<<

The high-precision Penning-trap PENTATRAP for fundamental studies

Alexander Rischka IMPRS-PTFS Seminar OUTLINE

Basics of Penning-Trap

Motivation for precision mass spectrometry • Test of special relativity • Contribution to physics The PENTATRAP experiment

0 Basics of Penning-Trap Mass Spectrometry

Frequency to mass relation

Homogeneous B

q/m

0 Frequency to mass relation

Homogeneous magnetic field B

q/m

q, B drops at mass difference0 Confinement of the of interest Homogeneous magnetic field B + electrical field E

U U q/m

0 Confinement of the ion of interest Homogeneous magnetic field B + quadrupolar electrical field E

U U q/m

0 Movement of the confined ion

Three eigenmotions modified motion

B

magnetron motion

axial motion

0

Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986) Frequency hirachy

Frequency hirachy: the cyclotron frequency is the most important one

A typical 10-11 measurement needs:

modified cyclotron motion: B drift <

axial motion: E stability <

magnetron motion: 0 Types of PTMS

PI-ICR, projecting radial motions on a position sensitive detector, destructive B

0 Types of PTMS

PI-ICR, projecting radial motions on a position sensitive detector, destructive B

FT-ICR, fourier transform the induced image current, non destructive

0 Motivation for precision mass spectrometry Field Examples m/m E (A=100)

Nuclear shell closures, shell quenching, regions of structure deformation, drip lines, halos, seperation energies physics 100 keV δV , island of stability -6 -7 pn 10 to 10 to Astrophysics rp-process and r-process path, waiting-point 10 keV nuclear models nuclei, threshold energies, astrophysical mass formula reaction rates, neutron star, x-ray burst

Weak CVC hypothesis, CKM matrix -8 1 keV interaction superallowedunitarity, ß- Ft of 10 studies emitters Metrology, -9 -10 fundamental 10 to 10 100 eV – 10 eV α (h/mCs, mCs /mp, constants mp/me ), mSi Neutri Contribution to ~10-10 10 eV no neutrino physics <10-11 < 1 eV physic research s ~10-10 10 eV Test of E=mc2 <10-11 < 1 eV

CPT tests mp and mp me- and me+ 0 QED in HCI <10-11 < 1 eV mion, electron binding energy Test of E=mc2 with PTMS

GAMS 5, measuring the energy of the gamma

PENTATRAP, measuring the Δm(36Cl, 35Cl)

Current value: Future measurement:

2 -8 1-mc2/E = (-1.4±4.4)10-7 1-mc /E < 10

S. Rainville et al., Nature 438, 1096 (2005) 0 Contribution to neutrino physics research Looking for missing energy in β-decay, since the dectecion efficiency of ν is too small

0 mν = Q-Value - Endpoint of spectrum Types of decays: - and EC

KATRIN – Project , MAC-E filter - - Decay of Tritium • Anti neutrino, < 2 eV/c2 (90% C.L.) • THe-Trap Experiment for Q-Value

ECHo – Project , µCalorimter EC in 163Ho

• electron neutrino, 163Ho: mv ≤ 225 eV/c2 (90% C.L.) • PENTATRAP Experiment for Q-Value

0 Requires Q-Value with a relative uncertainty of (δm/m) < 10-11 EC in Holmium, ECHo Collaboration

Decay spectrum of 163Ho from µCalorimeter measurement

Q-value to check for systematic uncertainties needed 0 Q-value measurement of 163Ho @SHIPTRAP Q-value of EC in 163Ho 163Ho

T1/2: 4570a EC 100%

µCalorimeter 163Dy

T1/2: stable Status in 2014 -

0

S. Eliseev, et al. , Phys. Rev. Lett. 115, 062501 (2015) Q-value measurement of 163Ho @SHIPTRAP Q-value of EC in 163Ho 163Ho Penning-trap T1/2: 4570a Our result @ GSI EC 100%

µCalorimeter 163Dy

T1/2: stable Status in 2014 -

Q-Value: ~ 2.8 keV with an 20 eV uncertainty for ECHo Phase 1 0

S. Eliseev, et al. , Phys. Rev. Lett. 115, 062501 (2015) Q-value measurement of 163Ho @SHIPTRAP Q-value of EC in 163Ho 163Ho Penning-trap T1/2: 4570a Our result @ GSI EC 100%

µCalorimeter 163Dy

T1/2: stable Status in 2014 -

Q-Value: ~ 2.8 keV with an 20 eV uncertainty for ECHo Phase 1  2 eV uncertainty is needed for ECHo Phase 2 0

S. Eliseev, et al. , Phys. Rev. Lett. 115, 062501 (2015) The PENTATRAP Experiment Features of the PENTATRAP experiment External ion-source: • Access to higly charge

• Simple switching between species

0 Features of PENTATRAP Experiment

External ion-source: • Access to higly charge ions

• Simple switching between species Five Penning traps:

• Fast switching of ions

• New measurement schemes possible

0 Features of PENTATRAP Experiment

External ion-source: • Access to higly charge ions

• Simple switching between species Five Penning traps:

• Fast switching of ions

• New measurement schemes possible

Cryogenic trapping region:

• UHV, aiming for < 10-15 mbar 0 • reducing thermal noise and excitations Ion-source and beamline

0 Ion-source and beamline

0 Ion-source and beamline

0 Ion-source and beamline

0 Ultra-stable voltage source

Voltage range: 0 V to -100 V

Rel. stability: < 10E-8 @ 10 min

Noise (0.1 Hz – 10 Hz): < 1.5 µV

Temp. coeff. < 0.1 ppm/K

0 Ultra-stable voltage source

0 Summary & Outlook

Summary: • Q-value of EC in 163Ho with 20 eV uncertainty

• Beamline commissioned and ready

• StaRep – in commissioning at THe-Trap

Outlook: • Cryogenic setup in workshop, ready end of 2016

• Measuring 193Pt as alternative candidate to 163Ho

0 Thank you for your attention Phase-Sensitive Methods for ω+

Pulse and amplify (PNA)

• Phase evolution with low energy, ion probe less anharmonicitys

• Readout via axial mode, axial resonators have better0 SNR New cryogenic setup

Improvements: • simpler • less vacuum challenges • less assembly time and smaller debug cycle

0 Types of PTMS

PI-ICR, projecting radial motions on a position sensitive detector, destructive B

FT-ICR, fourier transform the induced image current, non destructive

0