Module 2 Biotechnology: History, State of the Art, Future. Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Historiographies of Plant Breeding and Agriculture LSE Research Online URL for This Paper: Version: Accepted Version
Historiographies of Plant Breeding and Agriculture LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101334/ Version: Accepted Version Book Section: Berry, Dominic J. (2019) Historiographies of Plant Breeding and Agriculture. In: Dietrich, Michael, Borrello, Mark and Harman, Oren, (eds.) Handbook of the Historiography of Biology. Springer. ISBN 9783319901183 (In Press) Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Historiographies of Plant Breeding and Agriculture Dominic J. Berry London School of Economics There are unique opportunities that plant breeding and agriculture offer the historian of biology, and unique ways in which the historian of biology can inform the history of plant breeding and agriculture (Harwood, 2006. Phillips and Kingsland, 2015). There are also of course questions and challenges that the study of agricultural sites share with the study of other biological sites, such as those in medicine (Wilmot 2007. Woods et al. 2018), the environment (Agar and Ward 2018), and non-agricultural industries (Bud 1993). Indeed, in some instances the agricultural, medical, environmental, and biologically industrial will be one and the same. This is to say nothing of what agricultural sites share in common with histories of science beyond biology, but that is a broader discussion I can only mention in passing (Parolini 2015). -
Dolly the Sheep – the First Cloned Adult Animal
DOLLY THE SHEEP – THE FIRST CLONED ADULT ANIMAL NEW TECHNOLOGY FOR IMPROVING LIVESTOCK From Squidonius via Wikimedia Commons In 1996, University of Edinburgh scientists celebrated the birth of Dolly the Sheep, the first mammal to be cloned using SCNT cloning is the only technology adult somatic cells. The Edinburgh team’s success followed available that enables generation of 99.8% its improvements to the single cell nuclear transfer (SCNT) genetically identical offspring from selected technique used in the cloning process. individuals of adult animals (including sterilized animals). As such, it is being Dolly became a scientific icon recognised worldwide and exploited as an efficient multiplication tool SCNT technology has spread around the world and has been to support specific breeding strategies of used to clone multiple farm animals. farm animals with exceptionally high genetic The cloning of livestock enables growing large quantities of value. the most productive, disease resistant animals, thus providing more food and other animal products. Sir Ian Wilmut (Inaugural Director of MRC Centre for Regeneration and Professor at CMVM, UoE) and colleagues worked on methods to create genetically improved livestock by manipulation of stem cells using nuclear transfer. Their research optimised interactions between the donor nucleus and the recipient cytoplasm at the time of fusion and during the first cell cycle. Nuclear donor cells were held in mitosis before being released and used as they were expected to be passing through G1 phase. CLONING IN COMMERCE, CONSERVATION OF AGRICULTURE AND PRESERVATION ANIMAL BREEDS OF LIVESTOCK DIVERSITY Cloning has been used to conserve several animal breeds in the recent past. -
History of Biotechnology Stages of Biotech
History of Biotechnology Stages of Biotech Ancient Classical Modern Ancient Biotech Begins with early civilization Developments in ag and food production Few records exist Ancient Biotech Archeologists research Ancient carvings and sketches sources of information Classical Biotech Follows ancient Makes wide spread use of methods from ancient, especially fermentation Methods adapted to industrial production Classical Biotech Produce large quantities of food products and other materials in short amount of time Meet demands of increasing population Classical Biotech Many methods developed through classical biotech are widely used today. Modern Biotech Manipulation of genetic material within organisms Based on genetics and the use of microscopy, biochemical methods, related sciences and technologies Modern Biotech Often known as genetic engineering Roots involved the investigation of genes Ancient Biotech Not known when biotech began exactly Focused on having food and other human needs Ancient Biotech Useful plants brought from the wild, planted near caves where people lived As food was available, ability to store and preserve emerged Ancient Food preservation most likely came from unplanned events such as a fire or freeze Domestication 15,000 years ago, large animals were hard to capture People only had meat when they found a dead animal Came up with ways of capturing fish and small animals Domestication Food supplies often seasonal Winter food supplies may get quite low Domestication is seen by scientists as the beginning of biotech Domestication -
Bibliographies Biotechnology, the Life Science Industry, and the Environment
berkeley workshop on environmental pol i tics bibliographies b 04-9 biotechnology, the life science industry, and the environment an annotated bibliography Dustin R. Mulvaney and Jennifer L. Wells institute of international studies, university of california, berkeley table of contents Introduction.....................................................................................................................................1 General Overview ............................................................................................................................1 Biological Frameworks: Genetic Reductionism and Epigenetics .......................................................7 The Ethics of Biotechnologies ........................................................................................................12 The Ecological Hazards of Transgenic Crops ..................................................................................16 Politics, Science and the Social Context of Regulation....................................................................20 The Life Science Industries and Agro-Industrial Dynamics ............................................................25 The University-Industrial Complex................................................................................................31 Germplasm, Genetic Resources, and Global Governance ...............................................................35 Annotated Bibliography .................................................................................................................39 -
Cloning: a Select Chronology, 1997-2003
Order Code RL31211 Report for Congress Received through the CRS Web Cloning: A Select Chronology, 1997-2003 Updated March 10, 2003 Mary V. Wright Information Research Specialist Information Research Division Congressional Research Service ˜ The Library of Congress Summary This is a selected chronology of the events surrounding and following the cloning of a sheep from a single adult sheep cell by Scottish scientists, which was announced in February 1997. The project was cosponsored by PPL Therapeutics, Edinburgh, Scotland, which has applied for patents for the techniques used. This chronology also addresses subsequent reports of other cloning experiments, including the first one using human cells. Information on presidential actions and legislative activities related to the ethical and moral issues surrounding cloning is provided, as well as relevant Web sites. More information on cloning and on human embryo research can be found in CRS Report RL31015, Stem Cell Research and CRS Report RS21044, Background and Legal Issues Related to Stem Cell Research. This report will be updated as necessary. Contents Chronology .......................................................1 1997 ........................................................1 1998 ........................................................2 1999 ........................................................3 2000 ........................................................4 2001 ........................................................5 2002 ........................................................6 -
Biotechnology and Genetic Engineering
GLOBAL ISSUES BIOTECHNOLOGY AND GENETIC ENGINEERING GLOBAL ISSUES BIOTECHNOLOGY AND GENETIC ENGINEERING Kathy Wilson Peacock Foreword by Charles Hagedorn, Ph.D. Professor, Environmental Microbiology, Virginia Tech GLOBAL ISSUES: BioTECHNologY AND GENETIC ENgiNeeRING Copyright © 2010 by Infobase Publishing All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Peacock, Kathy Wilson. Biotechnology and genetic engineering / Kathy Wilson Peacock; foreword by Charles Hagedorn. p.; cm. — (Global issues) Includes bibliographical references and index. ISBN 978-0-8160-7784-7 (alk. paper) 1. Biotechnology—Popular works. 2. Genetic engineering—Popular works. I. Title. II. Series: Global issues (Facts on File, Inc.) [DNLM: 1. Biotechnology. 2. Genetic Engineering. 3. Organisms, Genetically Modified—genetics. QU 450 P352b 2010] TP248.215.P43 2010 660.6—dc22 2009025794 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Text design by Erika K. Arroyo Illustrations by Dale Williams Composition by Mary Susan Ryan-Flynn Cover printed by Art Print, Taylor, Pa. Book printed and bound by Maple Press, York, Pa. -
Antony John Clark OBE, FRSE This Obituary First Appeared in The
Antony John Clark OBE, FRSE This obituary first appeared in The Guardian on 25 August 2004 http://www.guardian.co.uk/science/2004/aug/25/obituaries.health The sudden death of Professor John Clark, at the age of 52, has robbed Britain of a world leader in animal science and biotechnology, and an individual whose commitment to science was based on a genuine concern for others. A visionary, energetic and resolute leader, he made outstanding contributions not only in research, but also in translating it to the commercial environment. Clark was director of the Roslin Institute, near Edinburgh, one of the world's leading centres for research on farm and other animals, funded by the Biotechnology and Biological Science Council. He pioneered the development of techniques for the genetic modification of livestock that led to the cloning techniques and the birth, in 1996, of Dolly the sheep, the first animal to be cloned from an adult cell. This event created entirely new opportunities in research and regenerative medicine. Appointed to the then Animal Breeding Research Organisation in 1985, Clark soon assumed leadership of a project to produce human proteins in the milk of sheep. Its success required an understanding of the mechanisms that regulate the functioning of genes, the technical ability to manipulate DNA sequences and methods for the introduction of gene sequences into sheep embryos. While these are now commonplace, this was not the case at the time, and the project was technically challenging. The birth, in 1990, of Tracy, the first sheep to produce very large quantities of human protein in her milk - alpha-1-antitrypsin for the treatment of cystic fibrosis - was a milestone in the field, and a success that laid the foundation for the continuing reputation of the Roslin Institute (as it became in 1993) as pioneers in transgenic technology. -
A Short History of Biotechnology
Biotecnología, una historia… Cuando se habla de biotecnología en la actualidad, frecuentemente se hace referencia a procesos que involucran técnicas de ingeniería genética, como la transgénesis, por ejemplo. Sin embargo, la biotecnología incluye a un conjunto de actividades que acompañan al hombre desde tiempos remotos en gran parte de su vida cotidiana. ¿Cuáles fueron los hechos históricos considerados hitos en el desarrollo de la biotecnología, desde la fabricación de cerveza en el reinado de Nabucodonosor, hasta los desarrollos modernos? El contexto en que surge la Biotecnología La biotecnología, entendida en su sentido más amplio como “el empleo de organismos vivos y sus productos para obtener un bien o servicio”, ha formado parte de la vida cotidiana del hombre desde mucho antes que recibiera el nombre con el que se la conoce actualmente. En la transición del hábito nómada cazador-recolector a la vida en comunidad, aparecen ya indicios de actividades biotecnológicas. El comienzo de las actividades agrícolas junto con la cría de animales, el procesamiento de hierbas para uso medicinal, la preparación de pan y cerveza junto con muchos otros alimentos fermentados como el yogurt, el queso y numerosos derivados de la soja (tofu, salsa de soja, etc.), son algunos ejemplos. También lo son el uso de bálsamos derivados de plantas, y remedios de origen vegetal para tratar las heridas. Los arqueólogos han descubierto indicios de estas actividades en culturas ancestrales incluyendo a los chinos, los egipcios, los griegos y romanos, los sumerios y a otras civilizaciones que habitaron el planeta hace más de 7000 años. Estas comunidades necesitaron desarrollar esas habilidades para subsistir. -
Biotechnology" Was First Coined in 1919 by Karl Ereky Which Means Products Are Produced from Raw Materials with the Aid of Living Organisms
Concepts of Biotechnology The term “Biotechnology" was first coined in 1919 by Karl Ereky which means products are produced from raw materials with the aid of living organisms. Biotechnology is NOT new. Man has been manipulating living things to solve problems and improve his way of life for millennia. Early agriculture concentrated on producing food. Plants and animals were selectively bred and microorganisms were used to make food items such as beverages, cheese and bread. The late eighteenth century and the beginning of the nineteenth century saw the advent of vaccinations, crop rotation involving leguminous crops and animal drawn machinery. The end of the nineteenth century was a milestone of biology. Microorganisms were discovered, Mendel's work on genetics was accomplished and institutes for investigating fermentation and other microbial processes were established by Koch, Pasteur and Lister. Biotechnology at the beginning of the twentieth century began to bring industry and agriculture together. During World War I, fermentation processes were developed that produced acetone from starch and paint solvents for the rapidly growing automobile industry. Work in the 1930s was geared towards using surplus agricultural products to supply industry instead of imports or petrochemicals. The advent of World War II brought the manufacture of penicillin. The biotechnical focus moved to pharmaceuticals. The "cold war" years were dominated by work with microorganisms in preparation for biological warfare as well as antibiotics and fermentation processes (Goodman, 1987). Biotechnology is currently being used in many areas including agriculture, bioremediation, food processing and energy production. DNA fingerprinting is becoming a common practice in forensics. Production of insulin and other medicines is accomplished through cloning of vectors that now carry the chosen gene. -
Biotechnology What Is Biotech?
First Edition, 2007 ISBN 978 81 89940 34 8 © All rights reserved. Published by: Global Media 1819, Bhagirath Palace, Chandni Chowk, Delhi-110 006 Email: [email protected] Table of Contents 1. Introduction 2. Technician - Skills Needed for Biotech 3. Basic Microbiology 4. Basic Details About Biotechnology 5. Agriculture 6. Medicine 7. Recombinant DNA 8. Fermentation and Tissue Culture 9. Biological Warfare 10. Allele 11. Artificial Selection 12. Biochemical Engineering 13. Gene 14. Plasmid 15. Protein 16. RNA 17. Glossary of Terms Introduction Where would we have been had it not been for the discovery of the art of collecting seeds and cultivating them for food? Life would surely have been very different! Early man was a food gatherer, depending on nature for all his needs. He gradually moved on to being a food grower with the discovery of agriculture, and settled down in one place, learning to live in a group. This was the beginning of civilization as we know it today. Early knowledge of agriculture was an accumulation of experiences that were passed on from father to son. Some of these have been preserved as religious commandments and some in the ancient inscriptions. There is evidence to show that as early as 2000 BC the Egyptian civilization followed particular dates for sowing and reaping. Some Greek and Roman classics give instructions on how to get a higher yield. The development of agriculture made it apparent that more food could be extracted from a given area of land by encouraging useful and hardy plant and animal species, and discouraging others. -
In Re Roslin Institute: Federal Circuit Finds Cloned Animals Not Patent Eligible
CLIENT MEMORANDUM In re Roslin Institute: Federal Circuit Finds Cloned Animals Not Patent Eligible May 13, 2014 AUTHORS Michael Johnson | Tara Thieme THE FEDERAL CIRCUIT HOLDS THAT CLAIMS COVERING DOLLY THE SHEEP ARE NOT PATENT ELIGIBLE WITHOUT ELEMENTS MARKEDLY DIFFERENT FROM THE ANIMAL FOUND IN NATURE On May 8, 2014, the Federal Circuit issued its opinion in In re Roslin Institute,1 holding that, absent claim elements that cover aspects of the invention that are “markedly different” from that which is found in nature, a cloned animal is not patent eligible subject matter under 35 U.S.C. § 101. Background On July 5, 1996, Ian Wilmut and Keith Campbell became the first researchers to successfully clone a mammalian cell using a process known as somatic cell nuclear transfer. In this process, Wilmut and Campbell created a clone embryo by removing the nucleus of a donor somatic cell and implanting that nucleus into an enucleated oocyte (egg cell). The somatic-cell nucleus, now contained in the egg, reprogrammed the host egg cell and, once stimulated, began to divide and grow in the same manner as a normal embryo grows into a fetus. The clone embryo was then implanted into a surrogate to develop. 1 Appeal No. 2013-1407 (Fed. Cir. May 8, 2014). 1 In re Roslin Institute: Federal Circuit Finds Cloned Animals Not Patent Eligible Continued Dolly the Sheep, cloned from a mammary cell of a donor sheep, was the first mammal successfully cloned using this technique. Since then, this process has successfully cloned a number of mammals, including pigs, deer, horses and bulls. -
SYNTHETIC BIOLOGY June 2014
TIMELINE SYNTHETIC BIOLOGY June 2014 Timeline: Synthetic Biology Science, Policy and Regulation in Canada, Australia, the European Union, the United Kingdom & the United States Principal Researcher: Barbara Kubica, M.Sc., M.A. Note from the Series Editor This timeline outlines important events related to synthetic biology science, policy and regulation in Canada, Australia, the European Union, the United Kingdom and the United States. For the purposes of this timeline, synthetic biology refers to genetic engineering —the ability to design and construct new biological parts, devices and systems. For background purposes, the author has also chosen to include broader developments in science policy as well as significant events outside of the focus regions where deemed appropriate. Please help us keep this timeline accurate and up-to-date by providing comments to [email protected]. Marc Saner Director, ISSP Acknowledgements Many thanks to Justine Lallement, who developed an earlier version of this timeline as part of her internship at the ISSP. About the Author Barbara Kubica holds a Master of Science in Biology from the University of Ottawa (Canada) and a Joint Master of Arts in International Communication from Hanze University of Applied Sciences (Netherlands) and IULM University of Languages and Communication (Italy). She is currently pursuing a Doctorate in Communication and Culture at the University of Calgary (Canada). Her interests lie in the fields of science communication and public engagement in the assessment and regulation of emerging technologies. © 2014, Institute for Science, Society and Policy, University of Ottawa Available for download at www.issp.uottawa.ca This work is licensed under a Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License.