Digital Quantum Simulation with Trapped Ions

Total Page:16

File Type:pdf, Size:1020Kb

Digital Quantum Simulation with Trapped Ions Digital quantum simulation with trapped ions Tobias Thiele, Damian Berger presented papers 2008: 2011: Overview • Description of the Ion Trap: -Atomic Energy Levels and Motional States -Measurement • Operations and Gates -Single Qubit Rotation, Cirac Gate, Mølmer–Sørensen Gate • Quantum Simulation • Digital Quantum Simulation with Ions pictures from „Entangled states of trapped atomic ions“ R.Blatt & D.Wineland, Nature, 2008 • The qubit is represented by two internal states of the ion. • Motional States mediate qubit-qubit interactions Internal States of 40Ca+ • The qubits are encoded in the S1/2 and the D3/2 level. • The probability of the qubit being in the S1/2 state is determined by measuring the scattered light of the S1/2 - P3/2 transition. Single Qubit Operations • Laser Light can do all single qubit operations • Laser frequency w0 and transition frequency w have to be equal • Internal Hamiltonian of the two level system: iφ -iφ H = ħΩ(�+e + �-e ) (Assumptions: w0 = w, classical described laser field) • By choosing φ = 0 or φ = π/2 this allows rotation arount x and y axis of the bloch sphere • Rotations around z-axis can be done by composition of x and y rotations or by detuning the laser light The Cirac Zoller CNOT Gate • narrow Laser light to adress only one ion • tuning the laser light to ,sideband‘ frequencies wion ± wm drives transitions |g,n⟩ ⟷ |e,n±1⟩ The Cirac Zoller CNOT Gate picture from „Entangled states of trapped atomic ions“ R.Blatt & D.Wineland, Nature, 2008 Mølmer–Sørensen Gate from „Towards fault-tolerant quan...“ by R.Blatt et al. , Nat. Phys. 4, 463 (2008) -both qubits in bichromatic laser field with frequency ω0 ± δ -vibrational degrees of freedom only enter virtually from „Towards fault-tolerant quan...“ by R.Blatt et al. , Nat. Phys. 4, 463 (2008) from „Towards fault-tolerant quan...“ by R.Blatt et al. , Nat. Phys. 4, 463 (2008) Red Line: Fidelity of the state |SS⟩+i|DD⟩ after m gate operations Content • Quantum Simulation – Analog Quantum Simulation • Digital Quantum Simulation – Ising Model • Digital Quantum Simulation with Ions – More complex system/Results Content • Quantum Simulation – Analog Quantum Simulation • Digital Quantum Simulation – Ising Model • Digital Quantum Simulation with Ions – More complex system/Results Quantum Simulation • Problem: – Quantum System with Hamiltonian H • Ground state? • Phase transitions? • Time evolution? • Correlations? – Not solvable with classical methods/computers Quantum Simulation • Problem: – Quantum System with Hamiltonian H • Ground state? • Phase transitions? • Time evolution? • Correlations? – Not solvable with classical methods/computers • Solution: – Use quantum system to simulate H • „measure result“ Content • Quantum Simulation – Analog Quantum Simulation • Digital Quantum Simulation – Ising Model • Digital Quantum Simulation with Ions – More complex system/Results Analog Quantum Simulation • Analog Quantum Simulation – Build a system that implements only H Analog Quantum Simulation • Analog Quantum Simulation – Build a system that implements only H • Famous system: Bose-Hubbard Hamiltonian 1 – ˆt ˆ ˆ ˆ ˆ H J ai a j Uni (ni 1) ini i, j 2 i i Analog Quantum Simulation • Analog Quantum Simulation – Build a system that implements only H • Famous system: Bose-Hubbard Hamiltonian 1 – ˆt ˆ ˆ ˆ ˆ H J ai a j Uni (ni 1) ini i, j 2 i i – Neutral atoms in optical lattice – Changing detuning of laser change J U Analog Quantum Simulation • Analog Quantum Simulation – Build a system that implements only H • Famous system: Bose-Hubbard Hamiltonian 1 – ˆt ˆ ˆ ˆ ˆ H J ai a j Uni (ni 1) ini i, j 2 i i – Neutral atoms in optical lattice – Changing detuning of laser change J U – Superfluid to Mott Insulator Content • Quantum Simulation – Analog Quantum Simulation • Digital Quantum Simulation – Ising Model • Digital Quantum Simulation with Ions – More complex system/Results Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations Implement any unitary operation Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations Implement any unitary operation Implement any (local) Hamiltonian H Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations String of Ions + toolbox! Implement any unitary operation Implement any (local) Hamiltonian H Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations String of Ions + toolbox! Implement any unitary operation Implement any (local) Hamiltonian H – i.e. 2 Spin Ising model: i i j 1 2 1 2 H X B z J x x B( z z ) J x x i i, j Digital Quantum Simulation • Digital Quantum Simulation – System of qubits with universal set of qubit operations String of Ions + toolbox! Implement any unitary operation Implement any (local) Hamiltonian H – i.e. 2 Spin Ising model: i i j 1 2 1 2 H X B z J x x B( z z ) J x x i i, j – Goal: Determine time evolution of system Digital Quantum Simulation 1 2 1 2 H X B( z z ) J x x Digital Quantum Simulation 1 2 1 2 H X B( z z ) J x x • Time evolution of : i – t Ut0 exp Ht0 Digital Quantum Simulation 1 2 1 2 H X B( z z ) J x x • Time evolution of : i – t Ut0 exp Ht0 • Strategy: – Divide Hamiltonian into operations that can be applied at once 1 2 1 2 H X B( z z ) J x x H1 H2 Single Qubit Operations Multi Qubit Operations Digital Quantum Simulation Single Qubit Operations Multi Qubit Operations • Unitary Time evolution: i – Ut exp H1 H2 t 1 2 1 2 H X B( z z ) J x x H1 H2 Digital Quantum Simulation Single Qubit Operations Multi Qubit Operations • Unitary Time evolution: i – Ut exp H1 H2 t • In experiment only possible to apply: i – Ui t exp Hit 1 2 1 2 H X B( z z ) J x x H1 H2 Digital Quantum Simulation Single Qubit Operations Multi Qubit Operations • Unitary Time evolution: i – Ut exp H1 H2 t • In experiment only possible to apply: i – Ui t exp Hit i i i exp H H t exp H t exp H t • And: 1 2 1 21 2 1 2 H X B( z z ) J xx H1 H2 – since H1, H2 0 Digital Quantum Simulation Single Qubit Operations Multi Qubit Operations • Trotter formula n i i t i t exp H1 H2 t limexp H1 exp H2 n n n 1 2 1 2 H X B( z z ) J x x H1 H2 Digital Quantum Simulation Single Qubit Operations Multi Qubit Operations • Trotter formula n i i t i t exp H1 H2 t limexp H1 exp H2 n n n • Therefore: planned sequence t 1 2 1 2 H n B( ) J H H f i X z z x x 1 2 . n times Content • Quantum Simulation – Analog Quantum Simulation • Digital Quantum Simulation – Ising Model • Digital Quantum Simulation with Ions – More complex system/Results DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: 1 2 1 2 H X B( z z ) J x x H1 H2 DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits (Ca+) 1 2 1 2 H X B( z z ) J x x H1 H2 DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits (Ca+) with measurement e P1/ 2 D5/ 2 H B( 1 2 ) J 1 2 H H X z z x x 1 2 S1/ 2 DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits – Measurement e P1/ 2 0 D5/ 2 – A universal set of operations 1 S1/ 2 1 2 1 2 H X B( z z ) J x x H1 H2 DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits e P1/ 2 0 D5/ 2 – A universal set of operations 1 S1/ 2 j O1(, j) expi z 1 2 1 2 H X B( z z ) J x x H1 H2 DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits e P1/ 2 0 D5/ 2 – A universal set of operations 1 S1/ 2 j O1(, j) expi z OH () B(exp 1 i2 ) Jj1 2 H H 2X z z z x x 1 2 j DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits e P1/ 2 0 D5/ 2 – A universal set of operations 1 S1/ 2 O (, j) exp i j O (,) expi j 1 z 3 j OH () B(exp 1 i2 ) Jj1 2 H H 2X z z z x x 1 2 j DQS with Ions Single Qubit Operations Multi Qubit Operations • We have: – A string of ions/qubits e P1/ 2 0 D5/ 2 – A universal set of operations 1 S1/ 2 O (, j) exp i j O (,) expi j 1 z 3 j OH () B(exp 1 i2 ) Jj1 2 OH (,H) expi i j 2X z z z x x 41 2 j i j Ising Model Single Qubit Operations Multi Qubit Operations • Easy now to implement! O (, j) exp i j O (,) expi j 1 z 3 j OH () B(exp 1 i2 ) Jj1 2 OH (,H) expi i j 2X z z z x x 41 2 j i j Ising Model Single Qubit Operations Multi Qubit Operations • Easy now to implement! • Prepare qubits in state OH () B(exp 1 i2 ) Jj1 2 OH (,H) expi i j 2X z z z x x 41 2 j i j Ising Model Single Qubit Operations Multi Qubit Operations • Easy now to implement! • Prepare qubits in state • Choose t and n and apply: t n t 1 2 j1 2 i j OH (n) B(exp i) J OH (,H) expi 2X z z z x x 41 2 .
Recommended publications
  • Dynamical Control of Matter Waves in Optical Lattices Sune Schøtt
    Aarhus University Faculty of Science Department of Physics and Astronomy PhD Thesis Dynamical Control of Matter Waves in Optical Lattices by Sune Schøtt Mai November 2010 This thesis has been submitted to the Faculty of Science at Aarhus Uni- versity in order to fulfill the requirements for obtaining a PhD degree in physics. The work has been carried out under the supervision of profes- sor Klaus Mølmer and associate professor Jan Arlt at the Department of Physics and Astronomy. Contents Contents i 1 Introduction 3 1.1 Thesis Outline .......................... 3 1.2 Bose-Einstein Condensation .................. 4 2 Experimental Setup and Methods 9 2.1 Overview ............................. 9 2.2 Magneto-Optic Trap and Optical Pumping .......... 9 2.3 Transport with Movable Quadrupole Traps . 13 2.4 Evaporative Cooling ...................... 14 2.5 Absorption Imaging ....................... 15 3 Optical Lattices 17 3.1 Introduction ........................... 17 3.2 AC Stark-shift Induced Potentials . 18 3.2.1 Classical and Semi-Classical Approaches . 18 3.2.2 Dressed State Picture . 20 3.3 Lattice Band Structure ..................... 22 3.3.1 Reciprocal Space Bloch Theorem . 23 3.3.2 The 1D Lattice Band-Structure . 23 4 Lattice Calibration Techniques 27 4.1 Introduction ........................... 27 4.2 Kapitza-Dirac Scattering .................... 28 4.3 Bloch Oscillation and LZ-Tunneling . 30 4.3.1 Bloch Oscillation .................... 31 4.3.2 Landau-Zener Theory . 31 i ii CONTENTS 4.3.3 Experimental Verification of the Landau-Zener Model 32 4.4 Lattice Modulation ....................... 35 4.5 Summary ............................ 35 5 Dynamically Controlled Lattices 39 5.1 Introduction ........................... 39 5.2 Overview ............................. 39 5.3 Controlled Matter Wave Beam Splitter .
    [Show full text]
  • Scalability and High-Efficiency of an $(N+ 1) $-Qubit Toffoli Gate Sphere
    Scalability and high-efficiency of an (n + 1)-qubit Toffoli gate sphere via blockaded Rydberg atoms Dongmin Yu1, Yichun Gao1, Weiping Zhang2,3, Jinming Liu1 and Jing Qian1,3,† 1State Key Laboratory of Precision Spectroscopy, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China 2Department of Physics and Astronomy, Shanghai Jiaotong University and Tsung-Dao Lee Institute, Shanghai 200240, China and 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China∗ The Toffoli gate serving as a basic building block for reversible quantum computation, has man- ifested its great potentials in improving the error-tolerant rate in quantum communication. While current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates, limited by longer operation time and lower average fidelity. We develop a new theoretical protocol to construct a universal (n + 1)-qubit Toffoli gate sphere based on the Rydberg blockade mechanism, by constraining the behavior of one central target atom with n surrounding control atoms. Its merit lies in the use of only five π pulses independent of the control atom number n which leads to the overall gate time as fast as 125ns and the average fidelity closing to 0.999. The maximal filling number of control atoms can be∼ up to n = 46, determined by the spherical diame- ter which is equal to the blockade radius, as well as by the nearest neighbor spacing between two trapped-atom lattices. Taking n = 2, 3, 4 as examples we comparably show the gate performance with experimentally accessible parameters, and confirm that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state prepa- ration.
    [Show full text]
  • Chapter 5. Atoms in Optical Lattices
    Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices provide a powerful tool for creating strongly correlated many- body systems of ultracold atoms. By choosing different lattice geometries one can obtain very different single particle dispersions. The ratio of the interaction and kinetic energies can be controlled by tuning the depth of the lattice. 5.1 Noninteracting particles in optical lattices The simplest possible periodic optical potential is formed by overlapping two counter-propagating beams. Electric field in the resulting standing wave is E(z) = E0 sin(kz + θ) cos !t (5.1) Here k = 2π/λ is the wavevector of the laser light. Following the general recipe for AC Stark effects, we calculate electric dipolar moments induced by this field in the atoms, calculate interaction between dipolar moments and the electric field, and average over fast optical oscillations (see chapter ??). The result is the potential 2 V (z) = −V0 sin (kz + θ) (5.2) 2 where V0 = α(!)E0 =2, with α(!) being polarizability. It is common to express 2 2 V0 in units of the recoil energy Er = ~ k =2m. In real experiments one also needs to take into account the transverse profile of the beam. Hence V (r?; z) = exp{−2r2=w2(z)g×V (z). In most experiments the main effect of the transverse profile is only to renormalize the parabolic confining potentia. Combining three perpendicular sets of standing waves we get a simple cubic lattice V (r) = −Vx 0 cosqxx − Vy 0 cosqyy − Vz 0 cosqzz (5.3) 3 4 CHAPTER 5.
    [Show full text]
  • Veselago Lensing with Ultracold Atoms in an Optical Lattice
    ARTICLE Received 9 Dec 2013 | Accepted 27 Jan 2014 | Published 14 Feb 2014 DOI: 10.1038/ncomms4327 Veselago lensing with ultracold atoms in an optical lattice Martin Leder1, Christopher Grossert1 & Martin Weitz1 Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman p-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications. 1 Institut fu¨r Angewandte Physik der Universita¨t Bonn, Wegelerstrae 8, 53115 Bonn, Germany. Correspondence and requests for materials should be addressed to M.W. (email: [email protected]). NATURE COMMUNICATIONS | 5:3327 | DOI: 10.1038/ncomms4327 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4327 eselago lensing is a concept based on negative of spatial periodicity l/4, generated by the dispersion of multi- refraction1–3, where a spatially diverging pencil of rays photon Raman transitions17.
    [Show full text]
  • Ultracold Atoms in a Disordered Optical Lattice
    ULTRACOLD ATOMS IN A DISORDERED OPTICAL LATTICE BY MATTHEW ROBERT WHITE B.S., University of California, Santa Barbara, 2003 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 2009 Urbana, Illinois Doctoral Committee: Professor Paul Kwiat, Chair Assistant Professor Brian DeMarco, Director of Research Assistant Professor Raffi Budakian Professor David Ceperley Acknowledgments This work would not have been possible without the support of my advisor Brian DeMarco and coworkers Matt Pasienski, David McKay, Hong Gao, Stanimir Kondov, David Chen, William McGehee, Matt Brinkley, Lauren Aycock, Cecilia Borries, Soheil Baharian, Sarah Gossett, Minsu Kim, and Yutaka Miyagawa. Generous funding was provided by the Uni- versity of Illinois, NSF, ARO, and ONR. ii Table of Contents List of Figures..................................... v Chapter 1 Introduction .............................. 1 1.1 Strongly-interacting Boson Systems.......................1 1.2 Bose-Hubbard Model...............................2 1.3 Disordered Bose-Hubbard Model with Cold Atoms..............3 1.4 Observations...................................4 1.5 Future Work on the DBH Model........................5 1.6 Quantum Simulation...............................5 1.7 Outline......................................6 Chapter 2 BEC Apparatus............................ 8 2.1 Introduction....................................8 2.2 Atomic Properties................................8
    [Show full text]
  • Dynamics of Hubbard Hamiltonians with the Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles Axel Lode, Christoph Bruder
    Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel Lode, Christoph Bruder To cite this version: Axel Lode, Christoph Bruder. Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles. Physical Review A, American Physical Society 2016, 94, pp.013616. 10.1103/PhysRevA.94.013616. hal-02369999 HAL Id: hal-02369999 https://hal.archives-ouvertes.fr/hal-02369999 Submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 94, 013616 (2016) Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel U. J. Lode* and Christoph Bruder Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 29 April 2016; published 22 July 2016) We apply the multiconfigurational time-dependent Hartree method for indistinguishable particles (MCTDH-X) to systems of bosons or fermions in lattices described by Hubbard-type Hamiltonians with long-range or short-range interparticle interactions. The wave function is expanded in a variationally optimized time-dependent many-body basis generated by a set of effective creation operators that are related to the original particle creation operators by a time-dependent unitary transform.
    [Show full text]
  • Two Classes of Unconventional Photonic Crystals
    Two Classes of Unconventional Photonic Crystals by Y. D. Chong B.S. Physics Stanford University, 2003 SUBMITTED TO THE DEPARTMENT OF PHYSICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY AUGUST 2008 c 2008 Y. D. Chong. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Department of Physics August 2008 Certified by: Marin Soljaˇci´c Assistant Professor of Physics Thesis Supervisor Accepted by: Professor Thomas J. Greytak Associate Department Head for Education Abstract This thesis concerns two classes of photonic crystal that differ from the usual solid-state dielectric photonic crystals studied in optical physics. The first class of unconventional photonic crystal consists of atoms bound in an optical lattice. This is a “resonant photonic crystal”, in which an underlying optical resonance modifies the usual band physics. I present a three-dimensional quantum mechanical model of exciton polaritons which describes this system. Amongst other things, the model explains the reason for the resonant enhancement of the photonic bandgap, which turns out to be related to the Purcell effect. An extension of this band theoretical approach is then used to study dark-state polaritons in Λ-type atomic media. The second class of unconventional photonic crystal consists of two di- mensional photonic crystals that break time-reversal symmetry due to a magneto-optic effect. The band theory for such systems involves topological quantities known as “Chern numbers”, which give rise to the phenomenon of disorder-immune one-way edge modes.
    [Show full text]
  • Physical Implementations of Quantum Computing
    Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview (Review) Introduction • DiVincenzo Criteria • Characterising coherence times Survey of possible qubits and implementations • Neutral atoms • Trapped ions • Colour centres (e.g., NV-centers in diamond) • Electron spins (e.g,. quantum dots) • Superconducting qubits (charge, phase, flux) • NMR • Optical qubits • Topological qubits Back to the DiVincenzo Criteria: Requirements for the implementation of quantum computation 1. A scalable physical system with well characterized qubits 1 | i 0 | i 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩ 1 | i 0 | i 3. Long relevant decoherence times, much longer than the gate operation time 4. A “universal” set of quantum gates control target (single qubit rotations + C-Not / C-Phase / .... ) U U 5. A qubit-specific measurement capability D. P. DiVincenzo “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, p. 771 (2000) arXiv:quant-ph/0002077 Neutral atoms Advantages: • Production of large quantum registers • Massive parallelism in gate operations • Long coherence times (>20s) Difficulties: • Gates typically slower than other implementations (~ms for collisional gates) (Rydberg gates can be somewhat faster) • Individual addressing (but recently achieved) Quantum Register with neutral atoms in an optical lattice 0 1 | | Requirements: • Long lived storage of qubits • Addressing of individual qubits • Single and two-qubit gate operations • Array of singly occupied sites • Qubits encoded in long-lived internal states (alkali atoms - electronic states, e.g., hyperfine) • Single-qubit via laser/RF field coupling • Entanglement via Rydberg gates or via controlled collisions in a spin-dependent lattice Rb: Group II Atoms 87Sr (I=9/2): Extensively developed, 1 • P1 e.g., optical clocks 3 • Degenerate gases of Yb, Ca,..
    [Show full text]
  • Arxiv:1807.11342V2 [Cond-Mat.Quant-Gas] 4 Aug 2019
    A Dissipatively Stabilized Mott Insulator of Photons Ruichao Ma, Brendan Saxberg, Clai Owens, Nelson Leung, Yao Lu, Jonathan Simon, and David I. Schuster James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (Dated: August 6, 2019) Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions|properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for pho- tons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter. The richness of quantum materials originates from and the adiabatic criterion at the smallest many-body the competition between quantum fluctuations arising gaps, which shrink in the quantum critical region and from strong interactions, motional dynamics, and the often vanish at topological phase transitions.
    [Show full text]
  • Quantum Physics in Space
    Quantum Physics in Space Alessio Belenchiaa,b,∗∗, Matteo Carlessob,c,d,∗∗, Omer¨ Bayraktare,f, Daniele Dequalg, Ivan Derkachh, Giulio Gasbarrii,j, Waldemar Herrk,l, Ying Lia Lim, Markus Rademacherm, Jasminder Sidhun, Daniel KL Oin, Stephan T. Seidelo, Rainer Kaltenbaekp,q, Christoph Marquardte,f, Hendrik Ulbrichtj, Vladyslav C. Usenkoh, Lisa W¨ornerr,s, Andr´eXuerebt, Mauro Paternostrob, Angelo Bassic,d,∗ aInstitut f¨urTheoretische Physik, Eberhard-Karls-Universit¨atT¨ubingen, 72076 T¨ubingen,Germany bCentre for Theoretical Atomic,Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom cDepartment of Physics,University of Trieste, Strada Costiera 11, 34151 Trieste,Italy dIstituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy eMax Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany fInstitute of Optics, Information and Photonics, Friedrich-Alexander University Erlangen-N¨urnberg, Staudtstraße 7 B2, 91058 Erlangen, Germany gScientific Research Unit, Agenzia Spaziale Italiana, Matera, Italy hDepartment of Optics, Palacky University, 17. listopadu 50,772 07 Olomouc,Czech Republic iF´ısica Te`orica: Informaci´oi Fen`omensQu`antics,Department de F´ısica, Universitat Aut`onomade Barcelona, 08193 Bellaterra (Barcelona), Spain jDepartment of Physics and Astronomy, University of Southampton, Highfield Campus, SO17 1BJ, United Kingdom kDeutsches Zentrum f¨urLuft- und Raumfahrt e. V. (DLR), Institut f¨urSatellitengeod¨asieund
    [Show full text]
  • Realization of a Quantum Integer-Spin Chain with Controllable Interactions
    PHYSICAL REVIEW X 5, 021026 (2015) Realization of a Quantum Integer-Spin Chain with Controllable Interactions C. Senko,1 P. Richerme,1 J. Smith,1 A. Lee,1 I. Cohen,2 A. Retzker,2 and C. Monroe1 1Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, Maryland 20742, USA 2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel (Received 6 October 2014; revised manuscript received 16 March 2015; published 17 June 2015) The physics of interacting integer-spin chains has been a topic of intense theoretical interest, particularly in the context of symmetry-protected topological phases. However, there has not been a controllable model system to study this physics experimentally. We demonstrate how spin-dependent forces on trapped ions can be used to engineer an effective system of interacting spin-1 particles. Our system evolves coherently under an applied spin-1 XY Hamiltonian with tunable, long-range couplings, and all three quantum levels at each site participate in the dynamics. We observe the time evolution of the system and verify its coherence by entangling a pair of effective three-level particles (“qutrits”) with 86% fidelity. By adiabatically ramping a global field, we produce ground states of the XY model, and we demonstrate an instance where the ground state cannot be created without breaking the same symmetries that protect the topological Haldane phase. This experimental platform enables future studies of symmetry-protected order in spin-1 systems and their use in quantum applications. DOI: 10.1103/PhysRevX.5.021026 Subject Areas: Atomic and Molecular Physics, Condensed Matter Physics, Quantum Physics I.
    [Show full text]
  • Infrared-Dressed Entanglement of Cold Open-Shell Polar Molecules for Universal Matchgate Quantum Computing
    Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing Felipe Herrera Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA Yudong Cao Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA Sabre Kais Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA Qatar Environment and Energy Research Institute, Doha, Qatar K. Birgitta Whaley Berkeley Quantum Information and Computation Center and Department of Chemistry, University of California, Berkeley, CA 94703, USA Abstract. Implementing a scalable quantum information processor using polar molecules in optical lattices requires precise control over the long-range dipole-dipole interaction between molecules in selected lattice sites. We present here a scheme using trapped open-shell 2Σ polar molecules that allows dipolar exchange processes between nearest and next-nearest neighbors to be controlled to construct a generalized transverse Ising spin Hamiltonian with tunable XX, YY and XY couplings in the rotating frame of the driving lasers. The scheme requires a moderately strong bias magnetic field with near-infrared light to provide local tuning of the qubit energy gap, and mid-infrared pulses to perform rotational state transfer via stimulated Raman adiabatic passage. No interaction between qubits is present in the absence of the infrared driving. We analyze the fidelity of the resulting two-qubit matchgate, and demonstrate its robustness as a function of the driving parameters. We discuss a realistic application of the system for universal matchgate quantum computing in optical lattices. Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing 2 1.
    [Show full text]