And Cis Lack of Involvement in in Ig Class Switch Recombination

Total Page:16

File Type:pdf, Size:1020Kb

And Cis Lack of Involvement in in Ig Class Switch Recombination Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement in cis- and trans -Switching This information is current as of September 26, 2021. Jeroen E. J. Guikema, Carol E. Schrader, Niek G. J. Leus, Anna Ucher, Erin K. Linehan, Uwe Werling, Winfried Edelmann and Janet Stavnezer J Immunol 2008; 181:8450-8459; ; doi: 10.4049/jimmunol.181.12.8450 Downloaded from http://www.jimmunol.org/content/181/12/8450 References This article cites 54 articles, 30 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/181/12/8450.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement in cis- and trans-Switching1 Jeroen E. J. Guikema,* Carol E. Schrader,* Niek G. J. Leus,2* Anna Ucher,* Erin K. Linehan,* Uwe Werling,† Winfried Edelmann,† and Janet Stavnezer3* When B cells are activated after immunization or infection, they exchange the gene encoding the Ig H chain C region by class switch recombination (CSR). CSR generally occurs by an intrachromosomal deletional recombination within switch (S) region sequences. However, ϳ10% of CSR events occur between chromosome homologs (trans- or interallele CSR), suggesting that the homologous chromosomes are aligned during CSR. Because the Mut S homolog 4 (Msh4) and Msh5 bind to Holliday junctions and are required for homologous recombination during meiosis in germ cells, we hypothesized these proteins might be involved Downloaded from in trans-chromosomal CSR (trans-CSR). Indeed, Msh4-Msh5 has recently been suggested to have a role in CSR. However, we find a large variety of alternative splice variants of Msh5 mRNA in splenic B cells rather than the full-length form found in testis. Most of these mRNAs are unlikely to be stable, suggesting that Msh5 might not be functional. Furthermore, we find that msh5 nul- lizygous B cells undergo CSR normally, have unaltered levels of trans-CSR, normal levels of DNA breaks in the S␮ region, and normal S-S junctions. We also show that the S-S junctions from cis- and trans-CSR events have similar lengths of junctional microhomology, suggesting trans-CSR occurs by nonhomologous end joining as does intrachromosome (cis)-CSR. From these http://www.jimmunol.org/ data, we conclude that Msh5 does not participate in CSR. The Journal of Immunology, 2008, 181: 8450–8459. lass switch recombination (CSR)4 is a unique type of pair enzyme uracil DNA glycosylase, and others are recognized by recombination that occurs in B cells upon appropriate the mismatch repair (MMR) proteins Mut S homolog (Msh)2- C activation. It results in a change from IgM and IgD ex- Msh6 (1–7). Additional base excision repair enzymes, apurinic/ pression by naive B cells to expression of IgG, IgE, or IgA. This apyrimidinic endonucleases 1 and 2, and several MMR enzymes switch changes CH, and improves the ability of the Ab to eliminate are required to generate the dsDNA breaks (DSBs) in the S regions the pathogen. It generally occurs by an intrachromosomal dele- that are required for CSR (8, 9). Deficiencies in the MMR proteins by guest on September 26, 2021 tional recombination between switch (S) region sequences located Msh2, Msh6, Mlh1, Pms2, and Exo1 reduce CSR by 2- to 5-fold ␦ upstream of each CH gene, except C . The CH genes are arranged (10–14). in the following order: C␮,C␦,C␥3, C␥1, C␥2b, C␥2a, C␧, and Msh5 is one of the Msh that are specialized for recognizing ␣ ␮ C , with the C gene being closest to the recombined VDJ gene aberrant DNA duplexes. However, Msh5 and its partner Msh4 do segment. CSR is initiated by activation-induced cytidine deami- not perform mismatch repair, but instead are essential for meiosis, nase (AID), which converts dC bases in S regions to dU bases, and mice deficient in either protein are sterile (15, 16). Msh5 does some of which are subsequently excised by the base excision re- not homodimerize, and its only known partner is Msh4 (17). Msh4-Msh5 forms a sliding clamp that binds to Holliday junctions in vitro (18), and during meiosis Msh4 is distributed along the *Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, MA synaptonemal complex early in prophase I, from the leptonema 01655; and †Department of Cell Biology, Albert Einstein Medical College, Bronx, stage until pachynema (16). Although meiotic chromosomes in NY 10461 msh4Ϫ/Ϫ or msh5Ϫ/Ϫ mice begin to form synaptonemal com- Received for publication April 18, 2008. Accepted for publication October 11, 2008. plexes, they do not condense correctly, and show abnormally high The costs of publication of this article were defrayed in part by the payment of page levels of association with Rad51. Rad51 association suggests that charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. meiosis is initiated and that DSBs and ssDNA breaks (SSB) are 1 This work was supported by National Institutes of Health Grants AI65639 (to generated as normal, but recombination between homologs fails to C.E.S.) and AI23283 (to J.S.), by the Irvington Institute Fellowship Program of the proceed normally. Deletion of either the msh4 or msh5 gene results Cancer Research Institute (to J.E.J.G.), and by CA76329 (to W.E.). in increased aberrant pairing between nonhomologous chromo- 2 Current address: Department of Medicine, University Medical Center Groningen, somes and greatly decreased pairing between homologs during Groningen, The Netherlands. meiosis in both spermatocytes and oocytes (15, 16). Taken to- 3 Address correspondence and reprint requests to Dr. Janet Stavnezer, Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, Uni- gether, the data suggest that during meiosis Msh4-Msh5 binds Hol- versity of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA liday junctions and monitors DNA sequences to ensure that 01655-0122. E-mail address: [email protected] recombination occurs between homologs. An additional het- 4 Abbreviations used in this paper: CSR, class switch recombination; AID, activation- erodimer, Mlh1-Mlh3, is also required for fertility and is thought induced cytidine deaminase; cis-CSR, intrachromosome-CSR; DSB, dsDNA break; KO, knockout; LM-PCR, ligation-mediated PCR; MMR, mismatch repair; Msh, Mut to bind and stabilize Msh4-Msh5 bound at Holliday structures S Homolog; S, switch; SSB, ssDNA break; TR, tandem repeat; trans-CSR, trans- (19–22). chromosomal CSR; WT, wild type. Msh4 and Msh5 mRNAs have been detected in several tissues Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 that do not contain cells undergoing meiosis, but whether they www.jimmunol.org The Journal of Immunology 8451 have a role in these tissues is unknown. Recently, Sekine et al. (23) FITC (AF6-78; BD Pharmingen). CFSE fluorescence and Ab staining were reported that Msh5 contributes to CSR. They showed that MRL/lpr acquired on a LSR flow cytometer (BD Biosciences) and analyzed using mice congenic for a 13-megabase segment from C57BL/6 (H-2b/b) the FlowJo software package (Tree Star). that includes the msh5 gene and the entire MHC locus have 5% of Western blotting the level of Msh5 mRNA in their spleens as do spleens from MRL/ k/k Cells were lysed in radioimmunoprecipitation assay buffer (150 mM NaCl, lpr H-2 mice. They found that these congenic mice have low 0.5% deoxycholate, 0.1% SDS, 1.0% Nonidet P-40, 50 mM Tris-Cl (pH levels of serum IgG3. They also found that splenic B cells from 7.5), Complete protease, and phosphatase inhibitor mixture; Roche) and msh4 or msh5 knockout (KO) mice had altered S␮-S␥3 and S␮-S␣ subjected to three freeze-thaw cycles to obtain whole-cell protein extracts. junctions relative to wild-type (WT) littermates. From additional Protein content was determined using Bradford assay (Bio-Rad). Equal amounts (25 ␮g) of proteins were electrophoresed on 8% SDS-polyacryl- analyses of patients with various single-nucleotide mutations amide gels, and blotted onto Immobilon-P polyvinylidene fluoride mem- within the msh5 gene, they concluded that Msh5 has a role in CSR, branes (Millipore). Immunoblotting was performed using rabbit anti-Msh5, although the role was not defined. followed by goat anti-rabbit HRP (Santa Cruz Biotechnology) and en- Most switch recombination occurs by an intrachromosomal de- hanced chemiluminescent substrate (Pierce). letion event, although recently it was demonstrated that 7–17% of Genomic DNA preparation and linker ligation-mediated PCR the CSR events occur between the two homologous chromosomes (LM-PCR) (24–26). Because trans-chromosomal CSR would require align- After culture for 2 days, viable cells were isolated by Ficoll/Hypaque gra- ment of the two chromosome homologs, we hypothesized that dients (r ϭ 1.09) or Lympholyte (Cedarlane Laboratories) centrifugation.
Recommended publications
  • Meiotic Development in Caenorhabditis Elegans
    Chapter 6 Meiotic Development in Caenorhabditis elegans Doris Y. Lui and Monica P. Colaiácovo Abstract Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynam- ics are largely conserved in C. elegans . Chromosomes adopt a meiosis-speci fi c structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover forma- tion allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans . Keywords Meiosis • Pairing • Recombination • Synapsis • Cohesion • Germline • C. elegans 6.1 Introduction Meiosis is a specialized cell division process by which sexually reproducing diploid organisms, including humans, produce haploid gametes (i.e., eggs and sperm) to be used for fertilization. This halving in the number of chromosomes is accomplished by following one round of DNA replication with two consecu- tive rounds of chromosome segregation (meiosis I and meiosis II). Whereas D. Y. Lui • M. P. Colaiácovo (*) Department of Genetics , Harvard Medical School , Boston , MA 02115 , USA e-mail: [email protected] T. Schedl (ed.), Germ Cell Development in C. elegans, Advances in Experimental 133 Medicine and Biology 757, DOI 10.1007/978-1-4614-4015-4_6, © Springer Science+Business Media New York 2013 134 D.Y.
    [Show full text]
  • Research in Biology Using Computation Doi
    Journal of Bioinformatics and Genomics 2 (7) 2018 RESEARCH IN BIOLOGY USING COMPUTATION DOI: https://doi.org/10.18454/jbg.2018.2.7.1 Grishaeva T.M.* Department of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation * Correspodning author (grishaeva[at]vigg.ru) Received: 18.03.2018; Accepted: 05.04.2018; Published: 22.05.2018 COMPARATIVE CONSERVATION OF MEIOTIC PROTEINS IN DIFFERENT PHYLOGENETIC LINES OF EUKARYOTES Research article Abstract Motivation: Meiosis — a two-stage process of sex cell division — is served by several hundreds of proteins. A part of them went to eukaryotes from prokaryotes, others appeared in first eukaryotes, and some proteins appeared de novo in multicellular eukaryotes. We compared the conservation of proteins involved in various processes occurring in meiosis. Results: The conservations of five meiotic enzymes (MLH1, MRE11, MSH4, BRCA1, BRCA2) and three silencing markers (histone H2AX, SUMO1, ATR) were compared using a set of bioinformatics methods. Orthologs of these proteins from the proteomes of model species were compared, representing different lines of development of eukaryotes. Among the enzymes, the most conserved is MLH1, which provide correction of mismatch bases, and the least conserved are BRCA1 and BRCA2 repair enzymes which are present only in vertebrates. Among silencing proteins, histone H2AX is the most conserved one, playing the central part in the regulation of the transcription, in the repair and replication of DNA. The small protein SUMO1, which is involved in many cellular processes, is less conserved. ATR kinase in different species is similar only in the C-terminal part of the molecule.
    [Show full text]
  • DNA Damage Response Pathways in the Nematode C. Elegans
    Cell Death and Differentiation (2004) 11, 21–28 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $25.00 www.nature.com/cdd Review Death and more: DNA damage response pathways in the nematode C. elegans L Stergiou1 and MO Hengartner*,1 telangiectasia mutated kinase; ATR, ataxia telangiectasia-related kinase; Tel1, telomere length regulation 1; Chk1, checkpoint 1 Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, kinase 1; Cdk, cyclin-dependent kinase; Cdc, cell division control; CH-8057 Zurich, Switzerland Apaf-1, apoptotic protease-activating factor-1; Bcl-2, B-cell * Corresponding author: MO Hengartner, Tel: þ 41 1 635 3140; Fax: þ 41 1 lymphoma 2; BH3, BCL-2 homology domain 3; PUMA, p53 635 6861; E-mail: [email protected] upregulated modulator of apoptosis; ced, cell death abnormal; Received 30.6.03; accepted 05.8.03 egl-1, egg-laying abnormal-1; mrt-2, mortal germ line-2; clk-2, Edited by G Melino clock gene; Spo 11, sporulation, meiosis-specific protein; msh, mismatch repair gene; cep-1, C. elegans p53 Abstract Genotoxic stress is a threat to our cells’ genome integrity. Introduction Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale Living organisms expend considerable energy to preserve integrity of their genomes. Multiple mechanisms have evolved genomic instability. Because such changes may have to ensure the fidelity of genome duplication and to guarantee tumorigenic potential, damaged cells are often eliminated faithful partitioning of chromosomes at each cell division. via apoptosis. Loss of this apoptotic response is actually one Furthermore, cells are under the constant threat of DNA of the hallmarks of cancer.
    [Show full text]
  • The Choice in Meiosis – Defining the Factors That Influence Crossover Or Non-Crossover Formation
    Commentary 501 The choice in meiosis – defining the factors that influence crossover or non-crossover formation Jillian L. Youds and Simon J. Boulton* DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, Blanche Lane, South Mimms EN6 3LD, UK *Author for correspondence ([email protected]) Journal of Cell Science 124, 501-513 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.074427 Summary Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale – in addition to current models for the generation of interference – is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over.
    [Show full text]
  • Homologs in Saccharomyces Cerevisiae but Not Mismatch Repair
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair Nancy Marie Hollingsworth, 1 Lisa Ponte, and Carol Halsey Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, Stony Brook, New York 11794-5215 USA Using a screen designed to identify yeast mutants specifically defective in recombination between homologous chromosomes during meiosis, we have obtained new alleles of the meiosis-specific genes, HOP1, RED1, and MEK1. In addition, the screen identified a novel gene designated MSH5 (MutS homolog 51. Although Msh5p exhibits strong homology to the MutS family of proteins, it is not involved in DNA mismatch repair. Diploids lacking the MSH5 gene display decreased levels of spore viability, increased levels of meiosis I chromosome nondisjunction, and decreased levels of reciprocal exchange between, but not within, homologs. Gene conversion is not reduced. Msh5 mutants are phenotypicaUy similar to mutants in the meiosis-specific gene MSH4 (Ross-Macdonald and Roeder 1994}. Double mutant analysis using rash4 rash5 diploids demonstrates that the two genes are in the same epistasis group and therefore are likely to function in a similar process--namely, the facilitation of interhomolog crossovers during meiosis. [Key Words: MSH5; yeast; MutS homolog; recombination] Received March 9, 1995; revised version accepted June 6, 1995. A unique problem confronting sexually reproducing or- ated in the presence of SCs, it is necessary to first define ganisms is how to maintain the parental chromosome the proteins involved both in synapsis (i.e., SC forma- number in offspring produced by fertilization.
    [Show full text]
  • Coding and Noncoding Variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B Affect Recombination Rate in Cattle
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle Naveen Kumar Kadri,1 Chad Harland,1,2 Pierre Faux,1 Nadine Cambisano,1,3 Latifa Karim,1,3 Wouter Coppieters,1,3 Sébastien Fritz,4,5 Erik Mullaart,6 Denis Baurain,7 Didier Boichard,5 Richard Spelman,2 Carole Charlier,1 Michel Georges,1 and Tom Druet1 1Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 4000 Liège, Belgium; 2Livestock Improvement Corporation, Newstead, 3240 Hamilton, New Zealand; 3Genomics Platform, GIGA, University of Liège (B34), 4000 Liège, Belgium; 4Allice, 75012 Paris, France; 5GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; 6CRV BV, 6800 AL Arnhem, the Netherlands; 7InBioS-Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège (B22), 4000 Liège, Belgium We herein study genetic recombination in three cattle populations from France, New Zealand, and the Netherlands. We identify 2,395,177 crossover (CO) events in 94,516 male gametes, and 579,996 CO events in 25,332 female gametes. The average number of COs was found to be larger in males (23.3) than in females (21.4). The heritability of global recombi- nation rate (GRR) was estimated at 0.13 in males and 0.08 in females, with a genetic correlation of 0.66 indicating that shared variants are influencing GRR in both sexes. A genome-wide association study identified seven quantitative trait loci (QTL) for GRR.
    [Show full text]
  • A Mutation in the MSH5 Gene Results in Alkylation Tolerance1
    [CANCERRESEARCH57,2715—2720,July1. l997J A Mutation in the MSH5 Gene Results in Alkylation Tolerance1 Sonya Bawa and Wei Xiao2 Department of Microbiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada ABSTRACT results in the accumulation of single-stranded nicks in DNA, which are ultimately lethal to the cell. This hypothesis is attractive not only DNA methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine because it provides an alternative to 06 MeG/O4 MeT genotoxicity (MNNG)are potent carcinogens;their carcinogeniceffectis mainlydue to but also because genetic defects in several human MMR genes have the effect of production of O'-methylguanine (06 MeG) on DNA. 06 MeG is not only mutagenic but also toxic to the cell because Mer/Mex cells been linked to hereditary nonpolyposis colon cancer as well as other unable to remove O@MeG are very sensitive to killing by MNNG. It has types of cancers (9—14).However, the abortive MMR hypothesis been proposed that repeated futile mismatch correction of 06 MeG should be viewed with caution because the current supporting cvi containing bp is responsible for the genotoxicity of the O@MeG lesion and dence with mammalian cells is not conclusive and a convenient that loss of mismatch repair activity results in cellular tolerance to 06 mammalian system is not available to vigorously test the hypothesis. MeG, but the hypothesis has not been proved. We used yeast as a model The MMR system consisting of Escherichia coli MutS and MutL to test this hypothesis and found that chromosome deletion of any known homologues has been extensively studied recently in yeast and human nuclear mitotic mismatch repair genes, including MUll, MSH2, MSH3, cells (reviewed in Refs.
    [Show full text]
  • The Many Facets of SC Function During C. Elegans Meiosis
    Chromosoma DOI 10.1007/s00412-006-0061-9 REVIEW Mónica P. Colaiácovo The many facets of SC function during C. elegans meiosis Received: 7 December 2005 / Revised: 15 February 2006 / Accepted: 16 February 2006 # Springer-Verlag 2006 Abstract Sexually reproducing organisms rely on meiosis halving in chromosome number is the result of one round for the formation of haploid gametes. This is achieved of DNA replication followed by two rounds of cell through two consecutive rounds of cell division (meiosis I division: meiosis I (a reductional division) and meiosis II and II) after one round of DNA replication. During the (an equational division). While meiosis II proceeds meiotic divisions, chromosomes face several challenges to similarly to a mitotic division, unique events unfold during ultimately ensure proper chromosome segregation. Unique meiosis I. In particular, during prophase I, homologous events unfold during meiosis I to overcome these chromosomes have to identify each other and pair, challenges. Homologous chromosomes pair, synapse, and followed by the formation of a proteinaceous structure recombine. A remarkable feature throughout this process is known as the synaptonemal complex (SC) between the formation of an evolutionarily conserved tripartite homologs, and completion of meiotic recombination proteinaceous structure known as the synaptonemal com- leading to physical attachments between homologs. plex (SC). It is comprised of two lateral elements, These events ultimately ensure proper chromosome segre- assembled along each axis of a pair of homologous gation upon the first meiotic division. Succeeding in this chromosomes, and a central region consisting of transverse outcome is crucial given that chromosome nondisjunction filaments bridging the gap between lateral elements.
    [Show full text]
  • MSH5) Reveals a Requirement for a Functional Mutsg Complex for All Crossovers in Mammalian Meiosis
    INVESTIGATION Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSg Complex for All Crossovers in Mammalian Meiosis Carolyn R. Milano,* J. Kim Holloway,* Yongwei Zhang,† Bo Jin,† Cameron Smith,‡ Aviv Bergman,‡ Winfried Edelmann,†,1 and Paula E. Cohen*,1 *Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, †Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, and ‡Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 ORCID IDs: 0000-0003-1261-3763 (C.R.M.); 0000-0002-2050-6979 (P.E.C.) ABSTRACT During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between KEYWORDS homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of MutS homolog DSBs resolve as COs, mostly through a class I pathway dependent on MutSg (MSH4/ MSH5) and MutLg meiosis (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway mouse accounts for only a few COs, but is not thought to involve MutSg/ MutLg, and is instead dependent on crossing over MUS81-EME1. For class I events, loading of MutLg is thought to be dependent on MutSg,howeverMutSg homologous loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of recombination MutSg in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We crossover generated a mutation in the ATP binding domain of Msh5 (Msh5GA).
    [Show full text]
  • The BCL-2 Pathway Preserves Mammalian Genome Integrity by Eliminating Recombination-Defective Oocytes
    ARTICLE https://doi.org/10.1038/s41467-020-16441-z OPEN The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes Elias ElInati1,8, Agata P. Zielinska 2,8, Afshan McCarthy3, Nada Kubikova 4,5, Valdone Maciulyte1, Shantha Mahadevaiah1, Mahesh N. Sangrithi6,7, Obah Ojarikre1, Dagan Wells 4,5, Kathy K. Niakan 3, ✉ Melina Schuh2 & James M. A. Turner1 1234567890():,; DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA- damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma, Noxa and Bax. Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy. 1 Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK. 2 Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany. 3 Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK. 4 Nuffield Department of Women’s and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
    [Show full text]
  • Localization of MMR Proteins on Meiotic Chromosomes in Mice
    JCB: ARTICLE Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I Nadine K. Kolas,1 Anton Svetlanov,1 Michelle L. Lenzi,1 Frank P. Macaluso,2 Steven M. Lipkin,5 R. Michael Liskay,6 John Greally,1,3 Winfried Edelmann,4 and Paula E. Cohen1 1Department of Molecular Genetics, 2Department of Anatomy and Structural Biology, 3Department of Medicine, and 4Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 5Department of Hematology, University of California, Irvine, Irvine, CA 92697 6Molecular and Medical Genetics, Oregon Health Sciences University, Portland, OR 97239 ammalian MutL homologues function in DNA junction with MSH4–MSH5. The second complex in- mismatch repair (MMR) after replication errors volves MLH3 together with MSH2–MSH3 and localizes and in meiotic recombination. Both functions to repetitive sequences at centromeres and the Y chro- M Ϫ/Ϫ are initiated by a heterodimer of MutS homologues spe- mosome. This complex is up-regulated in Pms2 cific to either MMR (MSH2–MSH3 or MSH2–MSH6) or males, but not females, providing an explanation for the crossing over (MSH4–MSH5). Mutations of three of the sexual dimorphism seen in Pms2Ϫ/Ϫ mice. The associa- four MutL homologues (Mlh1, Mlh3, and Pms2) result in tion of MLH3 with repetitive DNA sequences is coinci- meiotic defects. We show herein that two distinct com- dent with MSH2–MSH3 and is decreased in Msh2Ϫ/Ϫ plexes involving MLH3 are formed during murine meio- and Msh3Ϫ/Ϫ mice, suggesting a novel role for the MMR sis. The first is a stable association between MLH3 and family in the maintenance of repeat unit integrity during MLH1 and is involved in promoting crossing over in con- mammalian meiosis.
    [Show full text]
  • Structural Insights Into Saccharomyces Cerevisiae Msh4– Msh5 Complex Function Using Homology Modeling
    Structural Insights into Saccharomyces cerevisiae Msh4– Msh5 Complex Function Using Homology Modeling Ramaswamy Rakshambikai1, Narayanaswamy Srinivasan1*, Koodali Thazath Nishant2 1 Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India, 2 School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India Abstract The Msh4–Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4–Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4–Msh5 complex has hindered an understanding of the structural aspects of Msh4–Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4–Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4–Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4–Msh5 complex.
    [Show full text]