Traps for Antimatter and Antihydrogen Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Confinement of Antihydrogen for 1000 Seconds
Confinement of antihydrogen for 1000 seconds G.B. Andresen1, M.D. Ashkezari2, M. Baquero-Ruiz3, W. Bertsche4, E. Butler5, C.L. Cesar6, A. Deller4, S. Eriksson4, J. Fajans3#, T. Friesen7, M.C. Fujiwara8,7, D.R. Gill8, A. Gutierrez9, J.S. Hangst1, W.N. Hardy9, R.S. Hayano10, M.E. Hayden2, A.J. Humphries4, R. Hydomako7, S. Jonsell11, S. Kemp5§, L. Kurchaninov8, N. Madsen4, S. Menary12, P. Nolan13, K. Olchanski8, A. Olin8&, P. Pusa13, C.Ø. Rasmussen1, F. Robicheaux14, E. Sarid15, D.M. Silveira16, C. So3, J.W. Storey8$, R.I. Thompson7, D.P. van der Werf4, J.S. Wurtele3#, Y. Yamazaki16¶. 1Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. 2Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6, Canada 3Department of Physics, University of California, Berkeley, CA 94720-7300, USA 4Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom 5Physics Department, CERN, CH-1211, Geneva 23, Switzerland 6Instituto de Fısica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil 7Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4, Canada 8TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada 9Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1, Canada 10Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 11 Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden 12Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3, Canada 13Department of Physics, -
Antimatter Weapons (1946-1986): from Fermi and Teller's
Antimatter weapons (1946-1986): From Fermi and Teller’s speculations to the first open scientific publications ∗ Andre Gsponer and Jean-Pierre Hurni Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: [email protected] Version ISRI-86-10.3 June 4, 2018 Abstract We recall the early theoretical speculations on the possible explosive uses of antimatter, from 1946 to the first production of antiprotons, at Berkeley in 1955, and until the first capture of cold antiprotons, at CERN on July 17–18, 1986, as well as the circumstances of the first presentation at a scientific conference of the correct physical processes leading to the ignition of a large scale thermonuclear explosion using less than a few micrograms of antimatter as trigger, at Madrid on June 30th – July 4th, 1986. Preliminary remark This paper will be followed by by Antimatter weapons (1986-2006): From the capture of the first antiprotons to the production of cold antimatter, to appear in 2006. 1 Introduction At CERN (the European Laboratory for Particle Physics), on the evening of the 17 to the 18 of July 1986, antimatter was captured in an electromagnetic trap for arXiv:physics/0507132v2 [physics.hist-ph] 28 Oct 2005 the first time in history. Due to the relatively precarious conditions of this first ∗Expanded version of a paper published in French in La Recherche 17 (Paris, 1986) 1440– 1443; in English in The World Scientist (New Delhi, India, 1987) 74–77, and in Bulletin of Peace Proposals 19 (Oslo,1988) 444–450; and in Finnish in Antimateria-aseet (Kanssainvalinen¨ rauhantutkimuslaitos, Helsinki, 1990, ISBN 951-9193-22-7) 7–18. -
Atom-Light Interaction and Basic Applications
ICTP-SAIFR school 16.-27. of September 2019 on the Interaction of Light with Cold Atoms Lecture on Atom-Light Interaction and Basic Applications Ph.W. Courteille Universidade de S~aoPaulo Instituto de F´ısicade S~aoCarlos 07/01/2021 2 . 3 . 4 Preface The following notes have been prepared for the ICTP-SAIFR school on 'Interaction of Light with Cold Atoms' held 2019 in S~aoPaulo. They are conceived to support an introductory course on 'Atom-Light Interaction and Basic Applications'. The course is divided into 5 lectures. Cold atomic clouds represent an ideal platform for studies of basic phenomena of light-matter interaction. The invention of powerful cooling and trapping techniques for atoms led to an unprecedented experimental control over all relevant degrees of freedom to a point where the interaction is dominated by weak quantum effects. This course reviews the foundations of this area of physics, emphasizing the role of light forces on the atomic motion. Collective and self-organization phenomena arising from a cooperative reaction of many atoms to incident light will be discussed. The course is meant for graduate students and requires basic knowledge of quan- tum mechanics and electromagnetism at the undergraduate level. The lectures will be complemented by exercises proposed at the end of each lecture. The present notes are mostly extracted from some textbooks (see below) and more in-depth scripts which can be consulted for further reading on the website http://www.ifsc.usp.br/∼strontium/ under the menu item 'Teaching' −! 'Cursos 2019-2' −! 'ICTP-SAIFR pre-doctoral school'. The following literature is recommended for preparation and further reading: Ph.W. -
Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge
Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge S. Sytova� A. Lobko, S. Charapitsa Research Institute for Nuclear Problems, Belarusian State University Abstract The necessity and ways to create Belarusian educational and research portal of nuclear knowledge are demonstrated. Draft tax onomy of portal is presented. 1 Introduction President Dwight D. Eisenhower in December 1953 presented to the UN initiative "Atoms for Peace" on the peaceful use of nuclear technology. Today, many countries have a strong nuclear program, while other ones are in the process of its creation. Nowadays there are about 440 nuclear power plants operating in 30 countries around the world. Nuclear reac tors are used as propulsion systems for more than 400 ships. About 300 research reactors operate in 50 countries. Such reactors allow production of radioisotopes for medical diagnostics and therapy of cancer, neutron sources for research and training. Approximately 55 nuclear power plants are under construction and 110 ones are planned. Belarus now joins the club of countries that have or are building nu clear power plant. Our country has a large scientific potential in the field of atomic and nuclear physics. Hence it is obvious the necessity of cre ation of portal of nuclear knowledge. The purpose of its creation is the accumulation and development of knowledge in the nuclear field as well as popularization of nuclear knowledge for the general public. *E-mail:[email protected] 212 Wisdom, enlightenment Figure 1: Knowledge management 2 Nuclear knowledge Since beginning of the XXI century the International Atomic Energy Agen cy (IAEA) gives big attention to the nuclear knowledge management (NKM) [1]-[3] . -
ANTIMATTER a Review of Its Role in the Universe and Its Applications
A review of its role in the ANTIMATTER universe and its applications THE DISCOVERY OF NATURE’S SYMMETRIES ntimatter plays an intrinsic role in our Aunderstanding of the subatomic world THE UNIVERSE THROUGH THE LOOKING-GLASS C.D. Anderson, Anderson, Emilio VisualSegrè Archives C.D. The beginning of the 20th century or vice versa, it absorbed or emitted saw a cascade of brilliant insights into quanta of electromagnetic radiation the nature of matter and energy. The of definite energy, giving rise to a first was Max Planck’s realisation that characteristic spectrum of bright or energy (in the form of electromagnetic dark lines at specific wavelengths. radiation i.e. light) had discrete values The Austrian physicist, Erwin – it was quantised. The second was Schrödinger laid down a more precise that energy and mass were equivalent, mathematical formulation of this as described by Einstein’s special behaviour based on wave theory and theory of relativity and his iconic probability – quantum mechanics. The first image of a positron track found in cosmic rays equation, E = mc2, where c is the The Schrödinger wave equation could speed of light in a vacuum; the theory predict the spectrum of the simplest or positron; when an electron also predicted that objects behave atom, hydrogen, which consists of met a positron, they would annihilate somewhat differently when moving a single electron orbiting a positive according to Einstein’s equation, proton. However, the spectrum generating two gamma rays in the featured additional lines that were not process. The concept of antimatter explained. In 1928, the British physicist was born. -
Canadian-Built Laser Chills Antimatter to Near Absolute Zero for First Time Researchers Achieve World’S First Manipulation of Antimatter by Laser
UNDER EMBARGO UNTIL 8:00 AM PT ON WED MARCH 31, 2021 DO NOT DISTRIBUTE BEFORE EMBARGO LIFT Canadian-built laser chills antimatter to near absolute zero for first time Researchers achieve world’s first manipulation of antimatter by laser Vancouver, BC – Researchers with the CERN-based ALPHA collaboration have announced the world’s first laser-based manipulation of antimatter, leveraging a made-in-Canada laser system to cool a sample of antimatter down to near absolute zero. The achievement, detailed in an article published today and featured on the cover of the journal Nature, will significantly alter the landscape of antimatter research and advance the next generation of experiments. Antimatter is the otherworldly counterpart to matter; it exhibits near-identical characteristics and behaviours but has opposite charge. Because they annihilate upon contact with matter, antimatter atoms are exceptionally difficult to create and control in our world and had never before been manipulated with a laser. “Today’s results are the culmination of a years-long program of research and engineering, conducted at UBC but supported by partners from across the country,” said Takamasa Momose, the University of British Columbia (UBC) researcher with ALPHA’s Canadian team (ALPHA-Canada) who led the development of the laser. “With this technique, we can address long-standing mysteries like: ‘How does antimatter respond to gravity? Can antimatter help us understand symmetries in physics?’. These answers may fundamentally alter our understanding of our Universe.” Since its introduction 40 years ago, laser manipulation and cooling of ordinary atoms have revolutionized modern atomic physics and enabled several Nobel-winning experiments. -
Basics of Ion Traps
Basics of Ion Traps G. Werth Johannes Gutenberg University Mainz Why trapping? „A single trapped particle floating forever at rest in free space would be the ideal object for precision measurements“ (H.Dehmelt) Ion traps provide the closest approximation to this ideal Pioneers of ion trapping: Hans Dehmelt and Wolfgang Paul (Nobel price 1989) Trapping of charged particles by electromagnetic fields Required : 3-dimensional force towards center F = - e grad U Convenience: harmonic force F ∝∝∝ x,y,z →→→ U = ax 2 +by 2 + cz 2 Laplace equ.: ∆∆∆(eU) = 0 →→→ a,b,c can not be all positive Convenience: rotational symmetry →→→ 2 2 2 2 U = (U 0/r 0 )(x +y -2z ) Quadrupole potential Equipotentials: Hyperboloids of revolution Problem: No 3-dimensional potential minimum because of different sign of the coefficients in the quadrupole potential Solutions: • Application of r.f. voltage: dynamical trapping Paul trap • d.c. voltage + magnetic field in z-direction: Penning trap The ideal 3-dimensional Paul trap Electrode configuration for Paul traps Paul trap of 1 cm diameter (Univ. of Mainz) Wire trap with transparent electrodes (UBC Vancouver) Stability in 3 dimension when radial and axial domains overlap First stable region of a Paul trap solution of the equation of motion: ∞ u t)( = A∑c2n cos(β + 2n)(Ωt )2/ n=0 β = β ( a , q ) c 2 n = f ( a , q ) Approximate solution for a,q<<1: u(t) = A 1[ − (q )2/ cos ωt]cos Ωt ω=β/2Ω βββ2 = a + q 2/2 This is a harmonic oscillation at frequency ΩΩΩ (micromotion ) modulated by an oscillation at frequency ωωω (macromotion -
Early History of Charged-Particle Traps
Appendix A Early History of Charged-Particle Traps Abstract Today, we see a broad variety of particle traps and related devices for confinement and study of charged particles in various fields of science and indus- try (Werth, Charged Particle Traps, Springer, Heidelberg; Werth, Charged Particle Traps II, Springer, Heidelberg; Ghosh, Ion Traps, Oxford University Press, Oxford; Stafford, Am Soc Mass Spectrom. 13(6):589). The multitude of realisations and applications of electromagnetic confinement cannot be easily overlooked as the vari- ability of particle confinement and the vast number of experimental techniques avail- able has allowed traps and related instrumentation to enter many different fields in physics and chemistry as well as in industrial processes and applied analysis, mainly in the form of mass spectrometry (Stafford, Am Soc Mass Spectrom. 13(6):589; March and Todd, Practical Aspects of Ion Trap Mass Spectometry, CRC Press, Boca Raton). Here, we would like to give a brief account of the main historical aspects of charged-particle confinement, of the principles, technical foundations and beginnings that led to the realisation of traps and to the 1989 Nobel Prize in Physics awarded to Hans Georg Dehmelt and Wolfgang Paul ‘for the invention of the ion trap technique’, at which point we choose to end our discussion. Mainly, we will look at the work of the people who pioneered the field and paved the way to the first working traps. These can be seen as belonging to two different families of traps, Penning traps and Paul traps, each of these families nowadays with numerous variations of the respective confinement concepts. -
Atomic Physicsphysics AAA Powerpointpowerpointpowerpoint Presentationpresentationpresentation Bybyby Paulpaulpaul E.E.E
ChapterChapter 38C38C -- AtomicAtomic PhysicsPhysics AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DiscussDiscuss thethe earlyearly modelsmodels ofof thethe atomatom leadingleading toto thethe BohrBohr theorytheory ofof thethe atom.atom. •• DemonstrateDemonstrate youryour understandingunderstanding ofof emissionemission andand absorptionabsorption spectraspectra andand predictpredict thethe wavelengthswavelengths oror frequenciesfrequencies ofof thethe BalmerBalmer,, LymanLyman,, andand PashenPashen spectralspectral series.series. •• CalculateCalculate thethe energyenergy emittedemitted oror absorbedabsorbed byby thethe hydrogenhydrogen atomatom whenwhen thethe electronelectron movesmoves toto aa higherhigher oror lowerlower energyenergy level.level. PropertiesProperties ofof AtomsAtoms ••• AtomsAtomsAtoms areareare stablestablestable andandand electricallyelectricallyelectrically neutral.neutral.neutral. ••• AtomsAtomsAtoms havehavehave chemicalchemicalchemical propertiespropertiesproperties whichwhichwhich allowallowallow themthemthem tototo combinecombinecombine withwithwith otherotherother atoms.atoms.atoms. ••• AtomsAtomsAtoms emitemitemit andandand absorbabsorbabsorb -
A Transportable Antiproton Trap to Unlock the Secrets of Antimatter 4 November 2020, by Ana Lopes
A transportable antiproton trap to unlock the secrets of antimatter 4 November 2020, by Ana Lopes antimatter, but this difference is insufficient to explain the imbalance, prompting researchers to look for other, as-yet-unseen differences between the two forms of matter. This is exactly what the teams behind BASE and other experiments located at CERN's AD hall are trying to do. BASE, in particular, investigates the properties of antiprotons, the antiparticles of protons. It first takes antiprotons produced at the AD—the only place in the world where antiprotons are created daily– and then stores them in a device called a Penning trap, which holds the particles in place with a The layout of the transportable antiproton trap that BASE combination of electric and magnetic fields. Next, is developing. The device features a first trap for BASE feeds the antiprotons one by one into a multi- injection and ejection of the antiprotons produced at Penning-trap set-up to measure two frequencies, CERN’s Antiproton Decelerator, and a second trap for from which the properties of antiprotons such as storing the antiprotons. Credit: Christian Smorra their magnetic moment can be deduced and then compared with that of protons. These frequencies are the cyclotron frequency, which describes a The BASE collaboration at CERN has bagged charged particle's oscillation in a magnetic field, more than one first in antimatter research. For and the Larmor frequency, which describes the so- example, it made the first ever more precise called precessional motion in the trap of the measurement for antimatter than for matter, it kept intrinsic spin of the particle. -
Manipulating Atoms with Photons
Manipulating Atoms with Photons Claude Cohen-Tannoudji and Jean Dalibard, Laboratoire Kastler Brossel¤ and Coll`ege de France, 24 rue Lhomond, 75005 Paris, France ¤Unit¶e de Recherche de l'Ecole normale sup¶erieure et de l'Universit¶e Pierre et Marie Curie, associ¶ee au CNRS. 1 Contents 1 Introduction 4 2 Manipulation of the internal state of an atom 5 2.1 Angular momentum of atoms and photons. 5 Polarization selection rules. 6 2.2 Optical pumping . 6 Magnetic resonance imaging with optical pumping. 7 2.3 Light broadening and light shifts . 8 3 Electromagnetic forces and trapping 9 3.1 Trapping of charged particles . 10 The Paul trap. 10 The Penning trap. 10 Applications. 11 3.2 Magnetic dipole force . 11 Magnetic trapping of neutral atoms. 12 3.3 Electric dipole force . 12 Permanent dipole moment: molecules. 12 Induced dipole moment: atoms. 13 Resonant dipole force. 14 Dipole traps for neutral atoms. 15 Optical lattices. 15 Atom mirrors. 15 3.4 The radiation pressure force . 16 Recoil of an atom emitting or absorbing a photon. 16 The radiation pressure in a resonant light wave. 17 Stopping an atomic beam. 17 The magneto-optical trap. 18 4 Cooling of atoms 19 4.1 Doppler cooling . 19 Limit of Doppler cooling. 20 4.2 Sisyphus cooling . 20 Limits of Sisyphus cooling. 22 4.3 Sub-recoil cooling . 22 Subrecoil cooling of free particles. 23 Sideband cooling of trapped ions. 23 Velocity scales for laser cooling. 25 2 5 Applications of ultra-cold atoms 26 5.1 Atom clocks . 26 5.2 Atom optics and interferometry . -
(12) United States Patent (10) Patent No.: US 6,958,472 B2 Zubarev (45) Date of Patent: Oct
USOO6958472B2 (12) United States Patent (10) Patent No.: US 6,958,472 B2 Zubarev (45) Date of Patent: Oct. 25, 2005 (54) MASS SPECTROMETRY METHODS USING 4,988,869 A 1/1991 Aberth ELECTRON CAPTURE BY ONS 5,340,983 A 8/1994 Deinzer et al. 5,374,828 A 12/1994 Boumseek et al. (75) Inventor: Roman Zubarev, Uppsala (SE) 5,493,115 A * 2/1996 Deinzer et al. ............. 250/281 6,653,622 B2 * 11/2003 Franzen ............ ... 250/282 (73) Assignee: Syddansk Universitet, Odense (DK) 2003/0183760 A1 * 10/2003 Tsybin et al. ............... 250/292 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 R. W. Vachet et al., “Novel Peptide Dissociation: Gas-Phase U.S.C. 154(b) by 0 days. Intramolecular Rearrangement of Internal Amino Acid Resi (21) Appl. No.: 10/471.454 dues”, Jun. 18, 1997, pp. 5481-5488, Journal of the Ameri can Chemical Society, vol. 119, No. 24. (22) PCT Filed: Mar. 22, 2002 (86) PCT No.: PCT/DK02/00195 (Continued) S371 (c)(1), Primary Examiner John R. Lee (2), (4) Date: Apr. 2, 2004 ASSistant Examiner Zia R. Hashmi (74) Attorney, Agent, or Firm-Harness, Dickey & Pierce, (87) PCT Pub. No.: WO02/078048 PLC PCT Pub. Date: Oct. 3, 2002 (57) ABSTRACT (65) Prior Publication Data Methods and apparatus are provided to obtain efficient US 2004/015.5180 A1 Aug. 12, 2004 Electron capture dissociation (ECD) of positive ions, par ticularly useful in the mass Spectrometric analysis of com Related U.S. Application Data plex Samples Such as of complex mixtures and large bio (60) Provisional application No.