World DRI Production by Year (Mt) Source: Midrex Technologies, Inc

Total Page:16

File Type:pdf, Size:1020Kb

World DRI Production by Year (Mt) Source: Midrex Technologies, Inc 2018 WORLD DIRECT REDUCTION STATISTICS www.midrex.com CONTENTS 2 World DRI Production 7 World DRI Production by Region/Year 8 World DRI Production Tables 10 Major Trade Routes for International Trade of DRI 11 World DRI Shipments 12 World Direct Reduction Plants Audited by 8.5.2019 2 TABLE OF CONTENTS < > The top five DRI-producing countries last year: New Capacity, Plant 2018 Top 5 DRI Producing Nations Ramp-Ups Boost World COUNTRY PRODUCTION (Million Tons) India 28.11 DRI Production Over Iran 25.75 100M Tons in 2018 Russia 7.90 Saudi Arabia 6.00 Mexico 5.97 nnual global DRI production reached the lofty milestone of 100 million tons in 2018, riding Source: World Steel Association, SIMA, and Midrex Technologies, Inc. Athe crest of double-digit growth for the second consecutive year. DRI output was up 15% over 2017 Over 11 million tons of last year’s production was hot performance. From 2016 to 2018, world DRI production has DRI (HDRI), which is fed directly to the EAF to reduce increased by 38%, which is the largest increase in any two- energy consumption and increase melt shop productivity. year period since 1985. The sustained growth through 2018 Hot briquetted iron (HBI), which is compacted DRI, account- was driven primarily by strong demand for natural gas-based ed for 9 million tons of the 2018 total. DRI – an environmentally friendly and low residual metallic Midrex production grew to nearly 64 million tons, which that is needed to produce today’s premium steel products. was a 13% increase over 2017. Combined, India and Iran were responsible for more than half of total world DRI production in 2018. 2018 World DRI Production by Process Other Rotary Kiln, 0.7% 20.2% HYL/Energiron 15.5% Total World Production: 100.5 Mt 2016 2017 2018 MIDREX® 64.8% 64.8% 63.5% HYL/Energiron 17.4% 16.9% 15.5% MIDREX® 63.5% Other 0.3% 0.7% 0.7% Rotary Kiln 17.5% 17.6% 20.2% Source: Midrex Technologies, Inc. 2018 World Direct Reduction Statistics Page 2 © 2019 Midrex Technologies, Inc. 8.5.2019 3 TABLE OF CONTENTS < > BEHIND THE NUMBERS production would be much greater but for the low availability Three factors contributed to 2018 production increases: the and high cost of natural gas. Production of natural gas-based commissioning of new capacity, especially in Iran, the return DRI was 8.14 million tons, an increase of 8% over 2017. to operation of many coal-based rotary kiln furnaces in India, Russia again was the third largest producer of DRI and and the further ramp-up of recently commissioned plants. HBI, accounting for 7.9 million tons, a 13% increase over 2017. Iran produced over 25.7 million tons of DRI, all using This primarily was due to the continued ramp-up of capacity natural gas, which easily made Iran the number one gas- by the newest MIDREX Plant (HBI-3) at Metalloinvest’s based producer in 2018. By the end of the year, there were Lebedinsky GOK in Gubkin, Belgorod region. The HBI-3 Plant 33 direct reduction modules operating in Iran and at least has a design capacity of 1.8 million t/y, which gives Metallo- a dozen more were in various phases of construction. DRI invest an installed annual production capability of 4.5 million capacity growth has been phenomenal – three-and-one-half tons and reinforces its leading position in the global merchant times more capacity now than one decade earlier – especially HBI market. considering the international sanctions placed on the country. Saudi Arabia vaulted into fourth place among DRI produc- DRI production in India surged to over 28 million tons ers, making 6.00 million tons in 2018, to surpass Mexico, in 2018, placing it firmly in the lead of all DRI-producing which declined slightly to 5.97 million tons. nations. It is estimated that approximately 30% of all DRI Egypt joined the nations producing more than 5 million and HBI produced last year within India was transported to a tons, which is nearly double its output of 10 years earlier. steelmaking facility off-site. A very large share of this was via UAE DRI production continued to increase, as it made 3.78 truck transport to nearby melt shops. million tons only 8 years after entering the industry. Most of the output – nearly 20 million tons – was by Venezuelan production fell to less than 1 million tons, rotary kiln plants which use coal as the fuel and the reductant. which is a little more than 10% of its peak output in 2005 and According to the Sponge Iron Manufacturers Association the lowest performance in 40 years. (SIMA), headquartered in Delhi, there are 315 of these units There has been notable growth within the USA, due to in operation. The yearly production by these rotary kilns was the combination of an intense demand for low residual iron 35% higher than in 2017. units and the availability of low-cost natural gas. After the Another contributor to increased DRI output within industry was completely shuttered from 2009-2013, the USA India was the stabilization of the COREX® export gas-based produced 3.35 million tons in 2018, with the expectation of and coke oven gas-based plants. The MIDREX® Plants at significantly greater figures in the coming years. JSW Steel (Toranagallu) and JSW (Dolvi) set production and Algeria joined the ranks of DRI-producers in 2018, with performance records during the year while operating with the start-up of a 2.5 million t/y MIDREX Combination HDRI/ COREX export gas and coke oven gas, respectively. Indian CDRI Plant for Tosyali Algerie, located near Oran, Algeria. JSW Steel Toranagallu in Karnataka, India LGOK HBI-2 and HBI-3 in Gubkin, Russia 2018 World Direct Reduction Statistics Page 3 © 2019 Midrex Technologies, Inc. 8.5.2019 4 TABLE OF CONTENTS < > NEW CAPACITY AND PLANTS UNDER CONSTRUCTION MIDREX® UNDER CONSTRUCTION NEW CAPACITY AQS to Add 2.5 Million Tons of DRI in Algeria World’s Largest Single Module HDRI/CDRI Plant Begins Operations at Tosyali Algerie Tosyali Algerie started up and commissioned a 2.5 million tons per year (t/y) DRI plant equipped with a MIDREX MEGA- MOD® furnace, which is capable of simultaneous production of hot and cold DRI (HDRI and CDRI, respectively) to match the requirements of the steel mill. HDRI from the MIDREX Plant is expected to help substantially increase billet production and Construction of a 2.5 million t/y MIDREX Combination DRI boost high-quality rebar production to more than 3 million t/y. Plant for Algerian Qatari Steel (AQS) continued throughout Tosyali Algerie started production of steel rebar in Bethioua, 2018. The plant, located in Bellara, Algeria, 375 km east of near Oran, Algeria, in 2013, by using scrap as feedstock. It sub- Algiers, will provide HDRI and CDRI to a nearby EAF melt shop, sequently added 500,000 t/y of wire rod production capac- which will produce 2.0 million t/y of rebar and wire rod. The ity, which was started up in 2015. At this point, the decision MIDREX Plant will be capable of producing HDRI and CDRI si- was made to add a direct reduction plant, supplied by Midrex multaneously without halting operation. Technologies, Inc. and its consortium partner, Paul Wurth. AQS was founded in 2013 as a joint venture between Qatar Commissioning of the world’s largest single module DRI plant Steel International (49%), Algerian investment group, SIDER was completed in July 2018 and production of CDRI began in (46%), and the National Investment Fund of Algeria (5%). The late November 2018. HDRI production, commenced in February AQS DRI Plant is scheduled for start-up in late 2019. 2019. Iron ore pellets for use in the DRI plant are transported from the port at Arzew via a 10-km conveyor. An insulated mechani- cal conveyor is used to transport HDRI, typically at 600° C, from the MIDREX® Shaft Furnace to the nearby melt-shop, thus im- proving energy efficiency. 2018 World Direct Reduction Statistics Page 4 © 2019 Midrex Technologies, Inc. 8.5.2019 5 TABLE OF CONTENTS < > NEW CAPACITY AND PLANTS UNDER CONSTRUCTION Cliffs Moves Toward Completion of Great Lakes HBI Plant HYL/ENERGIRON NEW CAPACITY No new HYL/Energiron modules began operation in 2018. UNDER CONSTRUCTION Tenova HYL/Energiron DRI Micro-Module Selected for Project in Bolivia HYL/Energiron direct reduction technology will be used for the first stage of an iron & steel project for Empresa Siderúrgica del Mutún (ESM) at Puerto Suárez, Santa Cruz, Bolivia. The 250,000 t/y Micro-Module DRI Plant is expected to be operational in mid-2021. Construction of a 1.6 million t/y MIDREX HBI Plant for Cleveland-Cliffs, Inc. continued in 2018. Cleveland-Cliffs announced plans to build the plant on a brownfield site at the Port of Toledo in June of 2017. The Toledo location was chosen due to its proximity to several future customers, as well as its logistics advantages including affordable gas availability and access by multiple rail carriers. Groundbreaking for the plant was in April of 2018. It will provide a domestic source of HBI for electric arc furnace steel- makers in the Great Lakes region when it begins operation in summer 2020. 2018 World Direct Reduction Statistics Page 5 © 2019 Midrex Technologies, Inc. 8.5.2019 6 TABLE OF CONTENTS < > 2018 World Shaft Furnace Production by Process MIDREX® Total World Production: 100.5 Mt 80% 2016 2017 2018 MIDREX® 78.8% 79.0% 79.9% Other Shaft Furnace 21.2% 21.0% 20.1% Other Shaft Furnace Source: Midrex Technologies, Inc.
Recommended publications
  • Society, Materials, and the Environment: the Case of Steel
    metals Review Society, Materials, and the Environment: The Case of Steel Jean-Pierre Birat IF Steelman, Moselle, 57280 Semécourt, France; [email protected]; Tel.: +333-8751-1117 Received: 1 February 2020; Accepted: 25 February 2020; Published: 2 March 2020 Abstract: This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability, scarcity), energy resources, and generation of by-products, i.e., the circular economy, the anthropogenic iron mine, and the energy transition. The paper also deals with emissions to air (dust, Particulate Matter, heavy metals, Persistant Organics Pollutants), water, and soil, i.e., with toxicity, ecotoxicity, epidemiology, and health issues, but also greenhouse gas emissions, i.e., climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed, stressing areas where knowledge is still lacking. In the face of all these issues, technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel, energy conservation, air/water/soil emissions) and in line with present environmental regulations; on the other hand, there are important hanging issues, such as the generation of mine tailings (and tailings dam failures), the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050, at least in the EU), and the emission of fine PM, which WHO correlates with premature deaths. Moreover, present regulatory levels of emissions will necessarily become much stricter.
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Energy System Analysis in the Swedish Iron and Steel Industry Ernesto Ubieto Master of Science (120 credits) Mechanical Engineering Luleå University of Technology Department of Engineering Sciences and Mathematics Energy System Analysis of the Swedish Iron and Steel Industry Ernesto Ubieto Udina Table of contents 1 INTRODUCTION ................................................................................................................. 7 2 OBJECTIVES ....................................................................................................................... 8 3 METHODOLOGY ................................................................................................................ 9 3.1 Methodology of System Analysis ............................................................................... 9 3.1.1 Scope of the Analysis ....................................................................................... 10 3.1.2 Boundaries of the Analysis ............................................................................... 11 3.1.3 Time frames ..................................................................................................... 11 3.1.4 Components of the System .............................................................................. 12 3.1.5 Connections within the system ........................................................................ 13 3.1.6 Limitations of the study ................................................................................... 15 3.1.7 Tracking CO2
    [Show full text]
  • The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining
    materials Article The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction–Melting Separation–Slag Refining Bin Li 1,2, Guanyong Sun 1,2, Shaoying Li 1,2, Hanjie Guo 1,2,* and Jing Guo 1,2 1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (B.L.); [email protected] (G.S.); [email protected] (S.L.); [email protected] (J.G.) 2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-138-0136-9943 Received: 9 March 2020; Accepted: 9 April 2020; Published: 14 April 2020 Abstract: In this study, high-purity iron with purity of 99.987 wt.% was prepared employing a process of direct reduction–melting separation–slag refining. The iron ore after pelletizing and roasting was reduced by hydrogen to obtain direct reduced iron (DRI). Carbon and sulfur were removed in this step and other impurities such as silicon, manganese, titanium and aluminum were excluded from metallic iron. Dephosphorization was implemented simultaneously during the melting separation step by making use of the ferrous oxide (FeO) contained in DRI. The problem of deoxidization for pure iron was solved, and the oxygen content of pure iron was reduced to 10 ppm by refining with a high basicity slag. Compared with electrolytic iron, the pure iron prepared by this method has tremendous advantages in cost and scale and has more outstanding quality than technically pure iron, making it possible to produce high-purity iron in a short-flow, large-scale, low-cost and environmentally friendly way.
    [Show full text]
  • The Future of Steelmaking– Howeuropean the MANAGEMENT SUMMARY
    05.2020 The future of steelmaking – How the European steel industry can achieve carbon neutrality MANAGEMENT SUMMARY The future of steelmaking / How the European steel industry can achieve carbon neutrality The European steelmaking industry emits 4% of the EU's total CO2 emissions. It is under growing public, economic and regulatory pressure to become carbon neutral by 2050, in line with EU targets. About 60% of European steel is produced via the so-called primary route, an efficient but highly carbon-intensive production method. The industry already uses carbon mitigation techniques, but these are insufficient to significantly reduce or eliminate carbon emissions. The development and implementation of new technologies is underway. With limited investment cycles left until the 2050 deadline, the European steelmaking industry must decide on which new technology to invest in within the next 5-10 years. We assess the most promising emerging technologies in this report. They fall into two main categories: carbon capture, use and/or storage (CCUS), and alternative reduction of iron ore. CCUS processes can be readily integrated into existing steel plants, but cannot alone achieve carbon neutrality. If biomass is used in place of fossil fuels in the steelmaking process, CCUS can result in a negative carbon balance. Alternative reduction technologies include hydrogen-based direct reduction processes and electrolytic reduction methods. Most are not well developed and require huge amounts of green energy, but they hold the promise of carbon-neutral steelmaking. One alternative reduction process, H2-based shaft furnace direct reduction, offers particular promise due to its emissions-reduction potential and state of readiness.
    [Show full text]
  • Investigation of Reduction of Magnetite Based Carbon Composite Pellets Under Semi-Fusion Conditions
    Physicochem. Probl. Miner. Process., 54(3), 2018, 621-628 Physicochemical Problems of Mineral Processing ISSN 1643-1049 http://www.journalssystem.com/ppmp/ © Wroclaw University of Science and Technology Received March 16, 2017; reviewed; accepted October 6, 2017 Investigation of reduction of magnetite based carbon composite pellets under semi-fusion conditions Yunus Emre Benkli 1, Mustafa Boyrazli 2, Guzide Meltem Lule Senoz 1, Zeki Cizmecioglu 3 1Ataturk University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 25240, Erzurum, Turkey 2 Firat University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 23119, Elazıg, Turkey 3 Istanbul Commerce University, Faculty of Engineering and Design, Department of Jewelry Engineering, 34210, Istanbul, Turkey Corresponding author: [email protected] (Yunus Emre Benkli) Abstract: In this study, carbon composite pellets were exposed to a reduction test under low temperature and semi-fusion conditions in which iron was melted without a solid form of slag deteriorated. The purpose of the reduction experiments under the semi-fusion condition was to produce an iron nugget which had physical and chemical properties similar to blast furnace pig iron at lower temperatures. These nuggets were produced from pellets that were made from a mixture of iron oxide, coke, flux, and a binder. These nuggets heated in a furnace with a chamber temperature of 1330 C. The produced dried carbon composite pellets were melted and carbureted in a single-stage process. In this study, three distinct products were produced as a function of furnace residence time at fixed furnace temperature (1330 C). These products were direct reduced iron (DRI), transition direct reduced iron (TDRI), and iron nuggets produced at residence times 8-24, 32-40 min, and 48 min, respectively.
    [Show full text]
  • CO2 Emission Reduction Potential in the Steel Industry by Integration of a Direct Reduction Process Into Existing Steel Mills Ab
    Challenges for Petrochemicals and Fuels: Integration of Value Chains and Energy Transition DGMK Conference October 10 – 12, 2018 in Berlin, Germany CO2 Emission Reduction Potential in the Steel Industry by Integration of a Direct Reduction Process into Existing Steel Mills N. Müller, G. Herz, E. Reichelt, M. Jahn Fraunhofer IKTS, Dresden, Germany Abstract In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO2 emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO2 emissions while still being able to further utilize existing blast furnaces, the possibility of in- cluding a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing hot met- al. By varying boundary conditions of the DRP while recording the CO2 emissions of the two process steps, the overall potential for the reduction of CO2 emissions was estimated.
    [Show full text]
  • Zero-Carbon Steel Making
    Zero-carbon steel making: The opportunities and role of Australia in nurturing a `green steel' industry Mahesh Venkataraman [email protected] Zsuzsanna Csereklyei [email protected] Emma Aisbett [email protected] Alireza Rahbari [email protected] Frank Jotzo [email protected] Michael Lord [email protected] John Pye [email protected] Further information: http://energy.anu.edu.au December 19, 2019 Contents 1 Introduction 2 5 Australia's role in the zero-carbon steelmaking transition 11 2 Current iron and steel making tech- 5.1 Australian initiatives for reducing nologies 3 emissions in the steel industry . 12 3 Technologies for reducing the carbon 5.2 Potential for a green steel industry footprint of the steel industry 6 in Australia . 14 3.1 Hydrogen-based steelmaking . .7 6 Outlook 17 3.2 Electrolytic production of iron . .7 References 20 4 Is zero-carbon steelmaking really necessary? 9 1. Introduction Steel is arguably the most important structural material used in society, especially in those countries undergoing rapid development. There is a strong correlation between a country's economic devel- opment and its cumulative metal consumption. Zheng et al. [1], for example, find that a country's `metal footprint' (in tonnes per capita) tends to increase by 1.9% for every 1% increase in gross domestic product (GDP) per capita. The global production of crude steel has increased steadily on an average by 1.8% in the last five years. In 2018, it reached an astounding 1,808 million tonnes [2], with most of the growth in demand occurring in developing countries such as India and China [1, 3].
    [Show full text]
  • MIDREX Processes
    MIDREX Processes Masaaki ATSUSHI, Hiroshi UEMURA, Takashi SAKAGUCHI Plant Engineering Department, Iron Unit Division, Natural Resources & Engineering Business Since 1978, when a plant based on the MIDREX iron (hereinafter referred to as DRI). The process process was built in Qatar for producing direct reduced reduces iron ore using a reforming gas made from iron, Kobe Steel and MIDREX Technologies, Inc., have natural gas. The DRI is used mainly as the raw collaborated to make many technical improvements in material for electric arc furnaces (EAFs), as a clean the process. The largest MIDREX module, having an iron source substitute for scrap iron. annual production capacity of 1.8 million tones, began Pores are left behind in the DRI after oxygen has operation in 2007. The MIDREX module, together with been removed. These pores, if filled with water, for a melt shop, now has a production capacity comparable example, can cause the iron to reoxidize with to that of a blast furnace. This paper presents an ambient oxygen, generate heat and occasionally overview of the history of the technical developments in ignite a fire. This makes it difficult to transport the these processes, as well as the latest developments in product by ship or to store it in the open air over an this field. extended period of time. To resolve this issue, Kobe Steel developed a technology for compacting DRI Introduction into briquette iron at a temperature of around 700℃. DRI has an apparent density of 3.4 to 3.6t/m3, while MIDREX direct reduction ironmaking (hereinafter the briquette iron has an apparent density of 5.0 to referred to as the MIDREX process) reduces iron 5.5t/m3.
    [Show full text]
  • Process Improvements for Direct Reduced Iron Melting in the Electric Arc Furnace with Emphasis on Slag Operation
    processes Article Process Improvements for Direct Reduced Iron Melting in the Electric Arc Furnace with Emphasis on Slag Operation Marcus Kirschen 1,*, Thomas Hay 2 and Thomas Echterhof 2 1 Thermal Process Engineering, University of Bayreuth, Universitätsstrasse 30, D-94557 Bayreuth, Germany 2 Department for Industrial Furnaces and Heat Engineering, RWTH Aachen University, D-52074 Aachen, Germany; [email protected] (T.H.); [email protected] (T.E.) * Correspondence: [email protected] Abstract: Steelmaking based on direct reduced iron (DRI, and its compacted derivative hot briquetted iron, HBI) is an anticipated important global alternative to current steel production based on FeOx reduction in blast furnaces due to its lower specific CO2 emission. The majority of DRI is melted and refined in the electric arc furnace with different process conditions compared to the melting of steel scrap due to its raw material composition being rather different. We provide data and analysis of slag composition of DRI charges vs. steel scrap charges for 16 industrial electric arc furnaces (EAFs). Suggestions for optimized slag operation and resulting process improvements of DRI melting in the EAF are given. A dynamic mass and energy model of the DRI melting in the EAF is introduced to illustrate the implications of the adapted slag operation on the EAF process with DRI charges. Keywords: electric arc furnace; direct reduced iron; process model; process improvement 1. Introduction Citation: Kirschen, M.; Hay, T.; The global steel industry is subject to significant changes in order to decrease its CO2 Echterhof, T. Process Improvements emission representing the most important contribution within the production industry for Direct Reduced Iron Melting in sector to global CO2 emission, approximately 7%.
    [Show full text]
  • Lowering the Carbon Footprint of Steel Production Using Hydrogen Direct Reduction of Iron Ore and Molten Metal Methane Pyrolysis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2019 doi:10.20944/preprints201910.0107.v1 Article Lowering the carbon footprint of steel production using hydrogen direct reduction of iron ore and molten metal methane pyrolysis Abhinav Bhaskar 1*, Mohsen Assadi 2 and Homam Nikpey Somehsaraei 3 1,2,3 University of Stavanger, 4036,Norway; * Correspondence: [email protected] Received: date; Accepted: date; Published: date Abstract: Reducing emissions from the iron and steel industry is essential to achieve the Paris climate goals.A new system to reduce the carbon footprint of steel production is proposed in this article by coupling hydrogen direct reduction of iron ore (H-DRI) and natural gas pyrolysis on liquid metal surface inside a bubble column reactor.If grid electricity from EU is used,the emissions would be 435 kgCO2/tls without considering methane leakage from the extraction,storage and transport of natural gas.Solid carbon, produced as a by-product of natural gas decomposition,finds applications in many industrial sectors,including as a replacement for coal in coke ovens.Specific energy consumption (SEC) of the proposed system is approximately 6.3 MWh per ton of liquid steel(tls).It is higher than other competing technologies,3.48 MWh/tls for water electrolysis based DRI,and,4.3-4.5 MWh/tls for natural gas based DRI and blast furnace-basic oxygen furnace (BF-BOF) respectively.Utilization of large quantities of natural gas,where the carbon remains unused, is the major reason for high SEC.Preliminary analysis of the system revealed that it has the potential to compete with existing technologies to produce CO2free steel,if renewable electricity is used.Further studies on the kinetics of the bubble column reactor,H-DRI shaft furnace,design and sizing of components,along with building of industrial prototypes are required to improve the understanding of the system performance.
    [Show full text]
  • Studies on Direct Reduced Iron Melting in Induction Furnace
    Trans. Indian Inst. Met. TP 1904 Vol.57, No. 5, October 2004, pp. 467-473 STUDIES ON DIRECT REDUCED IRON MELTING IN INDUCTION FURNACE S.K. Dutta, A.B. Lele and N.K. Pancholi Metallurgical Engg. Deptt., Faculty of Tech. & Engg., M. S. University of Baroda, Kalabhavan, Vadodara 390 001. E mail: [email protected] (Received 10 April 2004 ; in revised form 18 May 2004) ABSTRACT Of late, main problems faced by steelmakers are short supply, fluctuating prices together with extremely heterogeneous nature and presence of tramp elements of steel scrap. Use of direct reduced iron (DRI) as a partial replacement to scrap, to some extent does help in overcoming this hurdle. However, unlike scrap and even pig iron, DRI is characterized by high porosity, low thermal and electrical conductivities which, in turn, poses problems in its melting. Attempts were made to study melting of DRI in a laboratory size induction furnace using molten steel bath as hot heel. The induction stirring accelerates the transfer of heat and promotes the melting of DRI. The effect of partial replacement of scrap by DRI on various melting parameters has been studied. Also kinetic studies were made to evaluate net melting rate. It was revealed that since melting and refining are taking place simultaneously, the increasing proportion of DRI in the input charge increases net melting rate and metallic yield. It was concluded that higher proportion of DRI, as a replacement to scrap, contributes to improve mechanical properties with no segregation of carbon content and the decrease in sulphur and tramp elements in the product that improves steel quality.
    [Show full text]
  • Carbon-Free Steel Production: Cost Reduction Options and Usage of Existing Gas Infrastructure
    Carbon-free steel production Cost reduction options and usage of existing gas infrastructure STUDY Panel for the Future of Science and Technology EPRS | European Parliamentary Research Service Scientific Foresight Unit (STOA) PE 690.008 – April 2021 EN Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure The steel sector is one of the most challenging sectors to decarbonise and has recently received special attention owing to the potential use of low-carbon hydrogen (green and blue) to reduce its fuel combustion and process-related carbon emissions. This report addresses concerns that might arise while evaluating the potential and limitations of the future role of hydrogen in decarbonising the iron and steel industries. The report provides a comprehensive overview of current technical knowledge, (pilot) projects and road maps at national and EU level. This information is supplemented by previously published indicative price projections for the various steel production routes and a long- term study, analysing the evolution of the global steel sector up until 2100. AUTHORS This study was written by Juan Correa Laguna, Jan Duerinck, Frank Meinke-Hubeny and Joris Valee of VITO NV at the request of the Panel for the Future of Science and Technology (STOA) and managed by the Scientific Foresight Unit of the Directorate for Impact Assessment and European Added Value, within the Directorate- General for Parliamentary Research Services (EPRS) of the Secretariat of the European Parliament. ADMINISTRATORS RESPONSIBLE Lieve van Woensel, Scientific Foresight Unit (STOA) Andrés García Higuera, Scientific Foresight Unit (STOA) To contact the publisher, please e-mail [email protected] LINGUISTIC VERSION Original: EN Manuscript completed in March 2021.
    [Show full text]