional regularization) as it explicitly maintains the theory's covariance, which may otherwise be difficult to hold on to during reckoning for the self-interactions (renormalization). -
Renormalization in Nonrelativistic Quantum Mechanics
Renormalization in Nonrelativistic Quantum Mechanics ∗ Sadhan K Adhikari†and Angsula Ghosh Instituto de F´ısica Te´orica, Universidade Estadual Paulista, 01405-900 S˜ao Paulo, S˜ao Paulo, Brasil July 30, 2018 Abstract The importance and usefulness of renormalization are emphasized in nonrelativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultravi- olet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behavior and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent arXiv:hep-th/9706193v1 26 Jun 1997 with each other. The useful role of the renormalization group equations for this problem is also pointed out. PACS Numbers 03.65.-w, 03.65.Nk, 11.10.Gh, 11.10.Hi ∗To Appear in Journal of Physics A †John Simon Guggenheim Memorial Foundation Fellow. 1 1 Introduction The ultraviolet divergences in perturbative quantum field theory can be eliminated in many cases by renormalization to define physical observables, such as charge or mass, which are often termed the physical scale(s) of the problem [1, 2, 3, 4]. Ultraviolet divergences appear in exact as well as perturbative treatments of the nonrelativistic quantum mechanical two-body problem in momentum space interacting via two-body potentials with certain singular behavior at short distances [5, 6, 7, 8, 9, 10, 11] in two and three space dimensions. -
ROTATION: a Review of Useful Theorems Involving Proper Orthogonal Matrices Referenced to Three- Dimensional Physical Space
Unlimited Release Printed May 9, 2002 ROTATION: A review of useful theorems involving proper orthogonal matrices referenced to three- dimensional physical space. Rebecca M. Brannon† and coauthors to be determined †Computational Physics and Mechanics T Sandia National Laboratories Albuquerque, NM 87185-0820 Abstract Useful and/or little-known theorems involving33× proper orthogonal matrices are reviewed. Orthogonal matrices appear in the transformation of tensor compo- nents from one orthogonal basis to another. The distinction between an orthogonal direction cosine matrix and a rotation operation is discussed. Among the theorems and techniques presented are (1) various ways to characterize a rotation including proper orthogonal tensors, dyadics, Euler angles, axis/angle representations, series expansions, and quaternions; (2) the Euler-Rodrigues formula for converting axis and angle to a rotation tensor; (3) the distinction between rotations and reflections, along with implications for “handedness” of coordinate systems; (4) non-commu- tivity of sequential rotations, (5) eigenvalues and eigenvectors of a rotation; (6) the polar decomposition theorem for expressing a general deformation as a se- quence of shape and volume changes in combination with pure rotations; (7) mix- ing rotations in Eulerian hydrocodes or interpolating rotations in discrete field approximations; (8) Rates of rotation and the difference between spin and vortici- ty, (9) Random rotations for simulating crystal distributions; (10) The principle of material frame indifference (PMFI); and (11) a tensor-analysis presentation of classical rigid body mechanics, including direct notation expressions for momen- tum and energy and the extremely compact direct notation formulation of Euler’s equations (i.e., Newton’s law for rigid bodies). -
Spin in Relativistic Quantum Theory∗
Spin in relativistic quantum theory∗ W. N. Polyzou, Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242 W. Gl¨ockle, Institut f¨urtheoretische Physik II, Ruhr-Universit¨at Bochum, D-44780 Bochum, Germany H. Wita la M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krak´ow,Poland today Abstract We discuss the role of spin in Poincar´einvariant formulations of quan- tum mechanics. 1 Introduction In this paper we discuss the role of spin in relativistic few-body models. The new feature with spin in relativistic quantum mechanics is that sequences of rotationless Lorentz transformations that map rest frames to rest frames can generate rotations. To get a well-defined spin observable one needs to define it in one preferred frame and then use specific Lorentz transformations to relate the spin in the preferred frame to any other frame. Different choices of the preferred frame and the specific Lorentz transformations lead to an infinite number of possible observables that have all of the properties of a spin. This paper provides a general discussion of the relation between the spin of a system and the spin of its elementary constituents in relativistic few-body systems. In section 2 we discuss the Poincar´egroup, which is the group relating inertial frames in special relativity. Unitary representations of the Poincar´e group preserve quantum probabilities in all inertial frames, and define the rel- ativistic dynamics. In section 3 we construct a large set of abstract operators out of the Poincar´egenerators, and determine their commutation relations and ∗During the preparation of this paper Walter Gl¨ockle passed away. -
Infeld–Van Der Waerden Wave Functions for Gravitons and Photons
Vol. 38 (2007) ACTA PHYSICA POLONICA B No 8 INFELD–VAN DER WAERDEN WAVE FUNCTIONS FOR GRAVITONS AND PHOTONS J.G. Cardoso Department of Mathematics, Centre for Technological Sciences-UDESC Joinville 89223-100, Santa Catarina, Brazil [email protected] (Received March 20, 2007) A concise description of the curvature structures borne by the Infeld- van der Waerden γε-formalisms is provided. The derivation of the wave equations that control the propagation of gravitons and geometric photons in generally relativistic space-times is then carried out explicitly. PACS numbers: 04.20.Gr 1. Introduction The most striking physical feature of the Infeld-van der Waerden γε-formalisms [1] is related to the possible occurrence of geometric wave functions for photons in the curvature structures of generally relativistic space-times [2]. It appears that the presence of intrinsically geometric elec- tromagnetic fields is ultimately bound up with the imposition of a single condition upon the metric spinors for the γ-formalism, which bears invari- ance under the action of the generalized Weyl gauge group [1–5]. In the case of a spacetime which admits nowhere-vanishing Weyl spinor fields, back- ground photons eventually interact with underlying gravitons. Nevertheless, the corresponding coupling configurations turn out to be in both formalisms exclusively borne by the wave equations that control the electromagnetic propagation. Indeed, the same graviton-photon interaction prescriptions had been obtained before in connection with a presentation of the wave equations for the ε-formalism [6, 7]. As regards such earlier works, the main procedure seems to have been based upon the implementation of a set of differential operators whose definitions take up suitably contracted two- spinor covariant commutators. -
Toward Construction of a Consistent Field Theory with Poincaré
Toward construction of a consistent field theory with Poincare´ covariance in terms of step-function-type basis functions showing confinement/deconfinement, mass-gap and Regge trajectory for non-pure/pure non-Abelian gauge fields ∗ Kimichika Fukushima † Advanced Reactor System Engineering Department, Toshiba Nuclear Engineering Service Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523, Japan Hikaru Sato Emeritus, Department of Physics, Hyogo University of Education, Yashiro-cho, Kato-shi, Hyogo 673-1494, Japan This article is a review by the authors concerning the construction of a Poincar´ecovariant (owing to spacetime continuum) field-theoretic formalism in terms of step-function-type basis functions without ultraviolet divergences. This formalism analytically derives confinement/deconfinement,mass-gap and Regge trajectory for non-Abelian gauge fields, and gives solutions for self-interacting scalar fields. Fields propagate in spacetime continuum and fields with finite degrees of freedom toward continuum limit have no ultraviolet divergence. Basis functions defined in a parameter spacetime are mapped to real spacetime. The authors derive a new solution comprised of classical fields as a vacuum and quantum fluctuations, leading to the linear potential between the particle and antiparticle from the Wilson loop. The Polyakov line gives finite binding energies and reveals the deconfining property at high temperatures. The quantum action yields positive mass from the classical fields and quantum fluctuations produces the Coulomb potential. Pure Yang-Mills fields show the same mass-gap owing to the particle-antiparticle pair creation. The Dirac equation under linear potential is analytically solved in this formalism, reproducing the principal properties of Regge trajectoriesata quantum level. -
Dual Electromagnetism: Helicity, Spin, Momentum, and Angular Momentum Konstantin Y
Dual electromagnetism: Helicity, spin, momentum, and angular momentum Konstantin Y. Bliokh1,2, Aleksandr Y. Bekshaev3, and Franco Nori1,4 1Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan 2A. Usikov Institute of Radiophysics and Electronics, NASU, Kharkov 61085, Ukraine 3I. I. Mechnikov National University, Dvorianska 2, Odessa, 65082, Ukraine 4Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity, and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy-momentum, spin, and orbital angular momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy-momentum and angular momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides rigorous derivation of results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities, and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. -
Arxiv:1903.03835V1 [Gr-Qc] 9 Mar 2019 [15–17] Thus Modifying Significantly the Orbit of 3
Spinning particle orbits around a black hole in an expanding background I. Antoniou,1, ∗ D. Papadopoulos,2, y and L. Perivolaropoulos1, z 1Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece 2Department of Physics, University of Thessaloniki, Thessaloniki,54124, Greece (Dated: March 12, 2019) We investigate analytically and numerically the orbits of spinning particles around black holes in the post Newtonian limit and in the presence of cosmic expansion. We show that orbits that are circular in the absence of spin, get deformed when the orbiting particle has spin. We show that the origin of this deformation is twofold: a. the background expansion rate which induces an attractive (repulsive) interaction due to the cosmic background fluid when the expansion is decelerating (accelerating) and b. a spin-orbit interaction which can be attractive or repulsive depending on the relative orientation between spin and orbital angular momentum and on the expansion rate. PACS numbers: 04.20.Cv, 97.60.Lf, 98.62.Dm I. INTRODUCTION bound systems in the presence of phantom dark energy with equation of state parameter w < −1 Even though most astrophysical bodies have [2{4]. In the absence of expansion but in the spins and evolve in an expanding cosmological presence of spin for the test particles it has been background, their motion is described well by ig- shown that spin-orbit and spin-spin interactions noring the cosmic expansion and under the non- in a Kerr spacetime can lead to deformations of spinning test particle approximation for large dis- circular orbits for large spin values [14]. -
Ch.2. Deformation and Strain
CH.2. DEFORMATION AND STRAIN Multimedia Course on Continuum Mechanics Overview Introduction Lecture 1 Deformation Gradient Tensor Material Deformation Gradient Tensor Lecture 2 Lecture 3 Inverse (Spatial) Deformation Gradient Tensor Displacements Lecture 4 Displacement Gradient Tensors Strain Tensors Green-Lagrange or Material Strain Tensor Lecture 5 Euler-Almansi or Spatial Strain Tensor Variation of Distances Stretch Lecture 6 Unit elongation Variation of Angles Lecture 7 2 Overview (cont’d) Physical interpretation of the Strain Tensors Lecture 8 Material Strain Tensor, E Spatial Strain Tensor, e Lecture 9 Polar Decomposition Lecture 10 Volume Variation Lecture 11 Area Variation Lecture 12 Volumetric Strain Lecture 13 Infinitesimal Strain Infinitesimal Strain Theory Strain Tensors Stretch and Unit Elongation Lecture 14 Physical Interpretation of Infinitesimal Strains Engineering Strains Variation of Angles 3 Overview (cont’d) Infinitesimal Strain (cont’d) Polar Decomposition Lecture 15 Volumetric Strain Strain Rate Spatial Velocity Gradient Tensor Lecture 16 Strain Rate Tensor and Rotation Rate Tensor or Spin Tensor Physical Interpretation of the Tensors Material Derivatives Lecture 17 Other Coordinate Systems Cylindrical Coordinates Lecture 18 Spherical Coordinates 4 2.1 Introduction Ch.2. Deformation and Strain 5 Deformation Deformation: transformation of a body from a reference configuration to a current configuration. Focus on the relative movement of a given particle w.r.t. the particles in its neighbourhood (at differential level). It includes changes of size and shape. 6 2.2 Deformation Gradient Tensors Ch.2. Deformation and Strain 7 Continuous Medium in Movement Ω0: non-deformed (or reference) Ω or Ωt: deformed (or present) configuration, at reference time t0. configuration, at present time t. -
A Vectors, Tensors, and Their Operations
A Vectors, Tensors, and Their Operations A.1 Vectors and Tensors A spatial description of the fluid motion is a geometrical description, of which the essence is to ensure that relevant physical quantities are invariant under artificially introduced coordinate systems. This is realized by tensor analysis (cf. Aris 1962). Here we introduce the concept of tensors in an informal way, through some important examples in fluid mechanics. A.1.1 Scalars and Vectors Scalars and vectors are geometric entities independent of the choice of coor- dinate systems. This independence is a necessary condition for an entity to represent some physical quantity. A scalar, say the fluid pressure p or den- sity ρ, obviously has such independence. For a vector, say the fluid velocity u, although its three components (u1,u2,u3) depend on the chosen coordi- nates, say Cartesian coordinates with unit basis vectors (e1, e2, e3), as a single geometric entity the one-form of ei, u = u1e1 + u2e2 + u3e3 = uiei,i=1, 2, 3, (A.1) has to be independent of the basis vectors. Note that Einstein’s convention has been used in the last expression of (A.1): unless stated otherwise, a repeated index always implies summation over the dimension of the space. The inner (scalar) and cross (vector) products of two vectors are familiar. If θ is the angle between the directions of a and b, these operations give a · b = |a||b| cos θ, |a × b| = |a||b| sin θ. While the inner product is a projection operation, the cross-product produces a vector perpendicular to both a and b with magnitude equal to the area of the parallelogram spanned by a and b.Thusa×b determines a vectorial area 694 A Vectors, Tensors, and Their Operations with unit vector n normal to the (a, b) plane, whose direction follows from a to b by the right-hand rule. -
Redalyc.Gupta-Bleuler Quantization for Massive and Massless Free
Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Dehghani, M. Gupta-Bleuler quantization for massive and massless free vector fields Brazilian Journal of Physics, vol. 39, núm. 3, septiembre, 2009, pp. 559-563 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46413562009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Physics, vol. 39, no. 3, September, 2009 559 Gupta-Bleuler quantization for massive and massless free vector fields M. Dehghani∗ Department of Physics, Ilam University, Ilam, Iran (Received on 28 April, 2009) It is shown that the usual quantum field theory leads to an ultraviolet divergence in the vacuum energies and an infrared divergence in the two-point functions of the massive and massless vector fields. Using a new method of quantization it is shown that the vacuum energies converge, and the normal ordering procedure is not necessary. Also the propagators are calculated, which are automatically renormalied. Keywords: vector fields, quantization, Gupta-Bleuler 1. INTRODUCTION as well. The results for the Casimir energy and Casimir force are the same given in [13, 14]. Particles of spin-1 are described as the quanta of vector In section 2 a brief review of the massive vector field quan- fields. Such vector bosons play a central role as the medi- tization, using usual quantum field theory is presented.