Amplification of a Broad Transcriptional Program by a Common Factor Triggers the Meiotic Cell Cycle in Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrative Genomic and Epigenomic Analyses Identified IRAK1 As a Novel Target for Chronic Inflammation-Driven Prostate Tumorigenesis
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.447920; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Integrative genomic and epigenomic analyses identified IRAK1 as a novel target for chronic inflammation-driven prostate tumorigenesis Saheed Oluwasina Oseni1,*, Olayinka Adebayo2, Adeyinka Adebayo3, Alexander Kwakye4, Mirjana Pavlovic5, Waseem Asghar5, James Hartmann1, Gregg B. Fields6, and James Kumi-Diaka1 Affiliations 1 Department of Biological Sciences, Florida Atlantic University, Florida, USA 2 Morehouse School of Medicine, Atlanta, Georgia, USA 3 Georgia Institute of Technology, Atlanta, Georgia, USA 4 College of Medicine, Florida Atlantic University, Florida, USA 5 Department of Computer and Electrical Engineering, Florida Atlantic University, Florida, USA 6 Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Florida, USA Corresponding Author: [email protected] (S.O.O) Running Title: Chronic inflammation signaling in prostate tumorigenesis bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.447920; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The impacts of many inflammatory genes in prostate tumorigenesis remain understudied despite the increasing evidence that associates chronic inflammation with prostate cancer (PCa) initiation, progression, and therapy resistance. -
Meiotic Cohesin and Variants Associated with Human Reproductive Aging and Disease
fcell-09-710033 July 27, 2021 Time: 16:27 # 1 REVIEW published: 02 August 2021 doi: 10.3389/fcell.2021.710033 Meiotic Cohesin and Variants Associated With Human Reproductive Aging and Disease Rachel Beverley1, Meredith L. Snook1 and Miguel Angel Brieño-Enríquez2* 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States, 2 Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States Successful human reproduction relies on the well-orchestrated development of competent gametes through the process of meiosis. The loading of cohesin, a multi- protein complex, is a key event in the initiation of mammalian meiosis. Establishment of sister chromatid cohesion via cohesin rings is essential for ensuring homologous recombination-mediated DNA repair and future proper chromosome segregation. Cohesin proteins loaded during female fetal life are not replenished over time, and therefore are a potential etiology of age-related aneuploidy in oocytes resulting in Edited by: decreased fecundity and increased infertility and miscarriage rates with advancing Karen Schindler, Rutgers, The State University maternal age. Herein, we provide a brief overview of meiotic cohesin and summarize of New Jersey, United States the human genetic studies which have identified genetic variants of cohesin proteins and Reviewed by: the associated reproductive phenotypes -
Identification of the Binding Partners for Hspb2 and Cryab Reveals
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity. -
The Role of E2F7 and E2F8 in Squamous Differentiation, UV- and Chemotherapy-Induced Responses in Keratinocytes
The role of E2F7 and E2F8 in squamous differentiation, UV- and chemotherapy-induced responses in keratinocytes Mehlika Hazar Rethinam MScBiotech (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 UQ Diamantina Institute i Abstract Among keratinocyte-derived squamous cell carcinoma (SCC), cutaneous SCC (CSCC) is the second most common cutaneous cancer type and the most common of the potentially fatal skin cancers. Approximately 90% of head and neck cancers are SCC (HNSCC) and HNSCC worldwide is the sixth most common cancer type afflicting mankind. While resectable disease may be treated by surgery with radiation or chemoradiation, there are still no curative options for advanced, unresectable disease. However, chemotherapy alone may offer a hope for unresectable, disseminated SCC, where 50-60% of patients have disease recurrence within 2 years and approximately 30% of these develop metastatic disease. The mainstay of chemotherapeutic treatment in SCC is the platinum-based drug, cisplatin, 5-fluorouracil (5- FU), taxanes, and anti-EGFR monoclonal antibody such as Cetuximab. Nonetheless, despite advances in treatment techniques, the 5-year survival rate still remains at around 55%. Therefore, there remains a lack of options for recurrent or metastatic disease. The E2F family of transcription factors has emerged as key regulators of proliferation, differentiation and response to stress and apoptotic stimuli in keratinocytes. Consistent with these roles, dysregulation of E2F expression/activity is a common occurrence in cancer and SCC in particular. Thus, better understanding of the E2F family of proteins is essential to establish how these processes are disrupted during SCC genesis. -
Mcm2 Is a Target of Regulation by Cdc7–Dbf4 During the Initiation of DNA Synthesis
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Mcm2 is a target of regulation by Cdc7–Dbf4 during the initiation of DNA synthesis Ming Lei,1 Yasuo Kawasaki,1,2 Michael R. Young,1,3 Makoto Kihara,2 Akio Sugino,2 and Bik K. Tye1,4 1Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703 USA; 2Research Institute for Microbial Diseases, Osaka University, Osaka 565, Japan The initiation of DNA synthesis is an important cell cycle event that defines the beginning of S phase. This critical event involves the participation of proteins whose functions are regulated by cyclin dependent protein kinases (Cdks). The Mcm2–7 proteins are a family of six conserved proteins that are essential for the initiation of DNA synthesis in all eukaryotes. In Saccharomyces cerevisiae, members of the Mcm2–7 family undergo cell cycle-specific phosphorylation. Phosphorylation of Mcm proteins at the beginning of S phase coincides with the removal of these proteins from chromatin and the onset of DNA synthesis. In this study, we identified DBF4, which encodes the regulatory subunit of a Cdk-like protein kinase Cdc7–Dbf4, in a screen for second site suppressors of mcm2-1. The dbf4 suppressor mutation restores competence to initiate DNA synthesis to the mcm2-1 mutant. Cdc7–Dbf4 interacts physically with Mcm2 and phosphorylates Mcm2 and three other members of the Mcm2–7 family in vitro. Blocking the kinase activity of Cdc7–Dbf4 at the G1-to-S phase transition also blocks the phosphorylation of Mcm2 at this defined point of the cell cycle. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
E2f8 Mediates Tumor Suppression in Postnatal Liver Development
Downloaded from http://www.jci.org on January 18, 2017. https://doi.org/10.1172/JCI85506 The Journal of Clinical Investigation RESEARCH ARTICLE E2f8 mediates tumor suppression in postnatal liver development Lindsey N. Kent,1,2,3 Jessica B. Rakijas,1,2,3 Shusil K. Pandit,4 Bart Westendorp,4 Hui-Zi Chen,1,2,3,5 Justin T. Huntington,1,2,3,6 Xing Tang,1,2,3 Sooin Bae,1,2,3 Arunima Srivastava,1,2,3,7 Shantibhusan Senapati,1,2,3 Christopher Koivisto,1,2,3 Chelsea K. Martin,1,2,3 Maria C. Cuitino,1,2,3 Miguel Perez,1,2,3 Julian M. Clouse,1,2,3 Veda Chokshi,1,2,3 Neelam Shinde,1,2,3 Raleigh Kladney,1,2,3 Daokun Sun,1,2,3 Antonio Perez-Castro,1,2,3 Ramadhan B. Matondo,4 Sathidpak Nantasanti,4 Michal Mokry,8 Kun Huang,9 Raghu Machiraju,7 Soledad Fernandez,9 Thomas J. Rosol,10 Vincenzo Coppola,1,3 Kamal S. Pohar,11 James M. Pipas,12 Carl R. Schmidt,6 Alain de Bruin,4,13 and Gustavo Leone1,2,3 1Department of Cancer Biology and Genetics, College of Medicine, 2Department of Molecular Genetics, College of Biological Sciences, and 3Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA. 4Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands. 5Division of Medical Oncology, Department of Internal Medicine, 6Department of Surgery, College of Medicine, and 7Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA. 8Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands. -
Redundant and Specific Roles of Cohesin STAG Subunits in Chromatin Looping and Transcriptional Control
Downloaded from genome.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press Research Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control Valentina Casa,1,6 Macarena Moronta Gines,1,6 Eduardo Gade Gusmao,2,3,6 Johan A. Slotman,4 Anne Zirkel,2 Natasa Josipovic,2,3 Edwin Oole,5 Wilfred F.J. van IJcken,1,5 Adriaan B. Houtsmuller,4 Argyris Papantonis,2,3 and Kerstin S. Wendt1 1Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 2Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; 3Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany; 4Optical Imaging Centre, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 5Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG sub- units, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy in- dividual binding sites and have distinct ways by which they affect looping and gene expression. -
Taf7l Cooperates with Trf2 to Regulate Spermiogenesis
Taf7l cooperates with Trf2 to regulate spermiogenesis Haiying Zhoua,b, Ivan Grubisicb,c, Ke Zhengd,e, Ying Heb, P. Jeremy Wangd, Tommy Kaplanf, and Robert Tjiana,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720; cUniversity of California Berkeley–University of California San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720; dDepartment of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; eState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; and fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Contributed by Robert Tjian, September 11, 2013 (sent for review August 20, 2013) TATA-binding protein (TBP)-associated factor 7l (Taf7l; a paralogue (Taf4b; a homolog of Taf4) (9), TBP-related factor 2 (Trf2) (10, of Taf7) and TBP-related factor 2 (Trf2) are components of the core 11), and Taf7l (12, 13). For example, mice bearing mutant or promoter complex required for gene/tissue-specific transcription deficient CREM showed decreased postmeiotic gene expression of protein-coding genes by RNA polymerase II. Previous studies and defective spermiogenesis (14). Mice deficient in Taf4b, reported that Taf7l knockout (KO) mice exhibit structurally abnor- a testis-specific homolog of Taf4, are initially normal but undergo mal sperm, reduced sperm count, weakened motility, and compro- progressive germ-cell loss and become infertile by 3 mo of age −/Y mised fertility. -
Three Dact Gene Family Members Are Expressed During Embryonic Development
Three Dact Gene Family Members are Expressed During Embryonic Development and in the Adult Brains of Mice Daniel A Fisher, Saul Kivimäe, Jun Hoshino, Rowena Suriben, Pierre -Marie Martin, Nichol Baxter, Benjamin NR Cheyette Department of Psychiatry & Gra duate Programs in Developmental Biology and Neuroscience, University of California, San Francisco, 94143-2611 Correspondence: Benjamin NR Cheyette [email protected] 415.476.7826 Running Title: Mouse Dact Gene Family Expression Key Words: mouse, Dpr, Frodo, Thyex, Dact, Wnt, Dvl, expression, embryo, brain Supported by: NIH: MH01750 K08; NARSAD Young Investigator Award; NAAR award #551. Abstract Members of the Dact protein family were initially identified through binding to Dishevelled (Dvl), a cytoplasmic protein central to Wnt signaling. During mouse development, Dact1 is detected in the presomitic mesoderm and somites during segmentation, in the limb bud mesenchyme and other mesoderm-derived tissues, and in the central nervous system (CNS). Dact2 expression is most prominent during organogenesis of the thymus, kidneys, and salivary glands, with much lower levels in the somites and in the developing CNS. Dact3, not previously described in any organism, is expressed in the ventral region of maturing somites, limb bud and branchial arch mesenchyme, and in the embryonic CNS; of the three paralogs it is the most highly expressed in the adult cerebral cortex. These data are consistent with studies in other vertebrates showing that Dact paralogs have distinct signaling and developmental roles, and suggest they may differentially contribute to postnatal brain physiology. Introduction Signaling downstream of secreted Wnt ligands is a conserved process in multicellular animals that plays important roles during development and, when misregulated, contributes to cancer and other diseases (Polakis, 2000; Moon et al., 2002). -
DNA Replication Stress Response Involving PLK1, CDC6, POLQ
DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, E. Leconte, V. Schilling, K. Gordien, L. Brouchet, Mb Delisle, et al. To cite this version: C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, et al.. DNA replica- tion stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis, Nature Publishing Group: Open Access Journals - Option C, 2012, 1, pp.e30. 10.1038/oncsis.2012.29. hal-00817701 HAL Id: hal-00817701 https://hal.archives-ouvertes.fr/hal-00817701 Submitted on 9 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Citation: Oncogenesis (2012) 1, e30; doi:10.1038/oncsis.2012.29 & 2012 Macmillan Publishers Limited All rights reserved 2157-9024/12 www.nature.com/oncsis ORIGINAL ARTICLE DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C Allera-Moreau1,2,7, I Rouquette2,7, B Lepage3, N Oumouhou3, M Walschaerts4, E Leconte5, V Schilling1, K Gordien2, L Brouchet2, MB Delisle1,2, J Mazieres1,2, JS Hoffmann1, P Pasero6 and C Cazaux1 Lung cancer is the leading cause of cancer deaths worldwide. -
Meiotic Development in Caenorhabditis Elegans
Chapter 6 Meiotic Development in Caenorhabditis elegans Doris Y. Lui and Monica P. Colaiácovo Abstract Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynam- ics are largely conserved in C. elegans . Chromosomes adopt a meiosis-speci fi c structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover forma- tion allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans . Keywords Meiosis • Pairing • Recombination • Synapsis • Cohesion • Germline • C. elegans 6.1 Introduction Meiosis is a specialized cell division process by which sexually reproducing diploid organisms, including humans, produce haploid gametes (i.e., eggs and sperm) to be used for fertilization. This halving in the number of chromosomes is accomplished by following one round of DNA replication with two consecu- tive rounds of chromosome segregation (meiosis I and meiosis II). Whereas D. Y. Lui • M. P. Colaiácovo (*) Department of Genetics , Harvard Medical School , Boston , MA 02115 , USA e-mail: [email protected] T. Schedl (ed.), Germ Cell Development in C. elegans, Advances in Experimental 133 Medicine and Biology 757, DOI 10.1007/978-1-4614-4015-4_6, © Springer Science+Business Media New York 2013 134 D.Y.