An Analysis of the Lanczos Gamma Approximation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthogonal Polynomial Expansions for the Riemann Xi Function Dan Romik
Orthogonal polynomial expansions for the Riemann xi function Dan Romik Author address: Department of Mathematics, University of California, Davis, One Shields Ave, Davis CA 95616, USA E-mail address: [email protected] Contents Chapter 1. Introduction 1 1.1. Background 1 1.2. Our new results: Tur´an'sprogram revisited and extended; expansion of Ξ(t) in new orthogonal polynomial bases 3 1.3. Previous work involving the polynomials fn 5 1.4. How to read this paper 6 1.5. Acknowledgements 6 Chapter 2. The Hermite expansion of Ξ(t) 7 2.1. The basic convergence result for the Hermite expansion 7 2.2. Preliminaries 8 2.3. Proof of Theorem 2.1 8 2.4. An asymptotic formula for the coefficients b2n 12 2.5. The Poisson flow, P´olya-De Bruijn flow and the De Bruijn-Newman constant 17 Chapter 3. Expansion of Ξ(t) in the polynomials fn 20 3.1. Main results 20 3.2. Proof of Theorem 3.1 21 3.3. Proof of Theorem 3.2 23 3.4. The Poisson flow associated with the fn-expansion 26 3.5. Evolution of the zeros under the Poisson flow 27 Chapter 4. Radial Fourier self-transforms 30 4.1. Radial Fourier self-transforms on Rd and their construction from balanced functions 30 4.2. The radial function A(r) associated to !(x) 31 4.3. An orthonormal basis for radial self-transforms 33 4.4. Constructing new balanced functions from old 35 4.5. The functions ν(x) and B(r) 35 4.6. -
An Introduction to the Riemann Hypothesis
An introduction to the Riemann hypothesis Author: Alexander Bielik [email protected] Supervisor: P¨arKurlberg SA104X { Degree Project in Engineering Physics Royal Institute of Technology (KTH) Department of Mathematics September 13, 2014 Abstract This paper exhibits the intertwinement between the prime numbers and the zeros of the Riemann zeta function, drawing upon existing literature by Davenport, Ahlfors, et al. We begin with the meromorphic continuation of the Riemann zeta function ζ and the gamma function Γ. We then derive a functional equation that relates these functions and formulate the Riemann hypothesis. We move on to the topic of finite-ordered functions and their Hadamard products. We show that the xi function ξ is of finite order, whence we obtain many useful properties. We then use these properties to find a zero-free region for ζ in the critical strip. We also determine the vertical distribution of the non-trivial zeros. We finally use Perron's formula to derive von Mangoldt's explicit formula, which is an approximation of the Cheby- shev function . Using this approximation, we prove the prime number theorem and conclude with an implication of the Riemann hypothesis. Contents Introduction 2 1 The statement of the Riemann hypothesis3 1.1 The Riemann zeta function ζ .........................................3 1.2 The gamma function Γ.............................................4 1.3 The functional equation............................................7 1.4 The critical strip................................................8 2 Zeros in the critical strip 10 2.1 Functions of finite order............................................ 10 2.2 The Hadamard product for functions of order 1............................... 11 2.3 Proving that ξ has order at most 1..................................... -
Some Infinite Series Involving the Riemann Zeta Function
International Journal of Mathematics and M Computer Science, 7(2012), no. 1, 11–83 CS Some infinite series involving the Riemann zeta function Donal F. Connon Elmhurst Dundle Road Matfield, Kent TN12 7HD, United Kingdom email: [email protected] (Received May 16, 2010, Accepted July 12, 2012) Abstract This paper considers some infinite series involving the Riemann zeta function. Some examples are set out below ∞ n n − kxk 1 ( 1) s x, s ,y − x x, s, y n k k y s = Φ( +1 ) log Φ( ) n=0 +1k=0 ( + ) ∞ n n k − n 2 1 − 1−s ζ s ( 1) k k s = 1 2 ( ) n=0 k=0 ( +1) 2 ∞ n n − k − k 1 ( 1) ( 1) π πy n+1 k k y + k − y = cosec( ) n=0 2 k=0 + +1 ∞ 2n 2n u n −1 2 sin 2 u2 u u u u − ζ n3 n =4 log(2 sin )+2Cl3(2 )+4 Cl2(2 ) 2 (3) n=1 ∞ 4 7 1 24n [n!] ζ(3) − πG = n 3 n 2 4 2 n=0 (2 +1) [(2 )!] where Φ(x, s, y) is the Hurwitz-Lerch zeta function and Cln(t) are the Clausen functions. Key words and phrases: Infinite series, Riemann zeta Function. AMS (MOS) Subject Classifications: 40A05, 11M32. 12 Donal F. Connon 1 Some Hasse-type series It was shown in [21] that ∞ n k k y 1 n (−1) y log y = Lis(y) − Lis−1(y)(1) − k s−1 − s 1 n=0 n +1 k=0 (k +1) s 1 where Lis(y) is the polylogarithm function [39] ∞ yn Lis(y)= s n=1 n and, with y = 1, this becomes the formula originally discovered by Hasse [32] in 1930 ∞ n k 1 1 n (−1) = Lis(1) = ζ(s)(2) − k s−1 s 1 n=0 s +1 k=0 (k +1) ∞ s−1 −t The gamma function is defined as Γ(s)= 0 t e dt, s>0. -
Identities for the Gamma and Hypergeometric Functions: an Overview
Identities for the gamma and hypergeometric functions: an overview from Euler to the present Julie Patricia Hannah School of Mathematics University of the Witwatersrand Johannesburg South Africa Under the supervision of Professor S. J. Johnston and Dr. S. Currie A research report submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i Declaration I declare that this Dissertation is my own, unaided work. It is being submitted for the Degree of Masters of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other university. Signed: Julie Hannah day of , 2013 in Johannesburg ii Abstract Equations involving the gamma and hypergeometric functions are of great interest to mathematicians and scientists, and newly proven identities for these functions assist in finding solutions to differential and integral equations. In this work we trace a brief history of the development of the gamma and hypergeometric functions, illustrate the close relationship between them and present a range of their most useful properties and identities, from the earliest ones to those developed in more recent years. Our literature review will show that while continued research into hypergeometric identities has generated many new results, some of these can be shown to be variations of known identities. Hence, we will also discuss computer based methods that have been developed for creating and analysing such identities, in order to check for originality and for numerical validity. iii In reverence and gratitude to the One Source from Whom all proceeds. -
Identities for the Gamma and Hypergeometric Functions: an Overview
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE Identities for the gamma and hypergeometric functions: an overview from Euler to the present Julie Patricia Hannah School of Mathematics University of the Witwatersrand Johannesburg South Africa Under the supervision of Professor S. J. Johnston and Dr. S. Currie A research report submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i Declaration I declare that this Dissertation is my own, unaided work. It is being submitted for the Degree of Masters of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other university. Signed: Julie Hannah day of , 2013 in Johannesburg ii Abstract Equations involving the gamma and hypergeometric functions are of great interest to mathematicians and scientists, and newly proven identities for these functions assist in finding solutions to differential and integral equations. In this work we trace a brief history of the development of the gamma and hypergeometric functions, illustrate the close relationship between them and present a range of their most useful properties and identities, from the earliest ones to those developed in more recent years. Our literature review will show that while continued research into hypergeometric identities has generated many new results, some of these can be shown to be variations of known identities. Hence, we will also discuss computer based methods that have been developed for creating and analysing such identities, in order to check for originality and for numerical validity. -
Journal of Computational and Applied Mathematics 233 (2009) 667–673
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 233 (2009) 667–673 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Summation properties of the ηj and Li constants Mark W. Coffey Department of Physics, Colorado School of Mines, Golden, CO 80401, United States article info a b s t r a c t Article history: We find new summatory and other properties of the constants ηj entering the Laurent Received 7 October 2007 expansion of the logarithmic derivative of the Riemann zeta function about s D 1. We relate these constants to other coefficients and functions appearing in the theory of the Keywords: zeta function. In particular, connections to the Li equivalence of the Riemann hypothesis are Binomial transform discussed and quantitatively developed. The validity of the Riemann hypothesis is reduced Li constants to the condition of the sublinear order of a certain alternating binomial sum. Riemann zeta function ' 2009 Elsevier B.V. All rights reserved. Riemann xi function Logarithmic derivatives Riemann hypothesis Li criterion Laurent expansion 1. Introduction f g1 The Riemann hypothesis is equivalent to the Li criterion governing the sequence of real constants λk kD1, that are certain logarithmic derivatives of the Riemann xi function evaluated at unity. This equivalence results from a necessary and sufficient condition that the logarithmic derivative of the function ξT1=.1 − z/U be analytic in the unit disk, where ξ is the Riemann xi function. -
Introduction to the Gamma Function
Introduction to the Gamma Function Pascal Sebah and Xavier Gourdon numbers.computation.free.fr/Constants/constants.html February 4, 2002 Abstract An elementary introduction to the celebrated gamma function Γ(x) and its various representations. Some of its most important properties are described. 1 Introduction The gamma function was first introduced by the Swiss mathematician Leon- hard Euler (1707-1783) in his goal to generalize the factorial to non integer values. Later, because of its great importance, it was studied by other eminent mathematicians like Adrien-Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph Liouville (1809-1882), Karl Weierstrass (1815-1897), Charles Hermite (1822-1901), ... as well as many others. The gamma function belongs to the category of the special transcendental functions and we will see that some famous mathematical constants are occur- ring in its study. It also appears in various area as asymptotic series, definite integration, hypergeometric series, Riemann zeta function, number theory ... Some of the historical background is due to Godefroy’s beautiful essay on this function [9] and the more modern textbook [3] is a complete study. 2 Definitions of the gamma function 2.1 Definite integral During the years 1729 and 1730 ([9], [12]), Euler introduced an analytic function which has the property to interpolate the factorial whenever the argument of the function is an integer. In a letter from January 8, 1730 to Christian Goldbach he proposed the following definition : Definition 1 (Euler, 1730) Let x>0 1 x− Γ(x)= (− log(t)) 1 dt. (1) 0 1 By elementary changes of variables this historical definition takes the more usual forms : x> Theorem 2 For 0 ∞ Γ(x)= tx−1e−tdt, (2) 0 or sometimes ∞ 2 Γ(x)=2 t2x−1e−t dt. -
Analytic Number Theory
Introduction to Analytic Number Theory Selected Topics Lecture Notes Winter 2019/ 2020 Alois Pichler Faculty of Mathematics DRAFT Version as of April 23, 2021 2 Figure 1: Wizzard of Evergreen Terrace: Fermat’s last theorem wrong rough draft: do not distribute Contents 1 Introduction 7 2 Definitions 9 2.1 Elementary properties.................................9 2.2 Fundamental theorem of arithmetic.......................... 12 2.3 Properties of primes.................................. 13 2.4 Chinese remainder theorem.............................. 14 2.5 Problems........................................ 16 3 Elementary number theory 19 3.1 Euler’s totient function................................. 19 3.2 Euler’s theorem..................................... 21 3.3 Fermat Primality test.................................. 23 3.4 AKS Primality test................................... 23 3.5 Problems........................................ 24 4 Continued fractions 25 4.1 Generalized continued fraction............................ 25 4.2 Regular continued fraction............................... 27 4.3 Elementary properties................................. 29 4.4 Problems........................................ 29 5 Bernoulli numbers and polynomials 31 5.1 Definitions........................................ 31 5.2 Summation and multiplication theorem........................ 32 5.3 Fourier series...................................... 33 5.4 Umbral calculus.................................... 34 6 Gamma function 35 6.1 Equivalent definitions................................. -
Nematrian Function Library Reference Manual
Nematrian Function Library Reference Manual © Nematrian 2019 Version dated: 29 May 2019 1 The Nematrian online software toolkit [Nematrian website page: IntroductionSoftware, © Nematrian 2015] To complement its other business activities, Nematrian makes available through its website a wide range of accurate, efficient and well-documented online analytical tools. Our software toolkit has the following characteristics: Breadth and Depth There are more than 700 functions already available in the Nematrian website toolkit. More are being added regularly. They include many financially orientated functions as well as a wide range of more generally applicable mathematical and statistical functions and tools, including tools for plotting results. Easy accessibility You can access the tools interactively, if this suits your needs best Each function has an associated page on this website documenting what the function does and allowing you to run the function interactively, if you wish. You can also access all the functions using our online calculator (our “expression evaluation” tool), nesting function calls if you so wish. As explained in the website introduction, interactive results are typically provided as hyperlinks that have embedded within them details of the underlying parameters used. For example the following graphical results obtained interactively using the Nematrian toolkit illustrate the chi-squared distribution. If you click on either chart it will take you to the page used to create that chart, pre- populated with the parameters used to do so. Or, you can access the tools through spreadsheets (or more sophisticated programming environments), if you want to carry out more advanced manipulations. To make it as easy as possible to use our toolkit in more advanced settings we provide example spreadsheets which illustrate sets of related tools, see here. -
An Analysis of the Lanczos Gamma Approximation
AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION by GLENDON RALPH PUGH B.Sc. (Mathematics) University of New Brunswick, 1992 M.Sc. (Mathematics) University of British Columbia, 1999 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Mathematics We accept this thesis as conforming to the required standard .................................. .................................. .................................. .................................. .................................. THE UNIVERSITY OF BRITISH COLUMBIA November 2004 c Glendon Ralph Pugh, 2004 In presenting this thesis in partial fulfillment of the requirements for an ad- vanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (Signature) Department of Mathematics The University of British Columbia Vancouver, Canada Date Abstract This thesis is an analysis of C. Lanczos’ approximation of the classical gamma function Γ(z+1) as given in his 1964 paper A Precision Approximation of the Gamma Function [14]. The purposes of this study are: (i) to explain the details of Lanczos’ paper, including proofs of all claims made by the author; (ii) to address the question of how best to implement the approximation method in practice; and (iii) to generalize the methods used in the derivation of the approximation. At present there are a number of algorithms for approximating the gamma function.