The Many Facets of SC Function During C. Elegans Meiosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meiotic Development in Caenorhabditis Elegans
Chapter 6 Meiotic Development in Caenorhabditis elegans Doris Y. Lui and Monica P. Colaiácovo Abstract Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynam- ics are largely conserved in C. elegans . Chromosomes adopt a meiosis-speci fi c structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover forma- tion allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans . Keywords Meiosis • Pairing • Recombination • Synapsis • Cohesion • Germline • C. elegans 6.1 Introduction Meiosis is a specialized cell division process by which sexually reproducing diploid organisms, including humans, produce haploid gametes (i.e., eggs and sperm) to be used for fertilization. This halving in the number of chromosomes is accomplished by following one round of DNA replication with two consecu- tive rounds of chromosome segregation (meiosis I and meiosis II). Whereas D. Y. Lui • M. P. Colaiácovo (*) Department of Genetics , Harvard Medical School , Boston , MA 02115 , USA e-mail: [email protected] T. Schedl (ed.), Germ Cell Development in C. elegans, Advances in Experimental 133 Medicine and Biology 757, DOI 10.1007/978-1-4614-4015-4_6, © Springer Science+Business Media New York 2013 134 D.Y. -
Sumoylation Regulates Protein Dynamics During Meiotic Chromosome Segregation in C
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs232330. doi:10.1242/jcs.232330 RESEARCH ARTICLE Sumoylation regulates protein dynamics during meiotic chromosome segregation in C. elegans oocytes Federico Pelisch*, Laura Bel Borja, Ellis G. Jaffray and Ronald T. Hay ABSTRACT studies of MT-dependent chromosome movement focused on Oocyte meiotic spindles in most species lack centrosomes and pulling forces generated by kinetochore MTs (kMTs) making the mechanisms that underlie faithful chromosome segregation end-on contacts with chromosomes (Cheeseman, 2014), there is in acentrosomal meiotic spindles are not well understood. In also evidence for pushing forces that are exerted on the segregating C. elegans oocytes, spindle microtubules exert a poleward force on chromosomes (Khodjakov et al., 2004; Nahaboo et al., 2015; š ́ chromosomes that is dependent on the microtubule-stabilising Laband et al., 2017; Vuku ic et al., 2017; Yu et al., 2019 preprint). protein CLS-2, the orthologue of the mammalian CLASP proteins. The nematode Caenorhabditis elegans contains holocentric The checkpoint kinase BUB-1 and CLS-2 localise in the central chromosomes (Maddox et al., 2004) and has served as an spindle and display a dynamic localisation pattern throughout extremely useful system to uncover mechanisms of meiosis and anaphase, but the signals regulating their anaphase-specific mitosis for almost 20 years (Oegema et al., 2001; Desai et al., 2003; localisation remains unknown. We have shown previously that Cheeseman et al., 2004, 2005; Monen et al., 2005). Meiosis is a SUMO regulates BUB-1 localisation during metaphase I. Here, we specialised cell division with two successive rounds of chromosome found that SUMO modification of BUB-1 is regulated by the SUMO E3 segregation that reduce the ploidy and generates haploid gametes ligase GEI-17 and the SUMO protease ULP-1. -
Research in Biology Using Computation Doi
Journal of Bioinformatics and Genomics 2 (7) 2018 RESEARCH IN BIOLOGY USING COMPUTATION DOI: https://doi.org/10.18454/jbg.2018.2.7.1 Grishaeva T.M.* Department of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation * Correspodning author (grishaeva[at]vigg.ru) Received: 18.03.2018; Accepted: 05.04.2018; Published: 22.05.2018 COMPARATIVE CONSERVATION OF MEIOTIC PROTEINS IN DIFFERENT PHYLOGENETIC LINES OF EUKARYOTES Research article Abstract Motivation: Meiosis — a two-stage process of sex cell division — is served by several hundreds of proteins. A part of them went to eukaryotes from prokaryotes, others appeared in first eukaryotes, and some proteins appeared de novo in multicellular eukaryotes. We compared the conservation of proteins involved in various processes occurring in meiosis. Results: The conservations of five meiotic enzymes (MLH1, MRE11, MSH4, BRCA1, BRCA2) and three silencing markers (histone H2AX, SUMO1, ATR) were compared using a set of bioinformatics methods. Orthologs of these proteins from the proteomes of model species were compared, representing different lines of development of eukaryotes. Among the enzymes, the most conserved is MLH1, which provide correction of mismatch bases, and the least conserved are BRCA1 and BRCA2 repair enzymes which are present only in vertebrates. Among silencing proteins, histone H2AX is the most conserved one, playing the central part in the regulation of the transcription, in the repair and replication of DNA. The small protein SUMO1, which is involved in many cellular processes, is less conserved. ATR kinase in different species is similar only in the C-terminal part of the molecule. -
And Cis Lack of Involvement in in Ig Class Switch Recombination
Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement in cis- and trans -Switching This information is current as of September 26, 2021. Jeroen E. J. Guikema, Carol E. Schrader, Niek G. J. Leus, Anna Ucher, Erin K. Linehan, Uwe Werling, Winfried Edelmann and Janet Stavnezer J Immunol 2008; 181:8450-8459; ; doi: 10.4049/jimmunol.181.12.8450 Downloaded from http://www.jimmunol.org/content/181/12/8450 References This article cites 54 articles, 30 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/181/12/8450.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement in cis- and trans-Switching1 Jeroen E. -
DNA Damage Response Pathways in the Nematode C. Elegans
Cell Death and Differentiation (2004) 11, 21–28 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $25.00 www.nature.com/cdd Review Death and more: DNA damage response pathways in the nematode C. elegans L Stergiou1 and MO Hengartner*,1 telangiectasia mutated kinase; ATR, ataxia telangiectasia-related kinase; Tel1, telomere length regulation 1; Chk1, checkpoint 1 Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, kinase 1; Cdk, cyclin-dependent kinase; Cdc, cell division control; CH-8057 Zurich, Switzerland Apaf-1, apoptotic protease-activating factor-1; Bcl-2, B-cell * Corresponding author: MO Hengartner, Tel: þ 41 1 635 3140; Fax: þ 41 1 lymphoma 2; BH3, BCL-2 homology domain 3; PUMA, p53 635 6861; E-mail: [email protected] upregulated modulator of apoptosis; ced, cell death abnormal; Received 30.6.03; accepted 05.8.03 egl-1, egg-laying abnormal-1; mrt-2, mortal germ line-2; clk-2, Edited by G Melino clock gene; Spo 11, sporulation, meiosis-specific protein; msh, mismatch repair gene; cep-1, C. elegans p53 Abstract Genotoxic stress is a threat to our cells’ genome integrity. Introduction Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale Living organisms expend considerable energy to preserve integrity of their genomes. Multiple mechanisms have evolved genomic instability. Because such changes may have to ensure the fidelity of genome duplication and to guarantee tumorigenic potential, damaged cells are often eliminated faithful partitioning of chromosomes at each cell division. via apoptosis. Loss of this apoptotic response is actually one Furthermore, cells are under the constant threat of DNA of the hallmarks of cancer. -
Chapter 3 Characterization of Meiotic Chromosome Organization and the Distribution of Dsbs and Crossovers
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Quantitative characterization of meiotic chromosome organization Permalink https://escholarship.org/uc/item/5mr0c0kp Author Cheveralls, Keith Charles Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Quantitative characterization of meiotic chromosome organization By Keith Charles Cheveralls A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Abby F. Dernburg, Chair Professor David Drubin Professor Barbara Meyer Professor Eva Nogales Spring 2016 Abstract Quantitative characterization of meiotic chromosome organization by Keith Charles Cheveralls Doctor of Philosophy in Biophysics University of California, Berkeley Professor Abby F. Dernburg, Chair Sexual reproduction relies on a specialized program of cell division called meiosis to generate haploid gametes from diploid germ cells. In order for chromosome segregation to occur accurately, homologous chromosomes must pair, synapse, and undergo crossover recombination. These physical and biochemical interactions occur in coordination with large-scale reorganization of meiotic chromosomes. To understand the relationship between chromosome organization and the regulation of recombination, we developed an automated image analysis pipeline that combines the throughput of population-based -
The Choice in Meiosis – Defining the Factors That Influence Crossover Or Non-Crossover Formation
Commentary 501 The choice in meiosis – defining the factors that influence crossover or non-crossover formation Jillian L. Youds and Simon J. Boulton* DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, Blanche Lane, South Mimms EN6 3LD, UK *Author for correspondence ([email protected]) Journal of Cell Science 124, 501-513 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.074427 Summary Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale – in addition to current models for the generation of interference – is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over. -
Homologs in Saccharomyces Cerevisiae but Not Mismatch Repair
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair Nancy Marie Hollingsworth, 1 Lisa Ponte, and Carol Halsey Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, Stony Brook, New York 11794-5215 USA Using a screen designed to identify yeast mutants specifically defective in recombination between homologous chromosomes during meiosis, we have obtained new alleles of the meiosis-specific genes, HOP1, RED1, and MEK1. In addition, the screen identified a novel gene designated MSH5 (MutS homolog 51. Although Msh5p exhibits strong homology to the MutS family of proteins, it is not involved in DNA mismatch repair. Diploids lacking the MSH5 gene display decreased levels of spore viability, increased levels of meiosis I chromosome nondisjunction, and decreased levels of reciprocal exchange between, but not within, homologs. Gene conversion is not reduced. Msh5 mutants are phenotypicaUy similar to mutants in the meiosis-specific gene MSH4 (Ross-Macdonald and Roeder 1994}. Double mutant analysis using rash4 rash5 diploids demonstrates that the two genes are in the same epistasis group and therefore are likely to function in a similar process--namely, the facilitation of interhomolog crossovers during meiosis. [Key Words: MSH5; yeast; MutS homolog; recombination] Received March 9, 1995; revised version accepted June 6, 1995. A unique problem confronting sexually reproducing or- ated in the presence of SCs, it is necessary to first define ganisms is how to maintain the parental chromosome the proteins involved both in synapsis (i.e., SC forma- number in offspring produced by fertilization. -
Coding and Noncoding Variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B Affect Recombination Rate in Cattle
Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle Naveen Kumar Kadri,1 Chad Harland,1,2 Pierre Faux,1 Nadine Cambisano,1,3 Latifa Karim,1,3 Wouter Coppieters,1,3 Sébastien Fritz,4,5 Erik Mullaart,6 Denis Baurain,7 Didier Boichard,5 Richard Spelman,2 Carole Charlier,1 Michel Georges,1 and Tom Druet1 1Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium; 2Livestock Improvement Corporation, Newstead, 3240 Hamilton, New Zealand; 3Genomics Platform, GIGA, University of Liège (B34), 4000 Liège, Belgium; 4Allice, 75012 Paris, France; 5GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; 6CRV BV, 6800 AL Arnhem, the Netherlands; 7InBioS-Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège (B22), 4000 Liège, Belgium We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombi- nation rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR. -
A Mutation in the MSH5 Gene Results in Alkylation Tolerance1
[CANCERRESEARCH57,2715—2720,July1. l997J A Mutation in the MSH5 Gene Results in Alkylation Tolerance1 Sonya Bawa and Wei Xiao2 Department of Microbiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada ABSTRACT results in the accumulation of single-stranded nicks in DNA, which are ultimately lethal to the cell. This hypothesis is attractive not only DNA methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine because it provides an alternative to 06 MeG/O4 MeT genotoxicity (MNNG)are potent carcinogens;their carcinogeniceffectis mainlydue to but also because genetic defects in several human MMR genes have the effect of production of O'-methylguanine (06 MeG) on DNA. 06 MeG is not only mutagenic but also toxic to the cell because Mer/Mex cells been linked to hereditary nonpolyposis colon cancer as well as other unable to remove O@MeG are very sensitive to killing by MNNG. It has types of cancers (9—14).However, the abortive MMR hypothesis been proposed that repeated futile mismatch correction of 06 MeG should be viewed with caution because the current supporting cvi containing bp is responsible for the genotoxicity of the O@MeG lesion and dence with mammalian cells is not conclusive and a convenient that loss of mismatch repair activity results in cellular tolerance to 06 mammalian system is not available to vigorously test the hypothesis. MeG, but the hypothesis has not been proved. We used yeast as a model The MMR system consisting of Escherichia coli MutS and MutL to test this hypothesis and found that chromosome deletion of any known homologues has been extensively studied recently in yeast and human nuclear mitotic mismatch repair genes, including MUll, MSH2, MSH3, cells (reviewed in Refs. -
BIOLOGY 639 SCIENCE ONLINE the Unexpected Brains Behind Blood Vessel Growth 641 THIS WEEK in SCIENCE 668 U.K
4 February 2005 Vol. 307 No. 5710 Pages 629–796 $10 07%.'+%#%+& 2416'+0(70%6+10 37#06+6#6+8' 51(69#4' #/2.+(+%#6+10 %'..$+1.1); %.10+0) /+%41#44#;5 #0#.;5+5 #0#.;5+5 2%4 51.76+105 Finish first with a superior species. 50% faster real-time results with FullVelocity™ QPCR Kits! Our FullVelocity™ master mixes use a novel enzyme species to deliver Superior Performance vs. Taq -Based Reagents FullVelocity™ Taq -Based real-time results faster than conventional reagents. With a simple change Reagent Kits Reagent Kits Enzyme species High-speed Thermus to the thermal profile on your existing real-time PCR system, the archaeal Fast time to results FullVelocity technology provides you high-speed amplification without Enzyme thermostability dUTP incorporation requiring any special equipment or re-optimization. SYBR® Green tolerance Price per reaction $$$ • Fast, economical • Efficient, specific and • Probe and SYBR® results sensitive Green chemistries Need More Information? Give Us A Call: Ask Us About These Great Products: Stratagene USA and Canada Stratagene Europe FullVelocity™ QPCR Master Mix* 600561 Order: (800) 424-5444 x3 Order: 00800-7000-7000 FullVelocity™ QRT-PCR Master Mix* 600562 Technical Services: (800) 894-1304 Technical Services: 00800-7400-7400 FullVelocity™ SYBR® Green QPCR Master Mix 600581 FullVelocity™ SYBR® Green QRT-PCR Master Mix 600582 Stratagene Japan K.K. *U.S. Patent Nos. 6,528,254, 6,548,250, and patents pending. Order: 03-5159-2060 Purchase of these products is accompanied by a license to use them in the Polymerase Chain Reaction (PCR) Technical Services: 03-5159-2070 process in conjunction with a thermal cycler whose use in the automated performance of the PCR process is YYYUVTCVCIGPGEQO covered by the up-front license fee, either by payment to Applied Biosystems or as purchased, i.e., an authorized thermal cycler. -
MSH5) Reveals a Requirement for a Functional Mutsg Complex for All Crossovers in Mammalian Meiosis
INVESTIGATION Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSg Complex for All Crossovers in Mammalian Meiosis Carolyn R. Milano,* J. Kim Holloway,* Yongwei Zhang,† Bo Jin,† Cameron Smith,‡ Aviv Bergman,‡ Winfried Edelmann,†,1 and Paula E. Cohen*,1 *Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, †Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, and ‡Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 ORCID IDs: 0000-0003-1261-3763 (C.R.M.); 0000-0002-2050-6979 (P.E.C.) ABSTRACT During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between KEYWORDS homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of MutS homolog DSBs resolve as COs, mostly through a class I pathway dependent on MutSg (MSH4/ MSH5) and MutLg meiosis (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway mouse accounts for only a few COs, but is not thought to involve MutSg/ MutLg, and is instead dependent on crossing over MUS81-EME1. For class I events, loading of MutLg is thought to be dependent on MutSg,howeverMutSg homologous loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of recombination MutSg in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We crossover generated a mutation in the ATP binding domain of Msh5 (Msh5GA).