Non-Renormalization Theorems Without Supersymmetry

Total Page:16

File Type:pdf, Size:1020Kb

Non-Renormalization Theorems Without Supersymmetry CALT-2015-024 Non-renormalization Theorems without Supersymmetry Clifford Cheung and Chia-Hsien Shen Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena, CA 91125∗ (Dated: May 11, 2015) We derive a new class of one-loop non-renormalization theorems that strongly constrain the running of higher dimension operators in a general four-dimensional quantum field theory. Our logic follows from unitarity: cuts of one-loop amplitudes are products of tree amplitudes, so if the latter vanish then so too will the associated divergences. Finiteness is then ensured by simple selection rules that zero out tree amplitudes for certain helicity configurations. For each operator we define holomorphic and anti-holomorphic weights, (w, w) = (n − h, n + h), where n and h are the number and sum over helicities of the particles created by that operator. We argue that an operator Oi can only be renormalized by an operator Oj if wi ≥ wj and wi ≥ wj , absent non-holomorphic Yukawa couplings. These results explain and generalize the surprising cancellations discovered in the renormalization of dimension six operators in the standard model. Since our claims rely on unitarity and helicity rather than an explicit symmetry, they apply quite generally. INTRODUCTION where n(A) and h(A) are the number and sum over helic- ities of the external states. Since A is physical, its weight Technical naturalness dictates that all operators not is field reparameterization and gauge independent. The forbidden by symmetry are compulsory—and thus gen- weights of an operator O are then invariantly defined by erated by renormalization. Softened ultraviolet diver- minimizing over all amplitudes involving that operator: gences are in turn a telltale sign of underlying symmetry. w(O) = min{w(A)} and w(O) = min{w(A)}. In prac- This is famously true in supersymmetry, where holomor- tice, operator weights are fixed by the leading non-zero phy enforces powerful non-renormalization theorems. contact amplitude2 built from an insertion of O, In this letter we derive a new class of non- w(O) = n(O) − h(O), w(O) = n(O) + h(O), (4) renormalization theorems for non-supersymmetric the- ories. Our results apply to the one-loop running of where n(O) is the number of particles created by O and the leading irrelevant deformations of a four-dimensional h(O) is their total helicity. For field operators we find: quantum field theory of marginal interactions, ¯ ¯ O Fαβ ψα φ ψα˙ Fα˙ β˙ X ∆L = ciOi, (1) h +1 +1/2 0 −1/2 −1 i (w, w) (0, 2) (1/2, 3/2) (1, 1) (3/2, 1/2) (2, 0) where Oi are higher dimension operators. At leading where all Lorentz covariance is expressed in terms of order in ci, renormalization induces operator mixing via four-dimensional spinor indices, so e.g. the gauge field 2 dci X ¯ (4π) = γ c , (2) strength is F ˙ = Fαβ¯ ˙ + F ˙ αβ. The weights of d log µ ij j ααβ˙ β α˙ β α˙ β j all dimension five and six operators are shown in Fig.1. where by dimensional analysis the anomalous dimension As we will prove, an operator Oi can only be renormal- ized by an operator Oj at one-loop if the corresponding matrix γij is a function of marginal couplings alone. The logic of our approach is simple and makes no ref- weights (wi, wi) and (wj, wj) satisfy the inequalities arXiv:1505.01844v1 [hep-ph] 7 May 2015 erence to symmetry. Renormalization is induced by log wi ≥ wj and wi ≥ wj, (5) divergent amplitudes, which by unitarity have kinematic and all Yukawa couplings are of a “holomorphic” form cuts equal to products of on-shell tree amplitudes [1]. If consistent with a superpotential. This implies a new any of these tree amplitudes vanish, then so too will the class of non-renormalization theorems, divergence. Crucially, many tree amplitudes are zero due to helicity selection rules, which e.g. forbid the all minus γij = 0 if wi < wj or wi < wj, (6) helicity gluon amplitude in Yang-Mills theory. which dictate mostly zero entries in the anomalous di- For our analysis, we define the holomorphic and anti- mension matrix. The resulting non-renormalization the- 1 holomorphic weight of an on-shell amplitude A by orems for all dimension five and six operators are shown w(A) = n(A) − h(A), w(A) = n(A) + h(A), (3) in Tab.I and Tab.II. 1 Holomorphic weight is a generalization of k-charge in super 2 By definition, all covariant derivatives D are treated as partial Yang-Mills theory, where the NkMHV amplitude has w = k + 4. derivatives ∂ when computing the leading contact amplitude. 2 dimension 6 In a renormalizable theory, [g] = 0 or 1, so we obtain dimension 5 F 2φ2 w3, w3 ≥ 2, (9) 6 F 3 F 2φ 2φ3 φ6 4 as a lower bound for the three-point amplitude. 2 F φ 2 2 5 5 2 φ φ Next, consider the four-point tree amplitude. As we F ¯ 2D 2 2 2 3 4 ¯ ¯ φ will see, w4, w4 ≥ 4 for the vast majority of amplitudes. 4 2 φ D The reason is w4 < 4 or w4 < 4 requires non-zero total w 3 ¯2φ2 w F¯2φ2 helicity, which is usually forbidden by helicity selection 2 F¯ ¯2φ rules. To show this, we run through all possible candi- ¯4 ¯2 1 F φ date amplitudes with w4 < 4. Analogous arguments of F¯ ¯2 course apply for w4 < 4. 0 F¯3 1 3 5 Most four-point tree amplitudes with w4 = 1 or 3 w vanish because they have no Feynman diagrams, so 0 2 4 6 w 0 = A(F +F +F ±φ) = A(F +F +ψ±ψ±) Figure 1. Weight lattice for dimension five and six operators, = A(F +F −ψ+ψ+) = A(F +ψ+ψ−φ) suppressing flavor and Lorentz structures, e.g. on which fields + + + − derivatives act. The non-renormalization theorems in Eq. (5) = A(ψ ψ ψ ψ ). let operators to mix into operators of equal or greater weight. Pictorially, this forbids transitions down or to the left. Furthermore, most amplitudes with w4 = 0 or 2 vanish due to helicity selection rules, so 0 = A(F +F +F +F ±) = A(F +F +ψ+ψ−) Since our analysis hinges on unitarity and helicity, the + + + + + resulting non-renormalization theorems are general and = A(F F φ φ) = A(F ψ ψ φ). not derived from an explicit symmetry of the off-shell La- While these amplitudes have Feynman diagrams, they grangian. Moreover, our findings explain the ubiquitous vanish on-shell for their chosen helicities. This leaves a and surprising cancellations [2] observed in the one-loop handful of amplitudes that can in principle be non-zero, renormalization of dimension six operators in the stan- + + + + + + + dard model [3–6]. Lacking an explanation from power 0 6= A(ψ ψ ψ ψ ),A(F φ φ φ),A(ψ ψ φ φ), counting or spurions, the authors of [2] conjectured a hid- for which w4 = 2, 3, 3, respectively. These “exceptional den “holomorphy” enforcing non-renormalization theo- amplitudes” are the only four-point tree amplitudes with rems among holomorphic and anti-holomorphic opera- w4 < 4 that are not identically zero. tors. We show here that this classification simply corre- Since the exceptional amplitudes require external or sponds to w < 4 and w < 4, so the observed cancellations internal scalars, they never arise in theories of only gauge follow directly from Eq. (6), as shown in Tab.II. bosons and fermions, e.g. QCD. The second and third amplitudes require super-renormalizable cubic scalar in- teractions, which we do not consider here. Meanwhile, WEIGHING TREE AMPLITUDES the first amplitude arises from Yukawa couplings of non- holomorphic form, which is to say a combination of cou- We now compute the holomorphic and anti- plings of the form φψ2 together with φψ¯ 2. In a super- holomorphic weights (wn, wn) for a general n-point on- symmetric theory, such couplings would violate holo- shell tree amplitude in a renormalizable theory of mass- morphy of the superpotential. In the standard model, less particles. We start with lower-point amplitudes and Higgs doublet exchange generates an exceptional ampli- then apply induction to extend to higher-point. tude proportional to the product up-type and down-type Working in spinor helicity variables, we consider the Yukawa couplings. This diagram will be important later three-point amplitude with coupling constant g, when we discuss renormalization in the standard model. r3 r1 r2 P h12i h23i h31i , hi ≤ 0 In summary, we find A(1h1 2h2 3h3 ) = g i (7) r3 r1 r2 P [12] [23] [31] , i hi ≥ 0 w4, w4 ≥ 4, (10) which corresponds to MHV and MHV kinematics, |1] ∝ as a lower bound for the four-point amplitude, modulo |2] ∝ |3] and |1i ∝ |2i ∝ |3i. Lorentz invariance fixes the exceptional amplitudes. P P Finally, consider a general higher-point tree ampli- the exponents to be ri = −ri = 2hi − h and i ri = P tude, A , which on a factorization channel degenerates i ri = 1 − [g] by dimensional analysis [7]. According i to Eq. (7), the weights of the three-point amplitude are into a product of amplitudes, Aj and Ak, where P i X h −h (4 − [g], 2 + [g]), i hi ≤ 0 fact[Ai] = Aj(` )Ak(−` ), (11) (w3, w3) = P (8) `2 (2 + [g], 4 − [g]), i hi ≥ 0 h 3 Oi is radiatively generated by Oj. In practice, γij is factorize loop extracted from the one-loop amplitude Ai involving an insertion of Oj that has precisely the same external wi = wj + wk 2 − states as the tree amplitude Ai involving an insertion Ai Aj Ak loop of Oi.
Recommended publications
  • Beyond Feynman Diagrams Lecture 2
    Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Modern methods for trees 1. Color organization (briefly) 2. Spinor variables 3. Simple examples 4. Factorization properties 5. BCFW (on-shell) recursion relations Beyond Feynman Diagrams Lecture 2 April 25, 2013 2 How to organize gauge theory amplitudes • Avoid tangled algebra of color and Lorentz indices generated by Feynman rules structure constants • Take advantage of physical properties of amplitudes • Basic tools: - dual (trace-based) color decompositions - spinor helicity formalism Beyond Feynman Diagrams Lecture 2 April 25, 2013 3 Color Standard color factor for a QCD graph has lots of structure constants contracted in various orders; for example: Write every n-gluon tree graph color factor as a sum of traces of matrices T a in the fundamental (defining) representation of SU(Nc): + all non-cyclic permutations Use definition: + normalization: Beyond Feynman Diagrams Lecture 2 April 25, 2013 4 Double-line picture (’t Hooft) • In limit of large number of colors Nc, a gluon is always a combination of a color and a different anti-color. • Gluon tree amplitudes dressed by lines carrying color indices, 1,2,3,…,Nc. • Leads to color ordering of the external gluons. • Cross section, summed over colors of all external gluons = S |color-ordered amplitudes|2 • Can still use this picture at Nc=3. • Color-ordered amplitudes are still the building blocks. • Corrections to the color-summed cross section, can be handled 2 exactly, but are suppressed by 1/ Nc Beyond Feynman Diagrams Lecture 2 April 25, 2013 5 Trace-based (dual) color decomposition For n-gluon tree amplitudes, the color decomposition is momenta helicities color color-ordered subamplitude only depends on momenta.
    [Show full text]
  • Maximally Helicity Violating Amplitudes
    Maximally Helicity Violating amplitudes Andrew Lifson ID:22635416 Supervised by Assoc. Prof. Peter Skands School of Physics & Astronomy A thesis submitted in partial fulfilment for the degree of Bachelor of Science Advanced with Honours November 13, 2015 Abstract An important aspect in making quantum chromodynamics (QCD) predictions at the Large Hadron Collider (LHC) is the speed of the Monte Carlo (MC) event generators which are used to calculate them. MC event generators simulate a pure QCD collision at the LHC by first using fixed-order perturbation theory to calculate the hard (i.e. energetic) 2 ! n scatter, and then adding radiative corrections to this with a parton shower approximation. The 2 ! n scatter is traditionally calculated by summing Feynman diagrams, however the number of Feynman diagrams has a stronger than factorial growth with the number of final-state particles, hence this method quickly becomes infeasible. We can simplify this calculation by considering helicity amplitudes, in which each particle has its spin either aligned or anti-aligned with its direction of motion i.e. each particle has a specific helicity. In particular, it is well-known that the helicity amplitude for the maximally helicity violating (MHV) configuration is remarkably simple to calculate. In this thesis we describe the physics of the MHV amplitude, how we could use it within a MC event generator, and describe a program we wrote called VinciaMHV which calculates the MHV amplitude for the process qg ! q + ng for n = 1; 2; 3; 4. We tested the speed of VinciaMHV against MadGraph4 and found that VinciaMHV calculates the MHV amplitude significantly faster, especially for high particle multiplicities.
    [Show full text]
  • MHV Amplitudes in N=4 SUSY Yang-Mills Theory and Quantum Geometry of the Momentum Space
    Outline Introduction and tree MHV amplitudes BDS conjecture and amplitude - Wilson loop correspondence c=1 string example and fermionic representation of amplitudes Quantization of the moduli space On the fermionic representation of the loop MHV amplitudes Towards the stringy interpretation of the loop MHV amplitudes. MHV amplitudes in N=4 SUSY Yang-Mills theory and quantum geometry of the momentum space Alexander Gorsky ITEP GGI, Florence - 2008 (to appear) Alexander Gorsky MHV amplitudes in N=4 SUSY Yang-Mills theory and quantum geometry of the momentum space Outline Introduction and tree MHV amplitudes BDS conjecture and amplitude - Wilson loop correspondence c=1 string example and fermionic representation of amplitudes Quantization of the moduli space On the fermionic representation of the loop MHV amplitudes Towards the stringy interpretation of the loop MHV amplitudes. Introduction and tree MHV amplitudes BDS conjecture and amplitude - Wilson loop correspondence c=1 string example and fermionic representation of amplitudes Quantization of the moduli space On the fermionic representation of the loop MHV amplitudes Towards the stringy interpretation of the loop MHV amplitudes. Alexander Gorsky MHV amplitudes in N=4 SUSY Yang-Mills theory and quantum geometry of the momentum space Outline Introduction and tree MHV amplitudes BDS conjecture and amplitude - Wilson loop correspondence c=1 string example and fermionic representation of amplitudes Quantization of the moduli space On the fermionic representation of the loop MHV amplitudes
    [Show full text]
  • PHY 2404S Lecture Notes
    PHY 2404S Lecture Notes Michael Luke Winter, 2003 These notes are perpetually under construction. Please let me know of any typos or errors. Once again, large portions of these notes have been plagiarized from Sidney Coleman’s field theory lectures from Harvard, written up by Brian Hill. 1 Contents 1 Preliminaries 3 1.1 Counterterms and Divergences: A Simple Example . 3 1.2 CountertermsinScalarFieldTheory . 11 2 Reformulating Scattering Theory 18 2.1 Feynman Diagrams with External Lines off the Mass Shell . .. 18 2.1.1 AnswerOne: PartofaLargerDiagram . 19 2.1.2 Answer Two: The Fourier Transform of a Green Function 20 2.1.3 Answer Three: The VEV of a String of Heisenberg Fields 22 2.2 GreenFunctionsandFeynmanDiagrams. 23 2.3 TheLSZReductionFormula . 27 2.3.1 ProofoftheLSZReductionFormula . 29 3 Renormalizing Scalar Field Theory 36 3.1 The Two-Point Function: Wavefunction Renormalization .... 37 3.2 The Analytic Structure of G(2), and1PIGreenFunctions . 40 3.3 Calculation of Π(k2) to order g2 .................. 44 3.4 The definition of g .......................... 50 3.5 Unstable Particles and the Optical Theorem . 51 3.6 Renormalizability. 57 4 Renormalizability 60 4.1 DegreesofDivergence . 60 4.2 RenormalizationofQED. 65 4.2.1 TroubleswithVectorFields . 65 4.2.2 Counterterms......................... 66 2 1 Preliminaries 1.1 Counterterms and Divergences: A Simple Example In the last semester we considered a variety of field theories, and learned to calculate scattering amplitudes at leading order in perturbation theory. Unfor- tunately, although things were fine as far as we went, the whole basis of our scattering theory had a gaping hole in it.
    [Show full text]
  • Loop Amplitudes from MHV Diagrams - Part 1
    Loop Amplitudes from MHV Diagrams - part 1 - Gabriele Travaglini Queen Mary, University of London Brandhuber, Spence, GT hep-th/0407214, hep-th/0510253 Bedford, Brandhuber, Spence, GT hep-th/0410280, hep-th/0412108 Brandhuber, McNamara, Spence, GT in progress 2 HP Workshop, Zürich, September 2006 Outline • Motivations and basic formalism • MHV diagrams (Cachazo, Svrcek,ˇ Witten) - Loop MHV diagrams (Brandhuber, Spence, GT) - Applications: One-loop MHV amplitudes in N=4, N=1 & non-supersymmetric Yang-Mills • Proof at one-loop: Andreas’s talk on Friday Motivations • Simplicity of scattering amplitudes unexplained by textbook Feynman diagrams - Parke-Taylor formula for Maximally Helicity Violating amplitude of gluons (helicities are a permutation of −−++ ....+) • New methods account for this simplicity, and allow for much more efficient calculations • LHC is coming ! Towards simplicity • Colour decomposition (Berends, Giele; Mangano, Parke, Xu; Mangano; Bern, Kosower) • Spinor helicity formalism (Berends, Kleiss, De Causmaecker, Gastmans, Wu; De Causmaecker, Gastmans, Troost, Wu; Kleiss, Stirling; Xu, Zhang, Chang; Gunion, Kunszt) Colour decomposition • Main idea: disentangle colour • At tree level, Yang-Mills interactions are planar tree a a A ( p ,ε ) = Tr(T σ1 T σn) A(σ(p ,ε ),...,σ(p ,ε )) { i i} ∑ ··· 1 1 n n σ Colour-ordered partial amplitude - Include only diagrams with fixed cyclic ordering of gluons - Analytic structure is simpler • At loop level: multi-trace contributions - subleading in 1/N Spinor helicity formalism • Consider a null vector p µ µ µ = ( ,! ) • Define p a a ˙ = p µ σ a a ˙ where σ 1 σ • If p 2 = 0 then det p = 0 ˜ ˜ Hence p aa˙ = λaλa˙ · λ (λ) positive (negative) helicity • spinors a b a˙ b˙ Inner products 12 : = ε ab λ λ , [12] := ε ˙λ˜ λ˜ • ! " 1 2 a˙b 1 2 Parke-Taylor formula 4 + + i j A (1 ...i− ..
    [Show full text]
  • Reference International Centre for C), Theoretical Physics
    IC/88/346 REFERENCE INTERNATIONAL CENTRE FOR C), THEORETICAL PHYSICS ZETA FUNCTION REGULARIZATION OF QUANTUM FIELD THEORY A.Y. Shiekh INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/88/346 §1 Introduction International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization In generalizing quantum mechanics to quantum field theory one is generally INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS confronted with a scheme plagued by infinities. If one is to make sense of such an ailment, one must find a way to deal with those infinities. In the usual interpretation this difficulty is viewed as stemming from not having yet accounted for the self- interactions which modify the masses and coupling constants to their observed values. A sensible strategy, in order to be useful, must result in only a finite ZETA FUNCTION REGULARIZATION number of physical constants being left, undetermined. Not all theories can be dealt OF QUANTUM FIELD THEORY * with in this way; which has the beneficial consequence of eliminating certain, otherwise prospective, theories of nature. This follows the line of reasoning that physics is more than descriptive, but predictive by virtue of being limited by the A.Y. Shiekh "" requirement of consistency. International Centra foe Theoretical Physics, Tri.fste, Ltaly, In order to proceed with such a theory, the infinities must be restrained (regulated) while the self-interactions are accounted for. Visiting a different space- time dimension is a popular way to regulate (dimensional regularization) as it explicitly maintains the theory's covariance, which may otherwise be difficult to hold on to during reckoning for the self-interactions (renormalization).
    [Show full text]
  • Renormalization in Nonrelativistic Quantum Mechanics
    Renormalization in Nonrelativistic Quantum Mechanics ∗ Sadhan K Adhikari†and Angsula Ghosh Instituto de F´ısica Te´orica, Universidade Estadual Paulista, 01405-900 S˜ao Paulo, S˜ao Paulo, Brasil July 30, 2018 Abstract The importance and usefulness of renormalization are emphasized in nonrelativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultravi- olet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behavior and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent arXiv:hep-th/9706193v1 26 Jun 1997 with each other. The useful role of the renormalization group equations for this problem is also pointed out. PACS Numbers 03.65.-w, 03.65.Nk, 11.10.Gh, 11.10.Hi ∗To Appear in Journal of Physics A †John Simon Guggenheim Memorial Foundation Fellow. 1 1 Introduction The ultraviolet divergences in perturbative quantum field theory can be eliminated in many cases by renormalization to define physical observables, such as charge or mass, which are often termed the physical scale(s) of the problem [1, 2, 3, 4]. Ultraviolet divergences appear in exact as well as perturbative treatments of the nonrelativistic quantum mechanical two-body problem in momentum space interacting via two-body potentials with certain singular behavior at short distances [5, 6, 7, 8, 9, 10, 11] in two and three space dimensions.
    [Show full text]
  • Unitarity Methods for Scattering Amplitudes in Perturbative Gauge Theories
    Unitarity Methods for Scattering Amplitudes in Perturbative Gauge Theories by MASSIMILIANO VINCON A report presented for the examination for the transfer of status to the degree of Doctor of Philosophy of the University of London Thesis Supervisor DR ANDREAS BRANDHUBER Centre for Research in String Theory Department of Physics Queen Mary University of London Mile End Road London E1 4NS United Kingdom The strong do what they want and the weak suffer as they must.1 1Thucydides. Declaration I hereby declare that the material presented in this thesis is a representation of my own personal work unless otherwise stated and is a result of collaborations with Andreas Brandhuber and Gabriele Travaglini. Massimiliano Vincon Abstract In this thesis, we discuss novel techniques used to compute perturbative scattering am- plitudes in gauge theories. In particular, we focus on the use of complex momenta and generalised unitarity as efficient and elegant tools, as opposed to standard textbook Feynman rules, to compute one-loop amplitudes in gauge theories. We consider scatter- ing amplitudes in non-supersymmetric and supersymmetric Yang-Mills theories (SYM). After introducing some of the required mathematical machinery, we give concrete exam- ples as to how generalised unitarity works in practice and we correctly reproduce the n- gluon one-loop MHV amplitude in non-supersymmetric Yang-Mills theory with a scalar running in the loop, thus confirming an earlier result obtained using MHV diagrams: no independent check of this result had been carried out yet. Non-supersymmetric scat- tering amplitudes are the most difficult to compute and are of great importance as they are part of background processes at the LHC.
    [Show full text]
  • Thesis Presented for the Degree of Doctor of Philosophy
    Durham E-Theses Hadronic productions of a Higgs boson in association with two jets at next-to-leading order WILLIAMS, CIARAN How to cite: WILLIAMS, CIARAN (2010) Hadronic productions of a Higgs boson in association with two jets at next-to-leading order , Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/414/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Hadronic production of a Higgs boson in association with two jets at next-to-leading order Ciaran Williams A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England August 2010 Dedicated to My Parents Hadronic production of a Higgs boson in association with two jets at next-to-leading order Ciaran Williams Submitted for the degree of Doctor of Philosophy August 2010 Abstract We present the calculation of hadronic production of a Higgs boson in association with two jets at next-to-leading order in perturbation theory.
    [Show full text]
  • Studies in Field Theories: Mhv Vertices, Twistor Space, Recursion Relations and Chiral Rings
    STUDIES IN FIELD THEORIES: MHV VERTICES, TWISTOR SPACE, RECURSION RELATIONS AND CHIRAL RINGS Peter Svr·cek Advisor: Edward Witten A DISSERTATION SUBMITTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS April 2005 Copyright °c 2005 by Peter Svr·cek All rights reserved. ii Abstract In this thesis we study di®erent aspects of four dimensional ¯eld theories. In the ¯rst chapter we give introduction and overview of the thesis. In the second chapter we review the connection between perturbative Yang-Mills and twistor string the- ory. Inspired by this, we propose a new way of constructing Yang-Mills scattering amplitudes from Feynman graphs in which the vertices are o®-shell continuations of the tree level MHV amplitudes. The MHV diagrams lead to simple formulas for tree-level amplitudes. We then give a heuristic derivation of the diagrams from twistor string theory. In the third chapter, we explore the twistor structure of scattering amplitudes in theories for which a twistor string theory analogous to the one for N = 4 gauge theory has not yet been proposed. We study the di®erential equations of one-loop amplitudes of gluons in gauge theories with reduced supersymmetry and of tree level and one-loop amplitudes of gravitons in general relativity and supergravity. We ¯nd that the scattering amplitudes localize in twistor space on algebraic curves that are surprisingly similar to the N = 4 Yang-Mills case. In the next chapter we propose tree-level recursion relations for scattering am- plitudes of gravitons.
    [Show full text]
  • Toward Construction of a Consistent Field Theory with Poincaré
    Toward construction of a consistent field theory with Poincare´ covariance in terms of step-function-type basis functions showing confinement/deconfinement, mass-gap and Regge trajectory for non-pure/pure non-Abelian gauge fields ∗ Kimichika Fukushima † Advanced Reactor System Engineering Department, Toshiba Nuclear Engineering Service Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523, Japan Hikaru Sato Emeritus, Department of Physics, Hyogo University of Education, Yashiro-cho, Kato-shi, Hyogo 673-1494, Japan This article is a review by the authors concerning the construction of a Poincar´ecovariant (owing to spacetime continuum) field-theoretic formalism in terms of step-function-type basis functions without ultraviolet divergences. This formalism analytically derives confinement/deconfinement,mass-gap and Regge trajectory for non-Abelian gauge fields, and gives solutions for self-interacting scalar fields. Fields propagate in spacetime continuum and fields with finite degrees of freedom toward continuum limit have no ultraviolet divergence. Basis functions defined in a parameter spacetime are mapped to real spacetime. The authors derive a new solution comprised of classical fields as a vacuum and quantum fluctuations, leading to the linear potential between the particle and antiparticle from the Wilson loop. The Polyakov line gives finite binding energies and reveals the deconfining property at high temperatures. The quantum action yields positive mass from the classical fields and quantum fluctuations produces the Coulomb potential. Pure Yang-Mills fields show the same mass-gap owing to the particle-antiparticle pair creation. The Dirac equation under linear potential is analytically solved in this formalism, reproducing the principal properties of Regge trajectoriesata quantum level.
    [Show full text]
  • Unitarity and On-Shell Recursion Methods for Scattering Amplitudes
    FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Kasper Risager Larsen Unitarity and On-Shell Recursion Methods for Scattering Amplitudes Academic advisor: Poul Henrik Damgaard Submitted: 23/11/07 Unitarity and On-Shell Recursion Methods for Scattering Amplitudes by Kasper Risager Submitted for the degree of Ph.D. in Physics from the Niels Bohr Institute, Faculty of Science, University of Copenhagen. November 2007 Abstract This thesis describes some of the recent (and some less recent) developments in calculational techniques for scattering amplitudes in quantum field theory. The focus is on on-shell recursion relations in complex momenta and on the use of unitarity methods for loop calculations. In particular, on-shell recursion is related to the MHV rules for computing tree-level gauge amplitudes and used to extend the MHV rules to graviton scattering. Combinations of unitarity cut techniques and recursion is used to argue for the “No-Triangle Hypothesis” in N = 8 supergravity which is related to its UV behaviour. Finally, combinations of unitarity and recursion is used to demonstrate the full calculation of a one- loop amplitude involving a Higgs particle and four gluons in the limit of large top mass. Contents 1 Introduction 5 1.1ScatteringAmplitudesinTheoryandExperiment.......... 5 1.1.1 BackgroundProcessesattheLHC.............. 6 1.1.2 ApproachingQuantumGravity?............... 7 1.2ScatteringAmplitudesintheComplexPlane............ 7 1.2.1 The Unitary and Analytic S-Matrix............. 8 1.2.2 GeneralizingfromLoopstoTrees............... 10 1.2.3 FullAmplitudesfromTrees.................. 11 1.3AboutThisThesis........................... 12 1.3.1 Omissions............................ 12 1.3.2 Outline............................. 12 1.4ConclusionandOutlook........................ 13 1.4.1 ACompetitorintheCalculationRace............ 13 1.4.2 UnderstandingQuantumFieldTheories........... 14 2 Preliminaries 15 2.1ColourOrdering...........................
    [Show full text]