Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge Taxonomy of Belarusian Educational and Research Portal of Nuclear Knowledge S. Sytova� A. Lobko, S. Charapitsa Research Institute for Nuclear Problems, Belarusian State University Abstract The necessity and ways to create Belarusian educational and research portal of nuclear knowledge are demonstrated. Draft tax­ onomy of portal is presented. 1 Introduction President Dwight D. Eisenhower in December 1953 presented to the UN initiative "Atoms for Peace" on the peaceful use of nuclear technology. Today, many countries have a strong nuclear program, while other ones are in the process of its creation. Nowadays there are about 440 nuclear power plants operating in 30 countries around the world. Nuclear reac­ tors are used as propulsion systems for more than 400 ships. About 300 research reactors operate in 50 countries. Such reactors allow production of radioisotopes for medical diagnostics and therapy of cancer, neutron sources for research and training. Approximately 55 nuclear power plants are under construction and 110 ones are planned. Belarus now joins the club of countries that have or are building nu­ clear power plant. Our country has a large scientific potential in the field of atomic and nuclear physics. Hence it is obvious the necessity of cre­ ation of portal of nuclear knowledge. The purpose of its creation is the accumulation and development of knowledge in the nuclear field as well as popularization of nuclear knowledge for the general public. *E-mail:[email protected] 212 Wisdom, enlightenment Figure 1: Knowledge management 2 Nuclear knowledge Since beginning of the XXI century the International Atomic Energy Agen­ cy (IAEA) gives big attention to the nuclear knowledge management (NKM) [1]-[3] . Nuclear knowledge (NK) base stems from both research and development aa well as industrial applications of nuclear technologies and includes energy and nonenergy applications. Knowledge management (KM) is an integrated, systematic approach to identifying, acquiring, transforming, developing, disseminating, using, sharing, and preserving knowledge, relevant to achieving specified objec­ tives. Basic KM concept is given in Fig.l [2] . On the foundation there are data. Data are unorganized and unprocessed facts, a set of discrete facts about events. Above there is the information as aggregation of data that makes decision making easier. Knowledge is a higher level of information, over there is the wisdom and enlightenment. Scheme of approximate percentage of subject area of nuclear knowledge by the IAEA is proposed in Fig.2. The strategy of the IAEA in NKM is in the following. It is extremely important that the educational process involves the enterprises of nuclear industry. Great attention is paid to reation and development of educational networks and portals, both national and regional. The IAEA developed detailed recommendations for creating of portals with formulation of pur­ poses and principles of their design. Taxonomy is the main KM concept. Taxonomy (from Greek 'taxis' 213 Ato mic, Molecular and Condensed Matter Physics Life Sciences Nuclear Physics 18% 11% NuclearMaterials 9% Engineering Economic, Legal & & Instrumentation Soclal 2% 9% Fusion Research and Technology 7% Elementary Particle Physics Nuclear Fuel Cycle & 16% Radioactive Waste Chemistry 3% 4�. Figure 2: Basic KM concept meaning arrangement or division and 'nomos ' meaning law) is a hierarchi­ cal structure in which a body of information or knowledge is categorized, allowing an understanding of its various parts relations with each other. Taxonomies are used to organize information in systems, thereby helping users to find it. Stages of developing of taxonomy of any types are the following: deter­ mination of taxonomy requirements; identification of its concepts (where is the content and what do the users think); developing draft taxonomy; its review by users; refining taxonomy; adaptation of taxonomy to the content; taxonomy management and maintenance. 214 3 Belarusian educational and research por­ tal of nuclear knowledge So, each developed country, forming its own nuclear industry, should in­ dependently develop, establish and maintain nuclear knowledge portal, integrated into the global nuclear knowledge management industry. Such portal will allow to manage information resources, knowledge and compe­ tencies of the nuclear industry of Belarus, as well as to preserve, maintain and develop the knowledge at a level that provides a safe, sustainable and efficient development of belarusian nuclear industry. Nowadays in Belarus there are several websites of selected organiza­ tions and institutions that are not related to the united portal, providing separate information on the subject that is far from completeness. Creating of a full-fledged portal of nuclear knowledge is the multi-stage process. As the first step we propose to create educational and research portal of nuclear knowledge. Prospective participants of such portal are Ministry of Education of the Republic of Belarus, Belarusian State Univer­ sity, Research Institute for Nuclear Problems of BSU, universities, training specialists for nuclear power plant, Department for Nuclear and Radiation Safetyof the Ministry for Emergency Situations of the Republic of Belarus (Gosatomnadzor), the Joint Institute for Power and Nuclear Research - SOSNY with supporting of the IAEA. The portal will be developed on the basis of experience and method­ ological support of the IAEA. The development and support of the portal requires constant government funding. For its creation it is necessary to build infrastructure and to have the availability of a critical massof basic science to support practical applications. The portal is a system that integrates all available in the country and abroad openly available information resources (applications, databases, an­ alytical systems, etc.), which allow the developers and users to interact with each other. The portal provides for users a secure access to information and vir­ tual channels of communication, e.g. to work together on documents from geographically spaced locations; access to all information resources of the portal through a single web-basedmode with a strong collaborative person­ alization (right of access to certain resources: data, services, applications, documents). The mission of the portal consists in formationof favorable information, 215 socio-cultural, business and educational environment for the sustainable development of nuclear industry in Belarus. Objectives of the portal are the following: acceleration of search and access to necessary data and information; creation of new knowledge; pro­ motion of participation in research, education and training programs in the nuclear industry. Basic principles of the portal creation are the next: discussion the requirements of the portal with all stakeholders before • development; developing a hierarchical taxonomy of the portal; • constant testing the portal for compliance with technical require­ • ments; maintaining transparency of the portal development; • publishing a description of the portal; • including in the group of developers representatives of all interested • organizations. Elements of the portal incorporate interface that provides a mechanism for interaction between applications and the users of the portal. Interface provides coordination between teams and individuals, with a convenient and quick search and navigation. Other elements are electronic docu­ ment management system to ensure the preparation of the document with the required level of quality, intelligent search, categorization of informa­ tion; project management, including project planning, establishing project objectives, project schedule control of resources, planning and allocation of human and financial resources; e-library (documents collection, knowl­ edge repository) consisting of various electronic materials, reports, techni­ cal documentation, regulatory documents, training materials etc.; learning content management system with a system of courses and distance learn­ ing and the ability to develop and improve the courses of studies; forums on the main areas of activity; news feeds and other applications that are integrated into the portal. Draft taxonomy of the portal is represented in Fig.3. It consists of the main sections cited above on the following topics: nuclear physics, nuclear materials, engineering and instrumentation, elementary particle physics, 216 atomic physics, molecular physics, condensed matter physics, life sciences, chemistry, nuclear power and safety, safeguards, isotopes, fusion research and technology, nuclear fuel cycle and radioactive waste etc. Together, the e-library materials, training courses, databases, electronic documents (photos, videos, etc.), other portal content will be organized in the nuclear knowledge base that contains knowledge in the field of nuclear technology, including nuclear and reactor physics, ionizing radiation, the application of nuclear methods in various fields of science and technology, radiation and radiochemistry, nuclear medicine, etc. The main stages of the work on portal creation consists fromtwo parts. The first stage with duration of 2 years includes the next steps: identify the source of the portal funding; • determine the owner of the portal; • definethe project team (responsibility, roles, functions); • determine the structure and the platform of the portal; • identifythe tools, techniques and sources for data collection / accu­ • mulation and storage
Recommended publications
  • Atom-Light Interaction and Basic Applications
    ICTP-SAIFR school 16.-27. of September 2019 on the Interaction of Light with Cold Atoms Lecture on Atom-Light Interaction and Basic Applications Ph.W. Courteille Universidade de S~aoPaulo Instituto de F´ısicade S~aoCarlos 07/01/2021 2 . 3 . 4 Preface The following notes have been prepared for the ICTP-SAIFR school on 'Interaction of Light with Cold Atoms' held 2019 in S~aoPaulo. They are conceived to support an introductory course on 'Atom-Light Interaction and Basic Applications'. The course is divided into 5 lectures. Cold atomic clouds represent an ideal platform for studies of basic phenomena of light-matter interaction. The invention of powerful cooling and trapping techniques for atoms led to an unprecedented experimental control over all relevant degrees of freedom to a point where the interaction is dominated by weak quantum effects. This course reviews the foundations of this area of physics, emphasizing the role of light forces on the atomic motion. Collective and self-organization phenomena arising from a cooperative reaction of many atoms to incident light will be discussed. The course is meant for graduate students and requires basic knowledge of quan- tum mechanics and electromagnetism at the undergraduate level. The lectures will be complemented by exercises proposed at the end of each lecture. The present notes are mostly extracted from some textbooks (see below) and more in-depth scripts which can be consulted for further reading on the website http://www.ifsc.usp.br/∼strontium/ under the menu item 'Teaching' −! 'Cursos 2019-2' −! 'ICTP-SAIFR pre-doctoral school'. The following literature is recommended for preparation and further reading: Ph.W.
    [Show full text]
  • Canadian-Built Laser Chills Antimatter to Near Absolute Zero for First Time Researchers Achieve World’S First Manipulation of Antimatter by Laser
    UNDER EMBARGO UNTIL 8:00 AM PT ON WED MARCH 31, 2021 DO NOT DISTRIBUTE BEFORE EMBARGO LIFT Canadian-built laser chills antimatter to near absolute zero for first time Researchers achieve world’s first manipulation of antimatter by laser Vancouver, BC – Researchers with the CERN-based ALPHA collaboration have announced the world’s first laser-based manipulation of antimatter, leveraging a made-in-Canada laser system to cool a sample of antimatter down to near absolute zero. The achievement, detailed in an article published today and featured on the cover of the journal Nature, will significantly alter the landscape of antimatter research and advance the next generation of experiments. Antimatter is the otherworldly counterpart to matter; it exhibits near-identical characteristics and behaviours but has opposite charge. Because they annihilate upon contact with matter, antimatter atoms are exceptionally difficult to create and control in our world and had never before been manipulated with a laser. “Today’s results are the culmination of a years-long program of research and engineering, conducted at UBC but supported by partners from across the country,” said Takamasa Momose, the University of British Columbia (UBC) researcher with ALPHA’s Canadian team (ALPHA-Canada) who led the development of the laser. “With this technique, we can address long-standing mysteries like: ‘How does antimatter respond to gravity? Can antimatter help us understand symmetries in physics?’. These answers may fundamentally alter our understanding of our Universe.” Since its introduction 40 years ago, laser manipulation and cooling of ordinary atoms have revolutionized modern atomic physics and enabled several Nobel-winning experiments.
    [Show full text]
  • Atomic Physicsphysics AAA Powerpointpowerpointpowerpoint Presentationpresentationpresentation Bybyby Paulpaulpaul E.E.E
    ChapterChapter 38C38C -- AtomicAtomic PhysicsPhysics AAA PowerPointPowerPointPowerPoint PresentationPresentationPresentation bybyby PaulPaulPaul E.E.E. Tippens,Tippens,Tippens, ProfessorProfessorProfessor ofofof PhysicsPhysicsPhysics SouthernSouthernSouthern PolytechnicPolytechnicPolytechnic StateStateState UniversityUniversityUniversity © 2007 Objectives:Objectives: AfterAfter completingcompleting thisthis module,module, youyou shouldshould bebe ableable to:to: •• DiscussDiscuss thethe earlyearly modelsmodels ofof thethe atomatom leadingleading toto thethe BohrBohr theorytheory ofof thethe atom.atom. •• DemonstrateDemonstrate youryour understandingunderstanding ofof emissionemission andand absorptionabsorption spectraspectra andand predictpredict thethe wavelengthswavelengths oror frequenciesfrequencies ofof thethe BalmerBalmer,, LymanLyman,, andand PashenPashen spectralspectral series.series. •• CalculateCalculate thethe energyenergy emittedemitted oror absorbedabsorbed byby thethe hydrogenhydrogen atomatom whenwhen thethe electronelectron movesmoves toto aa higherhigher oror lowerlower energyenergy level.level. PropertiesProperties ofof AtomsAtoms ••• AtomsAtomsAtoms areareare stablestablestable andandand electricallyelectricallyelectrically neutral.neutral.neutral. ••• AtomsAtomsAtoms havehavehave chemicalchemicalchemical propertiespropertiesproperties whichwhichwhich allowallowallow themthemthem tototo combinecombinecombine withwithwith otherotherother atoms.atoms.atoms. ••• AtomsAtomsAtoms emitemitemit andandand absorbabsorbabsorb
    [Show full text]
  • Manipulating Atoms with Photons
    Manipulating Atoms with Photons Claude Cohen-Tannoudji and Jean Dalibard, Laboratoire Kastler Brossel¤ and Coll`ege de France, 24 rue Lhomond, 75005 Paris, France ¤Unit¶e de Recherche de l'Ecole normale sup¶erieure et de l'Universit¶e Pierre et Marie Curie, associ¶ee au CNRS. 1 Contents 1 Introduction 4 2 Manipulation of the internal state of an atom 5 2.1 Angular momentum of atoms and photons. 5 Polarization selection rules. 6 2.2 Optical pumping . 6 Magnetic resonance imaging with optical pumping. 7 2.3 Light broadening and light shifts . 8 3 Electromagnetic forces and trapping 9 3.1 Trapping of charged particles . 10 The Paul trap. 10 The Penning trap. 10 Applications. 11 3.2 Magnetic dipole force . 11 Magnetic trapping of neutral atoms. 12 3.3 Electric dipole force . 12 Permanent dipole moment: molecules. 12 Induced dipole moment: atoms. 13 Resonant dipole force. 14 Dipole traps for neutral atoms. 15 Optical lattices. 15 Atom mirrors. 15 3.4 The radiation pressure force . 16 Recoil of an atom emitting or absorbing a photon. 16 The radiation pressure in a resonant light wave. 17 Stopping an atomic beam. 17 The magneto-optical trap. 18 4 Cooling of atoms 19 4.1 Doppler cooling . 19 Limit of Doppler cooling. 20 4.2 Sisyphus cooling . 20 Limits of Sisyphus cooling. 22 4.3 Sub-recoil cooling . 22 Subrecoil cooling of free particles. 23 Sideband cooling of trapped ions. 23 Velocity scales for laser cooling. 25 2 5 Applications of ultra-cold atoms 26 5.1 Atom clocks . 26 5.2 Atom optics and interferometry .
    [Show full text]
  • 22. Atomic Physics and Quantum Mechanics
    22. Atomic Physics and Quantum Mechanics S. Teitel April 14, 2009 Most of what you have been learning this semester and last has been 19th century physics. Indeed, Maxwell's theory of electromagnetism, combined with Newton's laws of mechanics, seemed at that time to express virtually a complete \solution" to all known physical problems. However, already by the 1890's physicists were grappling with certain experimental observations that did not seem to fit these existing theories. To explain these puzzling phenomena, the early part of the 20th century witnessed revolutionary new ideas that changed forever our notions about the physical nature of matter and the theories needed to explain how matter behaves. In this lecture we hope to give the briefest introduction to some of these ideas. 1 Photons You have already heard in lecture 20 about the photoelectric effect, in which light shining on the surface of a metal results in the emission of electrons from that surface. To explain the observed energies of these emitted elec- trons, Einstein proposed in 1905 that the light (which Maxwell beautifully explained as an electromagnetic wave) should be viewed as made up of dis- crete particles. These particles were called photons. The energy of a photon corresponding to a light wave of frequency f is given by, E = hf ; where h = 6:626×10−34 J · s is a new fundamental constant of nature known as Planck's constant. The total energy of a light wave, consisting of some particular number n of photons, should therefore be quantized in integer multiples of the energy of the individual photon, Etotal = nhf.
    [Show full text]
  • Lorentz's Electromagnetic Mass: a Clue for Unification?
    Lorentz’s Electromagnetic Mass: A Clue for Unification? Saibal Ray Department of Physics, Barasat Government College, Kolkata 700 124, India; Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India; e-mail: [email protected] Abstract We briefly review in the present article the conjecture of electromagnetic mass by Lorentz. The philosophical perspectives and historical accounts of this idea are described, especially, in the light of Einstein’s special relativistic formula E = mc2. It is shown that the Lorentz’s elec- tromagnetic mass model has taken various shapes through its journey and the goal is not yet reached. Keywords: Lorentz conjecture, Electromagnetic mass, World view of mass. 1. Introduction The Nobel Prize in Physics 2004 has been awarded to D. J. Gross, F. Wilczek and H. D. Politzer [1,2] “for the discovery of asymptotic freedom in the theory of the strong interaction” which was published three decades ago in 1973. This is commonly known as the Standard Model of mi- crophysics (must not be confused with the other Standard Model of macrophysics - the Hot Big Bang!). In this Standard Model of quarks, the coupling strength of forces depends upon distances. Hence it is possible to show that, at distances below 10−32 m, the strong, weak and electromagnetic interactions are “different facets of one universal interaction”[3,4]. This instantly reminds us about another Nobel Prize award in 1979 when S. Glashow, A. Salam and S. Weinberg received it “for their contributions to the theory of the unified weak and electro- magnetic interaction between elementary particles, including, inter alia, the prediction of the arXiv:physics/0411127v4 [physics.hist-ph] 31 Jul 2007 weak neutral current”.
    [Show full text]
  • Lectures on Atomic Physics
    Lectures on Atomic Physics Walter R. Johnson Department of Physics, University of Notre Dame Notre Dame, Indiana 46556, U.S.A. January 4, 2006 Contents Preface xi 1 Angular Momentum 1 1.1 Orbital Angular Momentum - Spherical Harmonics . 1 1.1.1 Quantum Mechanics of Angular Momentum . 2 1.1.2 Spherical Coordinates - Spherical Harmonics . 4 1.2 Spin Angular Momentum . 7 1.2.1 Spin 1=2 and Spinors . 7 1.2.2 In¯nitesimal Rotations of Vector Fields . 9 1.2.3 Spin 1 and Vectors . 10 1.3 Clebsch-Gordan Coe±cients . 11 1.3.1 Three-j symbols . 15 1.3.2 Irreducible Tensor Operators . 17 1.4 Graphical Representation - Basic rules . 19 1.5 Spinor and Vector Spherical Harmonics . 21 1.5.1 Spherical Spinors . 21 1.5.2 Vector Spherical Harmonics . 23 2 Central-Field SchrÄodinger Equation 25 2.1 Radial SchrÄodinger Equation . 25 2.2 Coulomb Wave Functions . 27 2.3 Numerical Solution to the Radial Equation . 31 2.3.1 Adams Method (adams) . 33 2.3.2 Starting the Outward Integration (outsch) . 36 2.3.3 Starting the Inward Integration (insch) . 38 2.3.4 Eigenvalue Problem (master) . 39 2.4 Quadrature Rules (rint) . 41 2.5 Potential Models . 44 2.5.1 Parametric Potentials . 45 2.5.2 Thomas-Fermi Potential . 46 2.6 Separation of Variables for Dirac Equation . 51 2.7 Radial Dirac Equation for a Coulomb Field . 52 2.8 Numerical Solution to Dirac Equation . 57 2.8.1 Outward and Inward Integrations (adams, outdir, indir) 57 i ii CONTENTS 2.8.2 Eigenvalue Problem for Dirac Equation (master) .
    [Show full text]
  • Atomic Physics
    Atomic Physics P. Ewart Contents 1 Introduction 1 2 Radiation and Atoms 1 2.1 Width and Shape of Spectral Lines ............................. 2 2.1.1 Lifetime Broadening ................................. 2 2.1.2 Collision or Pressure Broadening .......................... 3 2.1.3 Doppler Broadening ................................. 3 2.2 Atomic Orders of Magnitude ................................ 4 2.2.1 Other important Atomic quantities ......................... 5 2.3 The Central Field Approximation .............................. 5 2.4 The form of the Central Field ................................ 6 2.5 Finding the Central Field .................................. 7 3 The Central Field Approximation 9 3.1 The Physics of the Wave Functions ............................. 9 3.1.1 Energy ......................................... 9 3.1.2 Angular Momentum ................................. 10 3.1.3 Radial wavefunctions ................................. 12 3.1.4 Parity ......................................... 12 3.2 Multi-electron atoms ..................................... 13 3.2.1 Electron Configurations ............................... 13 3.2.2 The Periodic Table .................................. 13 3.3 Gross Energy Level Structure of the Alkalis: Quantum Defect .............. 15 4 Corrections to the Central Field: Spin-Orbit interaction 17 4.1 The Physics of Spin-Orbit Interaction ........................... 17 4.2 Finding the Spin-Orbit Correction to the Energy ..................... 19 4.2.1 The B-Field due to Orbital Motion ........................
    [Show full text]
  • Modern Physics & Nuclear Physics 2019: Atomic Physics As the Basis
    Short Communication Journal of Lasers, Optics & Photonics 2020 Vol.7 No.3 Modern Physics & Nuclear Physics 2019: Atomic physics as the basis of quantum mechanics - Peter Enders - Taraz State Pedagogical University Peter Enders Taraz State Pedagogical University, Kazakhstan Quantum physics begun with discretising the energy of be accomplished by methods for quantum field hypothetical resonators (Planck 1900). Quantum systems exhibit a procedures. The goal of a hypothesis of Quantum Gravity substantially smaller amount of stationary states than classical would then be to recognize the quantum properties and the systems (Einstein 1907). Planck’s and Einstein’s worked within quantum elements of the gravitational field. If this means to statistical physics and electromagnetism. The first step toward quantize General Relativity, the general-relativistic quantum mechanics was, perhaps, Bohr’s 1913 atom model. identification of the gravitational field with the space time The task was to explain the stability of the atoms and the metric has to be taken into account. The quantization must be frequencies and intensities of their spectral lines. Two of these reasonably sufficient, which implies specifically that the three tasks concern stationary properties. Heisenberg’s 1925 subsequent quantum hypothesis must be foundation free. This matrix mechanics mastered them through a radical can't be accomplished by methods for quantum field “reinterpretation of kinematic and mechanical relations”, where hypothetical techniques. One of the fundamental prerequisites that article tackles the harmonic oscillator. The Bohr orbitals for such a quantization technique is, that the subsequent result directly from Schrodinger’s 1926 wave mechanics, quantum hypothesis has a traditional breaking point that is (in though the discretisation method is that of classical resonators.
    [Show full text]
  • The Philosophy Behind Quantum Gravity
    The Philosophy behind Quantum Gravity Henrik Zinkernagel Department of Philosophy, Campus de Cartuja, 18071, University of Granada, Spain. [email protected] Published in Theoria - An International Journal for Theory, History and Foundations of Science (San Sebastián, Spain), Vol. 21/3, 2006, pp. 295-312. Abstract This paper investigates some of the philosophical and conceptual issues raised by the search for a quantum theory of gravity. It is critically discussed whether such a theory is necessary in the first place, and how much would be accomplished if it is eventually constructed. I argue that the motivations behind, and expectations to, a theory of quantum gravity are entangled with central themes in the philosophy of science, in particular unification, reductionism, and the interpretation of quantum mechanics. I further argue that there are –contrary to claims made on behalf of string theory –no good reasons to think that a quantum theory of gravity, if constructed, will provide a theory of everything, that is, a fundamental theory from which all physics in principle can be derived. 1. Introduction One of the outstanding tasks in fundamental physics, according to many theoretical physicists, is the construction of a quantum theory of gravity. The so far unsuccessful attempt to construct such a theory is an attempt to unify Einstein's general theory of relativity with quantum theory (or quantum field theory). While quantum gravity aims to describe everything in the universe in terms of quantum theory, the purpose of the closely related project of quantum cosmology is to describe even the universe as a whole as a quantum system.
    [Show full text]
  • Atomic Physics
    Atomic Physics High-precision quantum systems and the interaction of light and matter Dr Andrew Steane April 10, 2002 Contents 1 Themes in Atomic Physics 6 1.1 Some mathematical notations . 7 1.2 Atomic physics|some preliminaries . 8 1.2.1 The role of classical and quantum mechanics . 9 1.3 Introducing the atom . 9 2 Hydrogen 10 2.1 SchrÄodingerequation solution: Main features . 10 2.2 Comment . 13 2.3 Orbital angular momentum notation . 13 2.4 Some classical estimates . 14 2.5 How to remember hydrogen . 15 2.6 Hydrogen-like systems . 15 2.7 Main points . 16 2.8 Appendix on series solution of hydrogen equation, o® syllabus . 16 3 Grating spectroscopy and the emission and absorption spectrum of hydrogen 18 3.1 Main points for use of grating spectrograph . 18 1 3.2 Resolution . 19 3.3 Usefulness of both emission and absorption methods . 20 3.4 The spectrum for hydrogen . 20 3.5 What is going on when atoms emit and absorb light . 20 3.6 Main points . 21 4 How quantum theory deals with further degrees of freedom 22 4.1 Multi-particle wavefunctions . 22 4.2 Spin . 23 4.3 Main points . 24 5 Angular momentum in quantum systems 25 5.1 Main points . 28 6 Helium 29 6.1 Main features of the structure . 29 6.2 Splitting of singlets from triplets . 30 6.3 Exchange symmetry and the Pauli exclusion principle . 31 6.4 Exchange symmetry in helium . 34 6.5 Main points . 35 6.5.1 Appendix: detailed derivation of states and splitting .
    [Show full text]
  • Antimatter: from Atomic Physics to Cosmology
    Antimatter: from atomic physics to cosmology Michael Doser CERN 1905 1925 Special Relativity Quantum Mechanics 1927 1932 Dirac Equation Positron every particle has an antiparticle the properties of the antiparticle are identical to those of the particle (except that its charges have the opposite sign) pair production of particles and antiparticles However, the Universe is unexpectedly not symmetric Matter Antimatter Why is the Universe lopsided? How can the absence of antimatter be explained? Baryon asymmetry Search for antimatter Study antimatter Antiprotons, positrons in cosmic rays; Investigate symmetries and Positron-electron annihilation in space try to find an asymmetry 1905 1925 at Special Relativity Quantum Mechanics CERN 1927 1932 Dirac Equation Positron 1955 1948 Antiproton 1956 accelerator developments Positronium Antineutron 1965 1956-1990’s 1970’s: Antideuteron Scattering, annihilation, accumulation, cooling meson spectroscopy 1970 1980’s: 3 _ Anti- He colliders (SppS, LEP, Tevatron) 1980’s - now 1978 W, Z, b, t physics Anti-tritium 1983 - 1996: 1996: hot (v~c) trapping LEAR antihydrogen Primordial antimatter, 2000 - now Anti-stars cold antihydrogen AD trapped cold antihydrogen use these technologies to: produce and trap stable (anti)particles, combine them to form (anti)atoms carry out precision measurements of their properties Search for some form of asymmetry between matter and antimatter : CP and CPT do particles (atoms) have the same properties as antiparticles (antiatoms) ? Motivation Precision measurements with Antimatter:
    [Show full text]