Physical Implementations of Quantum Computing

Total Page:16

File Type:pdf, Size:1020Kb

Physical Implementations of Quantum Computing Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview (Review) Introduction • DiVincenzo Criteria • Characterising coherence times Survey of possible qubits and implementations • Neutral atoms • Trapped ions • Colour centres (e.g., NV-centers in diamond) • Electron spins (e.g,. quantum dots) • Superconducting qubits (charge, phase, flux) • NMR • Optical qubits • Topological qubits Back to the DiVincenzo Criteria: Requirements for the implementation of quantum computation 1. A scalable physical system with well characterized qubits 1 | i 0 | i 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩ 1 | i 0 | i 3. Long relevant decoherence times, much longer than the gate operation time 4. A “universal” set of quantum gates control target (single qubit rotations + C-Not / C-Phase / .... ) U U 5. A qubit-specific measurement capability D. P. DiVincenzo “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, p. 771 (2000) arXiv:quant-ph/0002077 Neutral atoms Advantages: • Production of large quantum registers • Massive parallelism in gate operations • Long coherence times (>20s) Difficulties: • Gates typically slower than other implementations (~ms for collisional gates) (Rydberg gates can be somewhat faster) • Individual addressing (but recently achieved) Quantum Register with neutral atoms in an optical lattice 0 1 | | Requirements: • Long lived storage of qubits • Addressing of individual qubits • Single and two-qubit gate operations • Array of singly occupied sites • Qubits encoded in long-lived internal states (alkali atoms - electronic states, e.g., hyperfine) • Single-qubit via laser/RF field coupling • Entanglement via Rydberg gates or via controlled collisions in a spin-dependent lattice Rb: Group II Atoms 87Sr (I=9/2): Extensively developed, 1 • P1 e.g., optical clocks 3 • Degenerate gases of Yb, Ca,... P2 3 • Stable lasers, especially for clock P1 transition frequency 3 P0 689nm 1 Key properties S0 • Metastable triplet states: 3 - P0 Lifetimes >150s (Fermions) 3 - P1 linewidth ~ kHz 3 - P2 lifetime >>150s • Many nuclear spin levels for fermionic isotopes • Nuclear spin states decoupled from electronic state on clock transition Quantum Computing with Alkaline Earth Atoms 87Sr (I=9/2): 1 Implementation of Quantum Computing: P1 • Nuclear spin states for qubit storage 3 P2 (insensitive to magnetic field fluctuations) 3 P1 D. Hayes, P. S. Julienne, and I. H. Deutsch, 3 PRL 98, 070501 (2007) P0 I. Reichenbach and I. H. Deutsch, PRL 99, 123001 (2007). 689nm • Electronic state for: - Access to qubits 1 S0 - Gate operations HERE: Via state-dependent lattices A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Phys. Rev. Lett. 101, 170504 (2008) AC Polarisability (AC-Stark Shift per intensity) for 87Sr Ye, Kimble, & Katori, Science 320, 1734 (2008). 0.2 0.4 0.6 0.8 2 3 4 2 3 to states in the long-lived P2 manifold. As shown schematically in Fig. 1, we would transfer qubit states 3 |0" and |1" to the P0 level (which can be done state- selectively in a large magnetic field due to the differ- 1 3 ential Zeeman shift of 109Hz/G between S0 and P0), and2 then selectively transfer them to additional readout 3 87 Polarizability and State-dependent lattices: levels |0x" and |1x" in the P2 level (e.g., for Sr we 3 3 to states in the long-lived P2 manifold. As showncould choose |0x"≡| P2,F =13/2,mF = −13/2" and 3 schematically in Fig. 1, we would transfer qubit states|1x"≡| P2,F =13/2,mF = −11/2", where F is the 3 total angular momentum and mF the magnetic sublevel, |0" and |1" to the P0 level (which can be done state- 3 and connect these states to the P0 level via off-resonant selectively in a large magnetic field due to the differ- 3 1 3 Raman coupling to a S1 level). The individual qubit se- ential Zeeman shift of 109Hz/G between S0 and P0), 3 lectivity can be based on a gradient magnetic field, as P2 and then selectively transfer them to additional readout 3 1 3 87 is much more sensitive to magnetic fields P0 or S0.A levels |0x" and |1x" in the P level (e.g., for Sr we2 2 gradient field of 100 G/cm will provide an energy gradient could choose |0x"≡|3P ,F =13/2,m = −13/2" and 2 3 F 3 to states in the long-lived P2 manifold. As shownof 410 MHz/cm for |0x" or an energy difference of about FIG.|1 2:x"≡ (a) Energy| P2,F level=13 diagram/2,mF showing= −11 how/2", independent where F is the schematically3P in Fig. 1, we would transfer qubit states 0 3 1 3 15kHz between atoms in neighbouring sites. In the same optical lattices can be|0 produced" and |1" to for the theP0 levelS0 (whichand canP0 belevels done state- total angular momentum and mF the magnetic sublevel,field the 3P level states will be shifted by −m × 1Hz in by finding wavelengthsselectively where the in polarisability a large3 magnetic of field each due of to th thee differ- 0 I and connect these states to the P0 level via o1ff-resonant3 ential Zeeman shift of 109Hz/G between S0 and P0neighbouring), sites, which again indicates the advantage levels is zero and the other1 non-zero.3 (b) AC Polarisability 1 Raman3 couplingand toS then a0 S selectively1 level). transfer The them individual to additional qubitreadout se- of S0 and P0 levels near 627nm. (c) AC polarisability3 of87 of storing qubits on the nuclear spin states. This selec- 1 3 levels |0x" and |1x" in the P2 level (e.g., for Sr3 we lectivity can be based on a gradient3 magnetic field, as P2 S0 and P0 levels nearcould 689nm. choose (d)|0x"≡ AC| P polarisability2,F =13/2,mF of= − dif-13/2" andtively can be used to transfer atoms site-dependently to 3 3 3 1 ferentism muchF sublevels more of sensitive| the1x"≡P| 2P, to2F,F magnetic=13=13//22,m hyperfineF fields= −11/2" levelP, where0 or forFSis0.A thethe transport lattice, or to read out qubits by transfer- π−polarisedgradient light field at of 627nm 100total G/cm angular and 689.2nm. momentum will provide and m anF the energy magnetic gradient sublevel, 3 3 ring only the |0" state to P2, then making fluorescence and connect these states to the P0 level via off-resonant 3 of 410 MHz/cmRaman for |0 couplingx" or an to a energyS1 level). di Thefference individual of qubit about se-measurements (e.g., using the cycling transition between FIG. 2: (a) Energy level diagram showing how independent lectivity can be based on a gradient magnetic field, as 3P 3 3 1 3 15kHz between atoms in neighbouring sites. In the samethe2 P2,F =13/2 and D3 manifold). optical lattices can be produced for the S0 and P0 levels 3 1 field the 3P levelis much states more will sensitive be shifted to magnetic by fields−mP30×or1HzS0.A in by finding wavelengths where the polarisability of each of thestorage lattice for0 qubits,gradient which field of 100 will G/cm not will a provideffect thean energyI P0 gradient A necessary requirement here is that our states |0x" 3 states.neighbouring Similarly, thesites,of 410polarizability which MHz/cm again for |0x of" indicatesor anP0 energyat 689.2nm the difference advantage of about levels is zero and the other non-zero.FIG. (b) 2: (a) AC Energy Polarisability level diagram showing how independent and |1x" are trapped in the combination of the storage 1 3 1 3 15kHz between atoms in neighbouring1 sites. In the same 0 0 optical lattices can be producedis for∼ theof1550a.u,S0 storingand P0 levels whereas qubits on the the3 polarisability nuclear spin of states.S0 is zero. This selec-and transport lattices (these will both provide AC-Stark of S and P levels near 627nm. (c) AC polarisability of field the P0 level states will be shifted by −mI × 1Hz in 1 3 by finding wavelengths where the polarisability of each of the 3 S0 and P0 levels near 689nm. (d) AClevels polarisability is zero and the other of non-zero. dif-This (b)tively is AC largely Polarisability can because be usedneighbouring of to the transfer near-resonant sites, which atoms again site-dependently indicates coupling the of advantageshifts to for the P2 level). In Fig. 2d we plot the polaris- 3 1 3 1 3 ferent mF sublevels of the P2, F =13of /S20 and hyperfineP0 levels level near 627nm. for (c) AC polarisability of of storing qubits on the nuclear spin states. This selec- 3 1 3 S0 totheP transport1, which is lattice, made or possible to read without out qubits large by spon- transfer-ability of all of the magnetic sublevels of P2, F =13/2 S0 and P0 levels near 689nm. (d) AC polarisability of dif- tively can be used to transfer atoms site-dependently to π−polarised light at 627nm and 689.2nm. 3 3 ferent mF sublevels of the P2, Ftaneous=13/ring2 hyperfine emission only level the for rates|0"thestate transportdue to to lattice, theP2, narrow then or to read making linewidth out qubits fluorescence by of transfer-at our lattice wavelengths, and the large tensor shifts π−polarised light at 627nm and 689.2nm.3 3 P1.measurements This lattice can (e.g.,ring be only using used the | for0 the" statetransport cycling to P2, then transition, and making atoms fluorescence betweenmake certain mF levels suitable for trapping at the same 3 measurements3 (e.g., using the cycling transition between in itthe willP not,F be=13 affected/2 and3 byD themanifold).
Recommended publications
  • Dynamical Control of Matter Waves in Optical Lattices Sune Schøtt
    Aarhus University Faculty of Science Department of Physics and Astronomy PhD Thesis Dynamical Control of Matter Waves in Optical Lattices by Sune Schøtt Mai November 2010 This thesis has been submitted to the Faculty of Science at Aarhus Uni- versity in order to fulfill the requirements for obtaining a PhD degree in physics. The work has been carried out under the supervision of profes- sor Klaus Mølmer and associate professor Jan Arlt at the Department of Physics and Astronomy. Contents Contents i 1 Introduction 3 1.1 Thesis Outline .......................... 3 1.2 Bose-Einstein Condensation .................. 4 2 Experimental Setup and Methods 9 2.1 Overview ............................. 9 2.2 Magneto-Optic Trap and Optical Pumping .......... 9 2.3 Transport with Movable Quadrupole Traps . 13 2.4 Evaporative Cooling ...................... 14 2.5 Absorption Imaging ....................... 15 3 Optical Lattices 17 3.1 Introduction ........................... 17 3.2 AC Stark-shift Induced Potentials . 18 3.2.1 Classical and Semi-Classical Approaches . 18 3.2.2 Dressed State Picture . 20 3.3 Lattice Band Structure ..................... 22 3.3.1 Reciprocal Space Bloch Theorem . 23 3.3.2 The 1D Lattice Band-Structure . 23 4 Lattice Calibration Techniques 27 4.1 Introduction ........................... 27 4.2 Kapitza-Dirac Scattering .................... 28 4.3 Bloch Oscillation and LZ-Tunneling . 30 4.3.1 Bloch Oscillation .................... 31 4.3.2 Landau-Zener Theory . 31 i ii CONTENTS 4.3.3 Experimental Verification of the Landau-Zener Model 32 4.4 Lattice Modulation ....................... 35 4.5 Summary ............................ 35 5 Dynamically Controlled Lattices 39 5.1 Introduction ........................... 39 5.2 Overview ............................. 39 5.3 Controlled Matter Wave Beam Splitter .
    [Show full text]
  • Scalability and High-Efficiency of an $(N+ 1) $-Qubit Toffoli Gate Sphere
    Scalability and high-efficiency of an (n + 1)-qubit Toffoli gate sphere via blockaded Rydberg atoms Dongmin Yu1, Yichun Gao1, Weiping Zhang2,3, Jinming Liu1 and Jing Qian1,3,† 1State Key Laboratory of Precision Spectroscopy, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China 2Department of Physics and Astronomy, Shanghai Jiaotong University and Tsung-Dao Lee Institute, Shanghai 200240, China and 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China∗ The Toffoli gate serving as a basic building block for reversible quantum computation, has man- ifested its great potentials in improving the error-tolerant rate in quantum communication. While current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates, limited by longer operation time and lower average fidelity. We develop a new theoretical protocol to construct a universal (n + 1)-qubit Toffoli gate sphere based on the Rydberg blockade mechanism, by constraining the behavior of one central target atom with n surrounding control atoms. Its merit lies in the use of only five π pulses independent of the control atom number n which leads to the overall gate time as fast as 125ns and the average fidelity closing to 0.999. The maximal filling number of control atoms can be∼ up to n = 46, determined by the spherical diame- ter which is equal to the blockade radius, as well as by the nearest neighbor spacing between two trapped-atom lattices. Taking n = 2, 3, 4 as examples we comparably show the gate performance with experimentally accessible parameters, and confirm that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state prepa- ration.
    [Show full text]
  • Free-Electron Qubits
    Free-Electron Qubits Ori Reinhardt†, Chen Mechel†, Morgan Lynch, and Ido Kaminer Department of Electrical Engineering and Solid State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel † equal contributors Free-electron interactions with laser-driven nanophotonic nearfields can quantize the electrons’ energy spectrum and provide control over this quantized degree of freedom. We propose to use such interactions to promote free electrons as carriers of quantum information and find how to create a qubit on a free electron. We find how to implement the qubit’s non-commutative spin-algebra, then control and measure the qubit state with a universal set of 1-qubit gates. These gates are within the current capabilities of femtosecond-pulsed laser-driven transmission electron microscopy. Pulsed laser driving promise configurability by the laser intensity, polarizability, pulse duration, and arrival times. Most platforms for quantum computation today rely on light-matter interactions of bound electrons such as in ion traps [1], superconducting circuits [2], and electron spin systems [3,4]. These form a natural choice for implementing 2-level systems with spin algebra. Instead of using bound electrons for quantum information processing, in this letter we propose using free electrons and manipulating them with femtosecond laser pulses in optical frequencies. Compared to bound electrons, free electron systems enable accessing high energy scales and short time scales. Moreover, they possess quantized degrees of freedom that can take unbounded values, such as orbital angular momentum (OAM), which has also been proposed for information encoding [5-10]. Analogously, photons also have the capability to encode information in their OAM [11,12].
    [Show full text]
  • Design of a Qubit and a Decoder in Quantum Computing Based on a Spin Field Effect
    Design of a Qubit and a Decoder in Quantum Computing Based on a Spin Field Effect A. A. Suratgar1, S. Rafiei*2, A. A. Taherpour3, A. Babaei4 1 Assistant Professor, Electrical Engineering Department, Faculty of Engineering, Arak University, Arak, Iran. 1 Assistant Professor, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran. 2 Young Researchers Club, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran. *[email protected] 3 Professor, Chemistry Department, Faculty of Science, Islamic Azad University, Arak Branch, Arak, Iran. 4 faculty member of Islamic Azad University, Khomein Branch, Khomein, ABSTRACT In this paper we present a new method for designing a qubit and decoder in quantum computing based on the field effect in nuclear spin. In this method, the position of hydrogen has been studied in different external fields. The more we have different external field effects and electromagnetic radiation, the more we have different distribution ratios. Consequently, the quality of different distribution ratios has been applied to the suggested qubit and decoder model. We use the nuclear property of hydrogen in order to find a logical truth value. Computational results demonstrate the accuracy and efficiency that can be obtained with the use of these models. Keywords: quantum computing, qubit, decoder, gyromagnetic ratio, spin. 1. Introduction different hydrogen atoms in compound applied for the qubit and decoder designing. Up to now many papers deal with the possibility to realize a reversible computer based on the laws of 2. An overview on quantum concepts quantum mechanics [1]. In this chapter a short introduction is presented Modern quantum chemical methods provide into the interesting field of quantum in physics, powerful tools for theoretical modeling and Moore´s law and a summary of the quantum analysis of molecular electronic structures.
    [Show full text]
  • Chapter 5. Atoms in Optical Lattices
    Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices provide a powerful tool for creating strongly correlated many- body systems of ultracold atoms. By choosing different lattice geometries one can obtain very different single particle dispersions. The ratio of the interaction and kinetic energies can be controlled by tuning the depth of the lattice. 5.1 Noninteracting particles in optical lattices The simplest possible periodic optical potential is formed by overlapping two counter-propagating beams. Electric field in the resulting standing wave is E(z) = E0 sin(kz + θ) cos !t (5.1) Here k = 2π/λ is the wavevector of the laser light. Following the general recipe for AC Stark effects, we calculate electric dipolar moments induced by this field in the atoms, calculate interaction between dipolar moments and the electric field, and average over fast optical oscillations (see chapter ??). The result is the potential 2 V (z) = −V0 sin (kz + θ) (5.2) 2 where V0 = α(!)E0 =2, with α(!) being polarizability. It is common to express 2 2 V0 in units of the recoil energy Er = ~ k =2m. In real experiments one also needs to take into account the transverse profile of the beam. Hence V (r?; z) = exp{−2r2=w2(z)g×V (z). In most experiments the main effect of the transverse profile is only to renormalize the parabolic confining potentia. Combining three perpendicular sets of standing waves we get a simple cubic lattice V (r) = −Vx 0 cosqxx − Vy 0 cosqyy − Vz 0 cosqzz (5.3) 3 4 CHAPTER 5.
    [Show full text]
  • A Theoretical Study of Quantum Memories in Ensemble-Based Media
    A theoretical study of quantum memories in ensemble-based media Karl Bruno Surmacz St. Hugh's College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of Oxford Michaelmas Term, 2007 Atomic and Laser Physics, University of Oxford i A theoretical study of quantum memories in ensemble-based media Karl Bruno Surmacz, St. Hugh's College, Oxford Michaelmas Term 2007 Abstract The transfer of information from flying qubits to stationary qubits is a fundamental component of many quantum information processing and quantum communication schemes. The use of photons, which provide a fast and robust platform for encoding qubits, in such schemes relies on a quantum memory in which to store the photons, and retrieve them on-demand. Such a memory can consist of either a single absorber, or an ensemble of absorbers, with a ¤-type level structure, as well as other control ¯elds that a®ect the transfer of the quantum signal ¯eld to a material storage state. Ensembles have the advantage that the coupling of the signal ¯eld to the medium scales with the square root of the number of absorbers. In this thesis we theoretically study the use of ensembles of absorbers for a quantum memory. We characterize a general quantum memory in terms of its interaction with the signal and control ¯elds, and propose a ¯gure of merit that measures how well such a memory preserves entanglement. We derive an analytical expression for the entanglement ¯delity in terms of fluctuations in the stochastic Hamiltonian parameters, and show how this ¯gure could be measured experimentally.
    [Show full text]
  • Veselago Lensing with Ultracold Atoms in an Optical Lattice
    ARTICLE Received 9 Dec 2013 | Accepted 27 Jan 2014 | Published 14 Feb 2014 DOI: 10.1038/ncomms4327 Veselago lensing with ultracold atoms in an optical lattice Martin Leder1, Christopher Grossert1 & Martin Weitz1 Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman p-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications. 1 Institut fu¨r Angewandte Physik der Universita¨t Bonn, Wegelerstrae 8, 53115 Bonn, Germany. Correspondence and requests for materials should be addressed to M.W. (email: [email protected]). NATURE COMMUNICATIONS | 5:3327 | DOI: 10.1038/ncomms4327 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4327 eselago lensing is a concept based on negative of spatial periodicity l/4, generated by the dispersion of multi- refraction1–3, where a spatially diverging pencil of rays photon Raman transitions17.
    [Show full text]
  • Ultracold Atoms in a Disordered Optical Lattice
    ULTRACOLD ATOMS IN A DISORDERED OPTICAL LATTICE BY MATTHEW ROBERT WHITE B.S., University of California, Santa Barbara, 2003 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 2009 Urbana, Illinois Doctoral Committee: Professor Paul Kwiat, Chair Assistant Professor Brian DeMarco, Director of Research Assistant Professor Raffi Budakian Professor David Ceperley Acknowledgments This work would not have been possible without the support of my advisor Brian DeMarco and coworkers Matt Pasienski, David McKay, Hong Gao, Stanimir Kondov, David Chen, William McGehee, Matt Brinkley, Lauren Aycock, Cecilia Borries, Soheil Baharian, Sarah Gossett, Minsu Kim, and Yutaka Miyagawa. Generous funding was provided by the Uni- versity of Illinois, NSF, ARO, and ONR. ii Table of Contents List of Figures..................................... v Chapter 1 Introduction .............................. 1 1.1 Strongly-interacting Boson Systems.......................1 1.2 Bose-Hubbard Model...............................2 1.3 Disordered Bose-Hubbard Model with Cold Atoms..............3 1.4 Observations...................................4 1.5 Future Work on the DBH Model........................5 1.6 Quantum Simulation...............................5 1.7 Outline......................................6 Chapter 2 BEC Apparatus............................ 8 2.1 Introduction....................................8 2.2 Atomic Properties................................8
    [Show full text]
  • Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide
    entropy Article Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide Abdel-Baset A. Mohamed 1,2 and Ibtisam Masmali 3,* 1 Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia; [email protected] 2 Faculty of Science, Assiut University, Assiut 71516, Egypt 3 Department of Mathematics, Faculty of Science, Jazan University, Gizan 82785, Saudi Arabia * Correspondence: [email protected] Received: 28 November 2019; Accepted: 8 January 2020; Published: 10 January 2020 Abstract: We explore the geometric phase in a system of two non-interacting qubits embedded in two separated open cavities linked via an optical fiber and leaking photons to the external environment. The dynamical behavior of the generated geometric phase is investigated under the physical parameter effects of the coupling constants of both the qubit–cavity and the fiber–cavity interactions, the resonance/off-resonance qubit–field interactions, and the cavity dissipations. It is found that these the physical parameters lead to generating, disappearing and controlling the number and the shape (instantaneous/rectangular) of the geometric phase oscillations. Keywords: geometric phase; cavity damping; optical fiber 1. Introduction The mathematical manipulations of the open quantum systems, of the qubit–field interactions, depend on the ability of solving the master-damping [1] and intrinsic-decoherence [2] equations, analytically/numerically. To remedy the problems of these manipulations, the quantum phenomena of the open systems were studied for limited physical circumstances [3–7]. The quantum geometric phase is a basic intrinsic feature in quantum mechanics that is used as the basis of quantum computation [8].
    [Show full text]
  • Dynamics of Hubbard Hamiltonians with the Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles Axel Lode, Christoph Bruder
    Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel Lode, Christoph Bruder To cite this version: Axel Lode, Christoph Bruder. Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles. Physical Review A, American Physical Society 2016, 94, pp.013616. 10.1103/PhysRevA.94.013616. hal-02369999 HAL Id: hal-02369999 https://hal.archives-ouvertes.fr/hal-02369999 Submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 94, 013616 (2016) Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles Axel U. J. Lode* and Christoph Bruder Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 29 April 2016; published 22 July 2016) We apply the multiconfigurational time-dependent Hartree method for indistinguishable particles (MCTDH-X) to systems of bosons or fermions in lattices described by Hubbard-type Hamiltonians with long-range or short-range interparticle interactions. The wave function is expanded in a variationally optimized time-dependent many-body basis generated by a set of effective creation operators that are related to the original particle creation operators by a time-dependent unitary transform.
    [Show full text]
  • Two Classes of Unconventional Photonic Crystals
    Two Classes of Unconventional Photonic Crystals by Y. D. Chong B.S. Physics Stanford University, 2003 SUBMITTED TO THE DEPARTMENT OF PHYSICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY AUGUST 2008 c 2008 Y. D. Chong. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: Department of Physics August 2008 Certified by: Marin Soljaˇci´c Assistant Professor of Physics Thesis Supervisor Accepted by: Professor Thomas J. Greytak Associate Department Head for Education Abstract This thesis concerns two classes of photonic crystal that differ from the usual solid-state dielectric photonic crystals studied in optical physics. The first class of unconventional photonic crystal consists of atoms bound in an optical lattice. This is a “resonant photonic crystal”, in which an underlying optical resonance modifies the usual band physics. I present a three-dimensional quantum mechanical model of exciton polaritons which describes this system. Amongst other things, the model explains the reason for the resonant enhancement of the photonic bandgap, which turns out to be related to the Purcell effect. An extension of this band theoretical approach is then used to study dark-state polaritons in Λ-type atomic media. The second class of unconventional photonic crystal consists of two di- mensional photonic crystals that break time-reversal symmetry due to a magneto-optic effect. The band theory for such systems involves topological quantities known as “Chern numbers”, which give rise to the phenomenon of disorder-immune one-way edge modes.
    [Show full text]
  • Electron Spin Qubits in Quantum Dots
    Electron spin qubits in quantum dots R. Hanson, J.M. Elzerman, L.H. Willems van Beveren, L.M.K. Vandersypen, and L.P. Kouwenhoven' 'Kavli Institute of NanoScience Delft, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands (Dated: September 24, 2004) We review our experimental progress on the spintronics proposal for quantum computing where the quantum bits (quhits) are implemented with electron spins confined in semiconductor quantum dots. Out of the five criteria for a scalable quantum computer, three have already been satisfied. We have fabricated and characterized a double quantum dot circuit with an integrated electrometer. The dots can be tuned to contain a single electron each. We have resolved the two basis states of the qubit by electron transport measurements. Furthermore, initialization and singleshot read-out of the spin statc have been achieved. The single-spin relaxation time was found to be very long, but the decoherence time is still unknown. We present concrete ideas on how to proceed towards coherent spin operations and two-qubit operations. PACS numbers: INTRODUCTION depicted in Fig. la. In Fig. 1b we map out the charging diagram of the The interest in quantum computing [l]derives from double dot using the electrometer. Horizontal (vertical) the hope to outperform classical computers using new lines in this diagram correspond to changes in the number quantum algorithms. A natural candidate for the qubit of electrons in the left (right) dot. In the top right of the is the electron spin because the only two possible spin figure lines are absent, indicating that the double dot orientations 17) and 11) correspond to the basis states of is completely depleted of electrons.
    [Show full text]