A Multi-Faceted Approach to Characterize Acid-Sulfate Alteration Processes in Volcanic

Total Page:16

File Type:pdf, Size:1020Kb

A Multi-Faceted Approach to Characterize Acid-Sulfate Alteration Processes in Volcanic A multi-faceted approach to characterize acid-sulfate alteration processes in volcanic hydrothermal systems on Earth and Mars by Emma Cordts Marcucci B.S., Johns Hopkins University, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2013 This thesis entitled: A multi-faceted approach to characterize acid-sulfate alteration processes in volcanic hydrothermal systems on Earth and Mars written by Emma Cordts Marcucci has been approved for the Department of Geological Sciences ____________________________________ Dr. Brian M. Hynek ____________________________________ Dr. Lang Farmer ____________________________________ Dr. Tom McCollom ____________________________________ Dr. Alexis Templeton ____________________________________ Dr. Steve Schmidt Date: ______________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Marcucci, Emma Cordts (Ph.D., Geological Sciences) A multi-faceted approach to characterize acid-sulfate alteration processes in volcanic hydrothermal systems on Earth and Mars Thesis directed by Associate Professor Brian M. Hynek Abstract Acid-sulfate alteration is a dominant weathering process in high temperature, low pH, sulfur-rich volcanic environments. Additionally, hydrothermal environments have been proposed as locations where life could have originated on Earth. Based on the extensive evidence of flowing surface water and persistent volcanism, similar locations and processes could have existed on early Mars. Globally observed alteration mineral assemblages likely represent relic Martian hydrothermal settings. Yet the limited understanding of environmental controls, limits the confidence of interpreting the paleoconditions of these hydrothermal systems and assessing their habitability to support microbial life. This thesis presents a series of laboratory experiments, geochemical models, analog fieldwork, and Martian remote sensing to characterize distinguishing features and controls of acid-sulfate alteration. The experiments and models were designed to replicate alteration is a highly acidic, sulfurous, and hot field sites. The basaltic minerals were individually reacted in both experimental and model simulations with varying initial parameters to infer the geochemical pathways of acid-sulfate alteration on Earth and Mars. It was found that for a specific starting material, secondary mineralogies were consistent. Variations in pH, temperature and duration affected the abundance, shape, and size of mineral products. Additionally evaporation played a key role in secondary deposits; therefore, both alteration and evaporitic processes need to be taken into consideration. Analog volcanic sites in Nicaragua were used to supplement this work and highlight differences between natural iii and simulated alteration. In situ visible near-infrared spectroscopy demonstrated that primary lithology and gas chemistry were dominant controls of alteration, with secondary effects from environmental controls, such as temperature and pH. The spectroscopic research from the field was directly related to Mars observations in Noctis Labyrinthus, Terra Sirenum, Syrtis Major, and Mawrth Vallis to help interpret ancient conditions in those settings. To further apply the results from experiments, models, and fieldwork, Coprates Chasma in eastern Valles Marineris was studied using mineralogical and morphological data. Emplacement of alteration minerals indicated both pre- and post-rifting hydrothermal activity. Smaller southern grabens appeared to have experienced a unique alteration. In summary, this dissertation presents research that contributes to the understanding of the geological evolution of Mars and potentially habitability. iv Acknowledgements I would most like to thank my advisor, Brian Hynek, for his guidance through this project and his patience reading and re-reading many drafts of my articles. I would also like to thank Tom McCollom for use of his laboratory for experimental work and advice on geochemical modeling. The fieldwork component of this research would not have been possible without the in-country assistance of INETER and the spectral interpretation help from Kathryn Young and Mikki Osterloo. I would also like to thank Karyn Rogers for introducing me to field techniques for biological samples. Chapters 2-5 have been or will be submitted for publication in scientific journals and have benefitted greatly from: Brian Hynek, Tom McCollom, Mikki Osterloo, Stuart Robbins, Karyn Rogers, and Kathryn Young. A number of friends and family provided insightful comments on the introduction of this these, including Barbara Cordts, Grace Cordts, Elizabeth Frank, Ulyana Horodyskyj, Kristin Lucas, Andrea Marcucci, Dan Marcucci, Olivia Marcucci, Macy Marcucci, Michael O’Keefe, Mikki Osterloo, Ernesto Perez, Stuart Robbins, and Nadine Semer. Finally, I would like to thank my family and friends, the wonderful actors and technical crew of Centerstage Theater Company and the instructors at FAC for helping me remain sane and healthy through the intense process to obtain a Ph.D. The science chapters 2-4 presented in this thesis have been submitted or will soon be submitted to journals. Acknowledgements for each section follow: Chapter 2: We would like to acknowledge the Laboratory for Environmental and Geological Studies (LEGS) at the University of Colorado at Boulder’s (UCB) Department of Geological Sciences for completing the fluid analysis. The XRD instrument used is also at UCB’s Department of Geological Sciences. The SEM/EDS instrument is housed at the Nanomaterials Characterization Facility on the UCB campus. Additionally, we thank the v Nicaraguan government agency Instituto Nicaragüense de Estudios Territoriales for logistical support in Nicaragua. This work was supported by NASA NESSF Grant # NNX10AU39H. Thank you to T. McCollom for insight comments on experiment and model design and analysis, as well as, use of laboratory space and manuscript edits. Many thanks to M. Osterloo, S. Robbins, and D. Marcucci for editorial comments that greatly improved this manuscript. Chapter 3: We would like to thank Analytical Spectral Devices, Inc. in Boulder, CO for the use of the TerraSpec4 instrument used during this field campaign, particularly those individuals who worked hard to facilitate the loan and training in a limited timeframe. Additionally, we thank the Nicaraguan government agency Instituto Nicaragüense de Estudios Territoriales for in country support of this study. Thanks to Mikki Osterloo for useful discussions regarding this manuscript. This work was supported by NASA NESSF Award #NNX10AU39H, the CU Department of Geological Sciences Longley-Wahlstrom-Werner Graduate Research Award, and NASA Exobiology Award #NNX08AQ11G and NASA Early Career Award #NNX12AF20G to B. M. Hynek. Chapter 4: We would like to thank Kathryn Kierein-Young for the custom ENVI/IDL spectra clean program and support in CRISM analyses. We would like to thank Mikki Osterloo for assistance with the analysis of THEMIS spectral data. We thank the CRISM, THEMIS, HiRISE, and CTX teams for the acquisition of data used in this study. This work was supported by NASA NESSF Grant # NNX10AU39H. vi Table of Contents Acknowledgements ....................................................................................................................... v Table of Contents ........................................................................................................................ vii List of Tables ................................................................................................................................ ix List of Figures ................................................................................................................................ x 1. Introduction .............................................................................................................................. 1 1.1 Historical Observations ..................................................................................................... 1 1.2 Spacecraft Exploration ...................................................................................................... 4 1.2.1 Brief History of Water and Alteration Environments ................................................... 7 1.3 Morphological Evidence .................................................................................................... 9 1.3.1 Orbital Evidence for Ancient Surface Water ................................................................ 9 1.3.2 Orbital Evidence for Ancient Subsurface Water ........................................................ 14 1.3.3 Orbital Evidence for Modern Water ........................................................................... 15 1.3.4 In situ Evidence for Ancient Water ............................................................................ 16 1.3.5 Modern Ground Ice ..................................................................................................... 19 1.4 Chemical and mineralogical evidence ............................................................................ 19 1.4.1 Iron minerals ..............................................................................................................
Recommended publications
  • The Evolution of a Heterogeneous Martian Mantle: Clues from K, P, Ti, Cr, and Ni Variations in Gusev Basalts and Shergottite Meteorites
    Earth and Planetary Science Letters 296 (2010) 67–77 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The evolution of a heterogeneous Martian mantle: Clues from K, P, Ti, Cr, and Ni variations in Gusev basalts and shergottite meteorites Mariek E. Schmidt a,⁎, Timothy J. McCoy b a Dept. of Earth Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1 b Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0119, USA article info abstract Article history: Martian basalts represent samples of the interior of the planet, and their composition reflects their source at Received 10 December 2009 the time of extraction as well as later igneous processes that affected them. To better understand the Received in revised form 16 April 2010 composition and evolution of Mars, we compare whole rock compositions of basaltic shergottitic meteorites Accepted 21 April 2010 and basaltic lavas examined by the Spirit Mars Exploration Rover in Gusev Crater. Concentrations range from Available online 2 June 2010 K-poor (as low as 0.02 wt.% K2O) in the shergottites to K-rich (up to 1.2 wt.% K2O) in basalts from the Editor: R.W. Carlson Columbia Hills (CH) of Gusev Crater; the Adirondack basalts from the Gusev Plains have more intermediate concentrations of K2O (0.16 wt.% to below detection limit). The compositional dataset for the Gusev basalts is Keywords: more limited than for the shergottites, but it includes the minor elements K, P, Ti, Cr, and Ni, whose behavior Mars igneous processes during mantle melting varies from very incompatible (prefers melt) to very compatible (remains in the shergottites residuum).
    [Show full text]
  • Chemin X-Ray Diffraction of the Windjana Sample
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mineralogy, provenance, and diagenesis of a potassic 10.1002/2015JE004932 basaltic sandstone on Mars: CheMin X-ray diffraction Special Section: of the Windjana sample (Kimberley area, Gale Crater) The Mars Science Laboratory Rover Mission (Curiosity) at The Allan H. Treiman1, David L. Bish2, David T. Vaniman3, Steve J. Chipera4, David F. Blake5, Kimberley, Gale Crater, Mars Doug W. Ming6, Richard V. Morris6, Thomas F. Bristow5, Shaunna M. Morrison7, Michael B. Baker8, Elizabeth B. Rampe6, Robert T. Downs7, Justin Filiberto9, Allen F. Glazner10, Ralf Gellert11, Key Points: Lucy M. Thompson12, Mariek E. Schmidt13, Laetitia Le Deit14, Roger C. Wiens15, Amy C. McAdam16, • First mineralogical analysis of Cherie N. Achilles2, Kenneth S. Edgett17, Jack D. Farmer18, Kim V. Fendrich7, John P. Grotzinger8, sandstone on Mars 19 20 8 21 12 • Windjana sandstone very rich in Sanjeev Gupta , John Michael Morookian , Megan E. Newcombe , Melissa S. Rice , John G. Spray , sanidine, implying a trachyte source Edward M. Stolper8, Dawn Y. Sumner22, Ashwin R. Vasavada20, and Albert S. Yen20 rock • The source of Gale Crater sediments is 1Lunar and Planetary Institute, Houston, Texas, USA, 2Department of Geological Sciences, Indiana University, Bloomington, Indiana, an incredibly diverse igneous terrane USA, 3Planetary Science Institute,Tucson,Arizona,USA,4Chesapeake Energy Corporation, Oklahoma City, Oklahoma, USA, 5NASA Ames Research Center, Moffett Field, California, USA, 6Astromaterials
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • AST-2018-1847-Ver9-Hughes 4P 260..283
    ASTROBIOLOGY Volume 19, Number 3, 2019 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1847 Basaltic Terrains in Idaho and Hawai‘i as Planetary Analogs for Mars Geology and Astrobiology Scott S. Hughes,1 Christopher W. Haberle,2 Shannon E. Kobs Nawotniak,1 Alexander Sehlke,3 W. Brent Garry,4 Richard C. Elphic,3 Samuel J. Payler,5 Adam H. Stevens,5 Charles S. Cockell,5 Allyson L. Brady,6 Jennifer L. Heldmann,3,7 and Darlene S.S. Lim3,8 Abstract Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai‘i, the United States, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4) Kılauea Iki lava lake, and (5) Kılauea caldera in the Kılauea Volcano summit region and the East Rift Zone of Hawai‘i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive rock alteration, shows that basaltic terrains in Idaho and Hawai‘i provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.
    [Show full text]
  • Properties, Origins, and Preservation of Ancient Olivine-Bearing Bedrock: Implications for Noachian Processes on Mars, A
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3033.pdf PROPERTIES, ORIGINS, AND PRESERVATION OF ANCIENT OLIVINE-BEARING BEDROCK: IMPLICATIONS FOR NOACHIAN PROCESSES ON MARS, A. D. Rogers1, J. C. Cowart1, J. W. Head2, N. H. Warner3, A. Palumbo2, and M. P. Golombek4, 1Stony Brook University, Stony Brook, NY, USA ([email protected]), 2Brown University, Providence, RI, USA, 3SUNY Geneseo, Geneseo, NY USA, 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Introduction and significance: Many intercrater cratered terrains [10]. Even where Hesperian volcanic plains and degraded impact craters in the Noachian high- plains are in direct contact with older bedrock, a striking lands contain flat-lying, relatively high thermal inertia difference in TI and regolith cover is observed, such that (TI) surfaces (“bedrock”) that commonly show modest Hesperian plains are more mantled than the older subja- enrichments in olivine and/or pyroxene compared to sur- cent bedrock units [10] (Fig. 2). A candidate explanation rounding materials (Fig. 1). These surfaces have maxi- for this is that the Noachian bedrock was rapidly buried mum TI values above 500 J m-2 K-1 s-1/2 in THEMIS im- and then recently exposed [10], however an alternative ages; some units exhibit TI values well above 900 J m-2 explanation is that the Noachian bedrock units are me- K-1 s-1/2. These physicochemically distinctive units occur chanically weak/fine-grained materials that break up into in dozens of isolated exposures ranging from ~2x102 to fine-grained materials [e.g. 11,12] that are more easily ~3x104 km2 in area and exhibit morphologies indicating moved by wind.
    [Show full text]
  • Mineralogy of the Martian Surface
    EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent.
    [Show full text]
  • The Alkaline Volcanic Rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars Details
    The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars Details Meeting 2016 Fall Meeting Section Planetary Sciences Session Terrestrial Analogs for Planetary Processes: Oceans, Volcanoes, Impacts, and Dunes I Identifier P31E-01 Authors Haberle, C W*, Mars Space Flight Facility, Arizona State University, Tempe, AZ, United States Hughes, S S, Idaho State University, Idaho Falls, ID, United States Kobs-Nawotniak, S E, Department of Geosciences, Idaho State University, Idaho Falls, ID, United States Christensen, P R, Arizona State University, Tempe, AZ, United States Index Sediment transport [4558] Terms Atmospheres [5405] Titan [6281] Venus [6295] Abstract Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and Kings Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010.
    [Show full text]
  • Adirondack Recreational Trail Advocates (ARTA)
    Adirondack Recreational Trail Advocates (ARTA) Proposal for the Adirondack Rail Trail Photo: Lake Colby Causeway, Lee Keet, 2013 Submitted by the Board of Directors of ARTA Tupper Lake: Hope Frenette, Chris Keniston; Maureen Peroza Saranac Lake: Dick Beamish, Lee Keet, Joe Mercurio; Lake Clear: David Banks; Keene: Tony Goodwin; Lake Placid: Jim McCulley; Beaver River: Scott Thompson New York State Snowmobile Association: Jim Rolf WWW.TheARTA.org Adirondack Recreational Trail Advocates P.O. Box 1081 Saranac Lake, N.Y. 12983 Page 2 This presentation has been prepared by Adirondack Recreational Trail Advocates (ARTA), a not-for- profit 501(c)(3) corporation formed in 2011 and dedicated to creating a recreational trail on the largely abandoned and woefully underutilized rail corridor . © 2013, Adirondack Recreational Trail Advocates, Inc. Page 3 Contents Executive Summary ...................................................................................................................................... 6 Original UMP Criteria Favor the Rail Trail .................................................................................................. 7 Changing the Status of the Corridor ........................................................................................................... 10 Classification as a Travel Corridor ......................................................................................................... 10 Historic Status ........................................................................................................................................
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • First Detection of Subsurface Reflectors in Coprates Chasma, Mars. R. Noguchi1, K. Ishiyama1, A. Kumamoto2, T. Usui1 and C. Uemu
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2333.pdf First detection of subsurface reflectors in Coprates Chasma, Mars. R. Noguchi1, K. Ishiyama1, A. Kumamoto2, T. Usui1 and C. Uemura3 1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210 Japan ([email protected]), 2Department of Science, Tohoku University, Sendai, Japan, 3The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan. 1/2 Introduction: Cryosphere on Mars has been inves- dradar/εbulk . The identified echoes were not confirmed tigated by previous/ongoing missions that have reported using the off-nadir surface reflectors because they were dense high-resolution remote sensing datasets. The di- not found in the radargram of surface clutter calculated rect evidence for current cryosphere is the existence of with MOLA data by applying Kirchhoff approximation. shallow subsurface ice layers [1]. Another feature in- We described outcrops of the chasma wall using vis- voking current icy processes is recurring slope lineae ible images and topographic data. First, layers on out- (RSL). RSLs are globally distributed in the mid- and crops were identified on HiRISE images. Then we as- low- latitudes including Valles Marineris [2]. These cir- signed those identified layers on CTX digital terrain cumstances imply the pervasive existence of ground ice models (DTMs) with those of orthodox images to deter- in shallow depth of current Martian subsurface. mine the actual depths of the subsurface reflectors. The Radar sounding technique has potential to visualize CTX DTMs were generated using MarsSI [7]. In total, subsurface structure of Mars.
    [Show full text]
  • Erosion Rate and Previous Extent of Interior Layered Deposits on Mars Revealed by Obstructed Landslides
    Erosion rate and previous extent of interior layered deposits on Mars revealed by obstructed landslides P.M. Grindrod1,2* and N.H. Warner3† 1Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK 2Centre for Planetary Sciences at UCL/Birkbeck, London WC1E 6BT, UK 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA ABSTRACT models (DTMs) at 20 m/pixel to map and characterize the terminal edges We describe interior layered deposits on Mars that have of long runout landslides. In one location, where CTX stereo coverage obstructed landslides before undergoing retreat by as much as was insufficient, we used a (100 m/pixel) High Resolution Stereo Camera 2 km. These landslides differ from typical Martian examples in that (HRSC) DTM. We produced CTX stereo DTMs using standard methods their toe height increases by as much as 500 m in a distinctive frontal (Kirk et al., 2008), with the vertical precision of the two DTMs estimated, scarp that mimics the shape of the layered deposits. By using cra- using previous techniques (see Kirk, 2003), as 7.5 and 3.7 m. ter statistics to constrain the formation ages of the individual land- We have identified three major occurrences of landslide deposits in slides to between ca. 200 and 400 Ma, we conclude that the retreat Ophir Chasma (Fig. 1) that are indicative of obstruction and diversion of the interior layered deposits was rapid, requiring erosion rates of by ILDs that are no longer present. These landslides differ from typical between 1200 and 2300 nm yr–1.
    [Show full text]
  • The Role of Aqueous Alteration in the Formation of Martian Soils ⇑ Joshua L
    Icarus 211 (2011) 157–171 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The role of aqueous alteration in the formation of martian soils ⇑ Joshua L. Bandfield a, , A. Deanne Rogers b, Christopher S. Edwards c a Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-1310, United States b Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences, Stony Brook, NY 11794-2100, United States c School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6305, United States article info abstract Article history: Martian equatorial dark regions are dominated by unweathered materials and it has often been assumed Received 31 December 2009 that they have not been significantly altered from their source lithology. The suite of minerals present is Revised 25 August 2010 consistent with a basaltic composition and there has been no need to invoke additional processes to Accepted 27 August 2010 explain the origin of these compositions. We have begun to question this result based on detailed obser- Available online 15 September 2010 vations using a variety of datasets. Locally derived dark soils have a mineralogy distinct from that of adja- cent rocky surfaces; most notably a lower olivine content. This pattern is common for many surfaces Keywords: across the planet. Previous work using detailed measurements acquired within the Gusev Plains has Mars, Surface shown that olivine dissolution via acidic weathering may explain chemical trends observed between rock Spectroscopy Geological processes rinds and interiors. Mineralogical trends obtained from rocks and soils within the Gusev Plains are more Regoliths prominent than the elemental trends and support previous results that indicate that dissolution of olivine Infrared observations has occurred.
    [Show full text]