Journal of Computational and Applied Mathematics 233 (2009) 667–673

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Computational and Applied Mathematics 233 (2009) 667–673 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 233 (2009) 667–673 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Summation properties of the ηj and Li constants Mark W. Coffey Department of Physics, Colorado School of Mines, Golden, CO 80401, United States article info a b s t r a c t Article history: We find new summatory and other properties of the constants ηj entering the Laurent Received 7 October 2007 expansion of the logarithmic derivative of the Riemann zeta function about s D 1. We relate these constants to other coefficients and functions appearing in the theory of the Keywords: zeta function. In particular, connections to the Li equivalence of the Riemann hypothesis are Binomial transform discussed and quantitatively developed. The validity of the Riemann hypothesis is reduced Li constants to the condition of the sublinear order of a certain alternating binomial sum. Riemann zeta function ' 2009 Elsevier B.V. All rights reserved. Riemann xi function Logarithmic derivatives Riemann hypothesis Li criterion Laurent expansion 1. Introduction f g1 The Riemann hypothesis is equivalent to the Li criterion governing the sequence of real constants λk kD1, that are certain logarithmic derivatives of the Riemann xi function evaluated at unity. This equivalence results from a necessary and sufficient condition that the logarithmic derivative of the function ξT1=.1 − z/U be analytic in the unit disk, where ξ is the Riemann xi function. The Li equivalence [1] states that a necessary and sufficient condition for the nontrivial zeros of D f g1 the Riemann zeta function to lie on the critical line Re s 1=2 is that λk kD1 is nonnegative for every integer k. In this paper we determine summation and other properties of the constants ηj entering the Laurent expansion of the logarithmic derivative of the Riemann zeta function about s D 1. Such properties are key to our approach of lower bounding the Li constants [2,3], since the ηj's are prominent in a subcomponent sum S2 of the Li constants. In fact, should S2.n/ be provably O.n/ or smaller, the Riemann hypothesis would follow. P −j The Li constants are the binomial transform of the sequence fσkg, where σj D ρ ρ are sums of reciprocal powers of the nontrivial zeros of the Riemann zeta function. Herein we recall the relation of the ηj coefficients to the σk's, and use it to provide an alternative proof of a summatory relation among the former constants. It is possible to consider the Li constants as a particular value of differentiable functions defined on the positive real axis. Indeed, Freitas [4] has very recently taken this approach and related the nonnegativity of such functions αn to zero-free half-plane regions of the zeta function. In this paper, we present an explicit representation of the αn.s/'s in terms of the ηj coefficients. Furthermore, we estimate the resulting polygamma summation term S1.n; s/. All of these developments show the context of the s D 1 special case for the Li constants. Since the αj functions satisfy an infinite set of linear first-order ordinary differential equations, it is also possible to describe their derivatives at s D 1 directly in terms of the Li constants. These and related results are also described in a later section of the paper. After introducing some notation and some definitions, we proceed to the summation results for the ηj constants. Here we make use of the functional equation for the zeta function [5–9] and hence of its logarithmic derivative. Our work makes multiple use of the properties of the polygamma function, including the connection of its reflection formula to derivatives of E-mail address: [email protected]. 0377-0427/$ – see front matter ' 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2009.02.034 668 M.W. Coffey / Journal of Computational and Applied Mathematics 233 (2009) 667–673 the cotangent function. From such relations we are able to explicitly construct the necessary expansions with overlapping domains of validity. In this paper, attention is restricted to the classical zeta function. However, the developments carry over to Dirichlet L functions, Hecke L functions, and other generalized zeta functions. The Li constants are defined for such functions [10] and an equivalence relates them to a generalized Riemann hypothesis. For some explicit results and estimations along these lines, Refs. [11,12] may be consulted. 2. Notation and background The function ξ is determined from ζ by the relation ξ.s/ D .s=2/.s−1)π −s=20.s=2)ζ .s/, where 0 is the Gamma function D − f g1 [7,6,9,5,8], and satisfies the functional equation ξ.s/ ξ.1 s/. The sequence λn nD1 is defined by n 1 d n−1 λn D Ts ln ξ.s/UsD1: (1) .n − 1/W dsn The λj's are connected to sums over the nontrivial zeros of ζ .s/ by way of [13,1] n X 1 λn D 1 − 1 − : (2) ρ ρ In the representation [14,15,11] n λn D S1.n/ C S2.n/ − (γ C ln π C 2 ln 2/ C 1; (3) 2 where γ is the Euler constant, the sum n X m n −m S1.n/ ≡ .−1/ .1 − 2 )ζ .m/; n ≥ 2; (4) m mD2 has been bounded [11]: n n 1 n n 1 ln n C (γ − 1/ C ≤ S1.n/ ≤ ln n C (γ C 1/ − : (5) 2 2 2 2 2 2 Further bounds on S1.n/ have been developed by applying Euler–MacClaurin summation to all orders [11]. The summand of the quantity S1 can be written as a sum over the trivial zeros of ζ : 1 −2 − X 1 X 1 .1 − 2 n)ζ .n/ − 1 D D : (6) .2m C 1/n .1 − j/n mD1 j=−∞ even The constants ηj enter the expansion around s D 1 of the logarithmic derivative of the zeta function, 0 1 ζ .s/ 1 X p D − − ηp.s − 1/ ; js − 1j < 3; (7) s s − 1 ζ . / pD0 the corresponding Dirichlet series valid for Re s > 1 is 0 1 ζ .s/ X Λ.n/ D − ; (8) s ns ζ . / nD1 and these constants are used to form the sum S2: Xn n S2.n/ ≡ − ηm−1: (9) m mD1 The constants ηj can be written as [14,16] ! − k N kC1 . 1/ X 1 k ln N ηk D lim Λ.m/ ln m − : (10) kW N!1 m k C 1 mD1 In Eqs. (8) and (10), Λ is the von Mangoldt function [7,6,9,5,8,16], such that Λ.k/ D ln p when k is a power of a prime p and Λ.k/ D 0 otherwise. M.W. Coffey / Journal of Computational and Applied Mathematics 233 (2009) 667–673 669 3. Summation relation for the ηj 's As part of our program to characterize the ηj constants, we derive an explicit summatory relation. We first demonstrate Proposition 1. We have 1 X j 1 − .−1/ ηj D ln 2π; (11) jD0 and for j ≥ 1 1 j j jC1 −.jC1/ X kC1 k T1 C .−1/ Uηj D .−1/ C 1 − T1 C .−1/ U2 ζ .j C 1/ C .−1/ ηk: (12) j kDjC1 Eq. (11) follows simply by evaluating Eq. (7) at s D 0 and using the well known result ζ 0.0)/ζ .0/ D ln.2π/. We prove relation (12) in two different ways. The first method is directly based upon the functional equation satisfied by the Riemann zeta function. The second method relies upon the functional equation of the Riemann xi function. The two paths show the consistency of the theory, and several of the intermediate results may be of independent interest themselves. First approach. From the functional equation satisfied by the classical zeta function, we obtain that of its logarithmic derivative: ζ 0.s/ π π ζ 0.1 − s/ D − .1 − s/ C ln 2π C cot s − : (13) ζ .s/ 2 2 ζ .1 − s/ In this equation, D 00=0 is the digamma function. We develop each term of Eq. (13) in a power series in s − 1. There is a common region of validity of these expansions about s D 1, so that the conclusion (12) holds. From the defining relation (7), use of the binomial theorem, and reordering of series, we have 0 − 1 1 ζ .1 s/ 1 X X j j n D − .−1/ ηj.s − 1/ ; jsj < 3; (14) 1 − s s n ζ . / nD0 jDn D P1 − m − m where 1=s mD0. 1/ .s 1/ . For the digamma term in Eq. (13) we obtain [17] 1 1 X .1 − s/ D −γ C − ζ .k C 1/.s − 1/k: (15) s − 1 kD1 There are several means by which to expand the cotangent term in Eq. (13). We could use the trigonometric definitions, and obtain the needed Taylor series coefficients at s D 1 by applying the Faa di Bruno formula for the nth derivative of a composite function directly to the cotangent function, or to its − csc2 derivative. However, we avoid this method and invoke polygamma functions. From the reflection formula satisfied by the digamma function, we have π π 1 h z z i cot z D 1 − − ; (16) 2 2 2 2 2 which immediately delivers π d n π 1 h z z i cot z D .−1/n .n/ 1 − − .n/ ; (17) 2 dz 2 2nC1 2 2 .j/ .n/ nC1 nC1 where is the polygamma function.
Recommended publications
  • And Ξ(T) Functions Associated with Riemann's Ζ(S)
    Some results on the ξ(s) and Ξ(t) functions associated with Riemann’s ζ(s) function. ∗ Hisashi Kobayashi† 2016/03/04 Abstract 1 We report on some properties of the ξ(s) function and its value on the critical line, Ξ(t)= ξ 2 + it. First, we present some identities that hold for the log derivatives of a holomorphic function. We then re- examine Hadamard’s product-form representation of the ξ(s) function, and present a simple proof of the horizontal monotonicity of the modulus of ξ(s). We then show that the Ξ(t) function can be interpreted as the autocorrelation function of a weakly stationary random process, whose power spectral function S(ω) and Ξ(t) form a Fourier transform pair. We then show that ξ(s) can be formally written as the − 1 Fourier transform of S(ω) into the complex domain τ = t iλ, where s = σ + it = 2 + λ + it. We then show that the function S1(ω) studied by P´olya has g(s) as its Fourier transform, where ξ(s)= g(s)ζ(s). Finally we discuss the properties of the function g(s), including its relationships to Riemann-Siegel’s ϑ(t) function, Hardy’s Z-function, Gram’s law and the Riemann-Siegel asymptotic formula. Key words: Riemann’s ζ(s) function, ξ(s) and Ξ(t) functions, Riemann hypothesis, Monotonicity of the modulus ξ(t), Hadamard’s product formula, P´olya’s Fourier transform representation, Fourier transform to the complex domain, Riemann-Siegel’s asymptotic formula, Hardy’s Z-function.
    [Show full text]
  • Series Representations for the Stieltjes Constants
    Series representations for the Stieltjes constants Mark W. Coffey Department of Physics Colorado School of Mines Golden, CO 80401 (Received 2009) September 1, 2009 Abstract The Stieltjes constants γk(a) appear as the coefficients in the regular part of the Laurent expansion of the Hurwitz zeta function ζ(s, a) about s = 1. We present series representations of these constants of interest to theoretical and computational analytic number theory. A particular result gives an addition formula for the Stieltjes constants. As a byproduct, expressions for deriva- tives of all orders of the Stieltjes coefficients are given. Many other results are obtained, including instances of an exponentially fast converging series repre- sentation for γk = γk(1). Some extensions are briefly described, as well as the relevance to expansions of Dirichlet L functions. Key words and phrases Stieltjes constants, Riemann zeta function, Hurwitz zeta function, Laurent expan- arXiv:0905.1111v2 [math-ph] 13 Sep 2009 sion, Stirling numbers of the first kind, Dirichlet L functions, Lerch zeta function 2000 AMS codes 11M35, 11M06, 11Y60. secondary: 05A10 1 Introduction and statement of results The Stieltjes (or generalized Euler) constants γk(a) appear as expansion coeffi- cients in the Laurent series for the Hurwitz zeta function ζ(s, a) about its simple pole at s = 1 [5, 7, 18, 23, 27]. These constants are important in analytic number theory and elsewhere, where they appear in various estimations and as a result of asymptotic analyses. They are also of much use in developing a binomial sum Sγ(n) introduced by the author in the study of a critical subsum in application of the Li criterion for the Riemann hypothesis [9].
    [Show full text]
  • Orthogonal Polynomial Expansions for the Riemann Xi Function Dan Romik
    Orthogonal polynomial expansions for the Riemann xi function Dan Romik Author address: Department of Mathematics, University of California, Davis, One Shields Ave, Davis CA 95616, USA E-mail address: [email protected] Contents Chapter 1. Introduction 1 1.1. Background 1 1.2. Our new results: Tur´an'sprogram revisited and extended; expansion of Ξ(t) in new orthogonal polynomial bases 3 1.3. Previous work involving the polynomials fn 5 1.4. How to read this paper 6 1.5. Acknowledgements 6 Chapter 2. The Hermite expansion of Ξ(t) 7 2.1. The basic convergence result for the Hermite expansion 7 2.2. Preliminaries 8 2.3. Proof of Theorem 2.1 8 2.4. An asymptotic formula for the coefficients b2n 12 2.5. The Poisson flow, P´olya-De Bruijn flow and the De Bruijn-Newman constant 17 Chapter 3. Expansion of Ξ(t) in the polynomials fn 20 3.1. Main results 20 3.2. Proof of Theorem 3.1 21 3.3. Proof of Theorem 3.2 23 3.4. The Poisson flow associated with the fn-expansion 26 3.5. Evolution of the zeros under the Poisson flow 27 Chapter 4. Radial Fourier self-transforms 30 4.1. Radial Fourier self-transforms on Rd and their construction from balanced functions 30 4.2. The radial function A(r) associated to !(x) 31 4.3. An orthonormal basis for radial self-transforms 33 4.4. Constructing new balanced functions from old 35 4.5. The functions ν(x) and B(r) 35 4.6.
    [Show full text]
  • An Analysis of the Lanczos Gamma Approximation
    AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION by GLENDON RALPH PUGH B.Sc. (Mathematics) University of New Brunswick, 1992 M.Sc. (Mathematics) University of British Columbia, 1999 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Mathematics We accept this thesis as conforming to the required standard .................................. .................................. .................................. .................................. .................................. THE UNIVERSITY OF BRITISH COLUMBIA November 2004 c Glendon Ralph Pugh, 2004 In presenting this thesis in partial fulfillment of the requirements for an ad- vanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (Signature) Department of Mathematics The University of British Columbia Vancouver, Canada Date Abstract This thesis is an analysis of C. Lanczos’ approximation of the classical gamma function Γ(z+1) as given in his 1964 paper A Precision Approximation of the Gamma Function [14]. The purposes of this study are: (i) to explain the details of Lanczos’ paper, including proofs of all claims made by the author; (ii) to address the question of how best to implement the approximation method in practice; and (iii) to generalize the methods used in the derivation of the approximation. At present there are a number of algorithms for approximating the gamma function.
    [Show full text]
  • Hamiltonians Arising from L-Functions in the Selberg Class
    HAMILTONIANS ARISING FROM L-FUNCTIONS IN THE SELBERG CLASS MASATOSHI SUZUKI Abstract. We establish a new equivalent condition for the Grand Riemann Hypoth- esis for L-functions in a wide subclass of the Selberg class in terms of canonical systems of differential equations. A canonical system is determined by a real symmetric matrix- valued function called a Hamiltonian. To establish the equivalent condition, we use an inverse problem for canonical systems of a special type. 1. Introduction The Riemann Hypothesis (RH) asserts that all nontrivial zeros of the Riemann zeta- function ζ(s) lie on the critical line (s) = 1/2, and it has been generalized to wider classes of zeta-like functions. Especially,ℜ an analogue of RH for L-functions in the Selberg class is often called the Grand Riemann Hypothesis (GRH)1. The present paper aims to establish a new equivalent condition for GRH for L- functions in a wide subclass of the Selberg class in terms of canonical systems by using general results in the preliminary paper [45] studying an inverse problem of canonical systems of a special type. We explain the relation by dealing with the case of the Rie- mann zeta function in the introduction. The present study was mainly stimulated by the works of Lagarias [25, 26, 27] (and also Burnol [10, 11, 12, 13] as well as [45]). The Riemann xi-function 1 s ξ(s)= s(s 1)π−s/2Γ ζ(s) 2 − 2 is an entire function taking real-values on the critical line such that the zeros coincide with nontrivial zeros of ζ(s).
    [Show full text]
  • An Introduction to the Riemann Hypothesis
    An introduction to the Riemann hypothesis Author: Alexander Bielik [email protected] Supervisor: P¨arKurlberg SA104X { Degree Project in Engineering Physics Royal Institute of Technology (KTH) Department of Mathematics September 13, 2014 Abstract This paper exhibits the intertwinement between the prime numbers and the zeros of the Riemann zeta function, drawing upon existing literature by Davenport, Ahlfors, et al. We begin with the meromorphic continuation of the Riemann zeta function ζ and the gamma function Γ. We then derive a functional equation that relates these functions and formulate the Riemann hypothesis. We move on to the topic of finite-ordered functions and their Hadamard products. We show that the xi function ξ is of finite order, whence we obtain many useful properties. We then use these properties to find a zero-free region for ζ in the critical strip. We also determine the vertical distribution of the non-trivial zeros. We finally use Perron's formula to derive von Mangoldt's explicit formula, which is an approximation of the Cheby- shev function . Using this approximation, we prove the prime number theorem and conclude with an implication of the Riemann hypothesis. Contents Introduction 2 1 The statement of the Riemann hypothesis3 1.1 The Riemann zeta function ζ .........................................3 1.2 The gamma function Γ.............................................4 1.3 The functional equation............................................7 1.4 The critical strip................................................8 2 Zeros in the critical strip 10 2.1 Functions of finite order............................................ 10 2.2 The Hadamard product for functions of order 1............................... 11 2.3 Proving that ξ has order at most 1.....................................
    [Show full text]
  • Differentiating L-Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose E-theses Online Differentiating L-functions Jos Mary Mayo Gunns PhD University of York Mathematics May 2017 2 Abstract. The Riemann zeta function is well known due to its link to prime numbers. The Riemann Xi function is related to the zeta func- tion, and is commonly used due to its nicer analytic properties (such as its lack of a pole and its Fourier transform). The work within this thesis was inspired by Haseo Ki's result, which showed that, under repeated differentiation and suitable scaling, the Riemann Xi function tends to the cosine function. We prove a similar result for the Selberg Class of L-functions, albeit with different scalings. 3 Contents Abstract 2 Contents 3 List of Figures 5 Introduction 6 Acknowledgments 7 Declaration 8 Notation and Key Results 9 Chapter 1 11 1. Prime Numbers 11 1.1. Riemann's Paper 11 1.2. The Prime Number Theorem 14 2. The Riemann Zeta Function 16 2.1. Properties of the Zeta Function 16 2.2. Density of Zeros 20 2.3. Pair Correlation 22 2.4. Derivatives of the Riemann Zeta Function 23 2.5. S(T ) 27 2.6. S1(T ) 29 3. Variant Functions 32 3.1. Z(t) 32 3.2. The Riemann Xi-function 36 3.3. Approximate Functional Equations 38 3.4. AFE for Z(t) 39 4. L-functions 41 4.1. Prime Number Theorem extension 41 4.2. Riemann Hypothesis variations 42 4.3.
    [Show full text]
  • EQUIVALENTS of the RIEMANN HYPOTHESIS Volume One: Arithmetic Equivalents
    Cambridge University Press 978-1-107-19704-6 — Equivalents of the Riemann Hypothesis Kevin Broughan Frontmatter More Information EQUIVALENTS OF THE RIEMANN HYPOTHESIS Volume One: Arithmetic Equivalents The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The books are gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. They also include extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs. Encyclopedia of Mathematics and Its Applications This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and Its Applications cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive.
    [Show full text]
  • Some Infinite Series Involving the Riemann Zeta Function
    International Journal of Mathematics and M Computer Science, 7(2012), no. 1, 11–83 CS Some infinite series involving the Riemann zeta function Donal F. Connon Elmhurst Dundle Road Matfield, Kent TN12 7HD, United Kingdom email: [email protected] (Received May 16, 2010, Accepted July 12, 2012) Abstract This paper considers some infinite series involving the Riemann zeta function. Some examples are set out below ∞ n n − kxk 1 ( 1) s x, s ,y − x x, s, y n k k y s = Φ( +1 ) log Φ( ) n=0 +1k=0 ( + ) ∞ n n k − n 2 1 − 1−s ζ s ( 1) k k s = 1 2 ( ) n=0 k=0 ( +1) 2 ∞ n n − k − k 1 ( 1) ( 1) π πy n+1 k k y + k − y = cosec( ) n=0 2 k=0 + +1 ∞ 2n 2n u n −1 2 sin 2 u2 u u u u − ζ n3 n =4 log(2 sin )+2Cl3(2 )+4 Cl2(2 ) 2 (3) n=1 ∞ 4 7 1 24n [n!] ζ(3) − πG = n 3 n 2 4 2 n=0 (2 +1) [(2 )!] where Φ(x, s, y) is the Hurwitz-Lerch zeta function and Cln(t) are the Clausen functions. Key words and phrases: Infinite series, Riemann zeta Function. AMS (MOS) Subject Classifications: 40A05, 11M32. 12 Donal F. Connon 1 Some Hasse-type series It was shown in [21] that ∞ n k k y 1 n (−1) y log y = Lis(y) − Lis−1(y)(1) − k s−1 − s 1 n=0 n +1 k=0 (k +1) s 1 where Lis(y) is the polylogarithm function [39] ∞ yn Lis(y)= s n=1 n and, with y = 1, this becomes the formula originally discovered by Hasse [32] in 1930 ∞ n k 1 1 n (−1) = Lis(1) = ζ(s)(2) − k s−1 s 1 n=0 s +1 k=0 (k +1) ∞ s−1 −t The gamma function is defined as Γ(s)= 0 t e dt, s>0.
    [Show full text]
  • The Riemann Hypothesis and Holomorphic Index in Complex Dynamics
    The Riemann hypothesis and holomorphic index in complex dynamics Tomoki Kawahira Tokyo Institute of Technology July 2, 2016 Abstract We present an interpretation of the Riemann hypothesis in terms of complex and topological dynamics. For example, the Riemann hypothesis is true and all zeros of the Riemann zeta function are simple if and only if a meromorphic func- tion that is explicitly given in this note has no attracting fixed point. To obtain this, we use the holomorphic index (residue fixed point index) that characterizes the local properties of the fixed points in complex dynamics. 1 The Riemann zeta function For s 2 C, the series 1 1 ζ(s) = 1 + + + ··· 2s 3s converges if Re s > 1 and ζ(s) is analytic on the half-plane fs 2 C : Re s > 1g. It is also analytically continued to a holomorphic function on C − f1g, and s = 1 is a simple pole. Hence we regard ζ(s) as a meromorphic function (a holomorphic map) ζ : C ! Cb = C [ f1g. This is the Riemann zeta function ([T, p.13]). It is known that ζ(s) = 0 when s = −2; −4; −6;:::. These zeros are called trivial zeros of the Riemann zeta function ([T, p.30]). We say the other zeros are non-trivial. The Riemann hypothesis, the most important conjecture on the Riemann zeta func- tion, concerns the alignment of the non-trivial zeros of ζ: The Riemann hypothesis. All non-trivial zeros lie on the vertical line fs 2 C : Re s = 1=2g. Research partially supported by JSPS KAKENHI Grant.
    [Show full text]
  • Program of the Sessions Atlanta, Georgia, January 4–7, 2017
    Program of the Sessions Atlanta, Georgia, January 4–7, 2017 3:15PM Concentration in first-passage Monday, January 2 (4) percolation. AMS Short Course on Random Growth Philippe Sosoe,HarvardUniversity (1125-60-3157) Models, Part I NSF-EHR Grant Proposal Writing Workshop 9:00 AM –4:30PM M301, Marquis Level, Marriott Marquis 3:00 PM –6:00PM A707, Atrium Level, Marriott Marquis Organizers: Michael Damron,Georgia Institute of Technology AMS Short Course Reception Firas Rassoul-Agha, University of Utah 4:30 PM –5:30PM M302, Marquis Timo Sepp¨al¨ainen, Level, Marriott Marquis University of Wisconsin at Madison 8:00AM Registration 9:00AM Introduction to random growth models, I. Tuesday, January 3 (1) Michael Damron, Georgia Institute of Technology (1125-60-3158) AMS Department Chairs Workshop 10:15AM Break 8:00 AM –6:30PM M103, M104 & M105, 10:45AM Introduction to random growth models, Marquis Level, Marriott Marquis (2) II. Michael Damron, Georgia Institute of Presenters: Malcolm Adams,University Technology of Georgia Matthew Ando, NOON Break University of Illinois at 1:30PM Infinite geodesics, asymptotic directions, Urbana-Champaign (3) and Busemann functions. Krista Maxson,Universityof Jack Hanson, The City College of New Science & Arts of Oklahoma York (1125-60-3159) Douglas Mupasiri, 3:15PM Break University of Northern Iowa The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 38, Issue 1 of Abstracts is ten minutes. The time limit for each MAA contributed of papers presented to the American Mathematical Society, paper varies. In the Special Sessions the time limit varies ordered according to the numbers in parentheses following from session to session and within sessions.
    [Show full text]
  • Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros
    Advances in Pure Mathematics, 2019, 9, 281-316 http://www.scirp.org/journal/apm ISSN Online: 2160-0384 ISSN Print: 2160-0368 Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros Alfred Wünsche Institut für Physik, Humboldt-Universität, MPG Nichtklassische Strahlung, Berlin, Germany How to cite this paper: Wünsche, A. Abstract (2019) Common Properties of Riemann Zeta Function, Bessel Functions and Gauss The behavior of the zeros in finite Taylor series approximations of the Rie- Function Concerning Their Zeros. Ad- mann Xi function (to the zeta function), of modified Bessel functions and of vances in Pure Mathematics, 9, 281-316. the Gaussian (bell) function is investigated and illustrated in the complex https://doi.org/10.4236/apm.2019.93013 domain by pictures. It can be seen how the zeros in finite approximations ap- Received: March 1, 2019 proach to the genuine zeros in the transition to higher-order approximation Accepted: March 26, 2019 and in case of the Gaussian (bell) function that they go with great uniformity Published: March 29, 2019 to infinity in the complex plane. A limiting transition from the modified Bes- Copyright © 2019 by author(s) and sel functions to a Gaussian function is discussed and represented in pictures. Scientific Research Publishing Inc. In an Appendix a new building stone to a full proof of the Riemann hypothe- This work is licensed under the Creative sis using the Second mean-value theorem is presented. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Riemann Zeta and Xi Function, Modified Bessel Functions, Second Mean-Value Theorem or Gauss-Bonnet Theorem, Riemann Hypothesis 1.
    [Show full text]