History of Biotechnology Stages of Biotech

Total Page:16

File Type:pdf, Size:1020Kb

History of Biotechnology Stages of Biotech History of Biotechnology Stages of Biotech Ancient Classical Modern Ancient Biotech Begins with early civilization Developments in ag and food production Few records exist Ancient Biotech Archeologists research Ancient carvings and sketches sources of information Classical Biotech Follows ancient Makes wide spread use of methods from ancient, especially fermentation Methods adapted to industrial production Classical Biotech Produce large quantities of food products and other materials in short amount of time Meet demands of increasing population Classical Biotech Many methods developed through classical biotech are widely used today. Modern Biotech Manipulation of genetic material within organisms Based on genetics and the use of microscopy, biochemical methods, related sciences and technologies Modern Biotech Often known as genetic engineering Roots involved the investigation of genes Ancient Biotech Not known when biotech began exactly Focused on having food and other human needs Ancient Biotech Useful plants brought from the wild, planted near caves where people lived As food was available, ability to store and preserve emerged Ancient Food preservation most likely came from unplanned events such as a fire or freeze Domestication 15,000 years ago, large animals were hard to capture People only had meat when they found a dead animal Came up with ways of capturing fish and small animals Domestication Food supplies often seasonal Winter food supplies may get quite low Domestication is seen by scientists as the beginning of biotech Domestication Adaptation of organisms so they can be cultured Most likely began 11,000 – 12,000 years ago in the middle east Domestication Involved the collecting of seed from useful plants and growing crude crops from that seed Involved the knowledge that the seed had to properly mature Domestication Proper planting Need for water, light and other conditions for plant growth Earliest plants likely grains and other seeds used for food Domestication Raising animals in captivity began about the same time in history Easier to have an animal close by that to hunt and capture a wild one Domestication Learned that animals need food and water Learned about simple breeding How to raise young Domestication Cattle, goats and sheep were the first domesticated food animals Domestication About 10,000 years ago, people had learned enough about plants and animals to grow their own food The beginning of farming. Food Domestication resulted in food supplies being greater in certain times of the year Products were gathered and stored Food Some foods rotted Others changed form and continued to be good to eat Foods stored in a cool cave did not spoil as quickly Food Foods heated by fire also did not spoil as quickly Immersing in sour liquids prevented food decay Food preservation Using processes that prevent or slow spoilage Heating, cooling, keeps microorganisms (mo’s) from growing Food preservation Stored in bags of leather or jars of clay Fermentation occurs if certain mo’s are present Creates an acid condition that slows or prevents spoilage Cheese One of the first food products made through biotechnology Began some 4,000 years ago Nomadic tribes in Asia Cheese Strains of bacteria were added to milk Caused acid to form Resulting in sour milk Cheese Enzyme called “rennet” was added Rennet comes from the lining of the stomachs of calves Cheese Rennet is genetically engineered today Not all cheese is made from produced rennet Yeast Long used in food preparation and preservation Bread baking Yeast produces a gas in the dough causing the dough to rise Yeast Fermented products Vinegar Require the use of yeast in at least one stage of production Yeast Species of fungi Some are useful Some may cause diseases Vinegar Ancient product used to preserve food Juices and extracts from fruits and grains can be fermented Fermentation Process in which yeast enzymes chemically change compounds into alcohol In making vinegar the first product of fermentation is alcohol Fermentation Alcohol is converted to acetic acid by additional microbe activity Acid gives vinegar a sour taste Vinegar prevents growth of some bacteria Vinegar Keeps foods from spoiling Used in pickling Biblical references to wine indicate the use of fermentation some 3,000 years ago Fermentation control In ancient times, likely happened by accident Advancements occurred in the 1800’s and early 1900’s Fermenters Used to advance fermentation process Specially designed chamber that promotes fermentation Fermenters Allowed better control, especially with vinegar New products such as glycerol, acetone, and citric acid resulted Development Of yeasts that were predictable and readily available led to modern baking industry Antibiotics Use of fermentation hastened the development of antibiotics A drug used to combat bacterial infections Antibiotics Penicillin Developed in the late1920’s Introduced in the 1940’s First drug produced by microbes Antibiotics Many kinds available today Limitations in their use keep disease producing organisms from developing immunity to antibiotics Antibiotics Use antibiotics only when needed. Overuse may make the antibiotic ineffective when really needed later Antibiotics Some disease organisms are now resistant to certain antibiotics Used in both human and vet medicine Modern Biotech Deals with manipulating genetic info Microscopy and advanced computer technology are used In-depth knowledge of science Modern Biotech Based on genetics research from the mid 1800’s Genetics Study of heredity Most work has focused on animal and plant genetics Genes – determiners of heredity Genes Carry the genetic code Understanding genetic structure essential for genetic engineering Heredity How traits are passed from parents to offspring Members of the same species pass the characteristics of that species Heredity Differences exist within each species. Differences are known as variability Heredity &variability Are used in modern biotechnology Modern Biotech Use of biotech to produce new life forms Emerged in mid 1900’s Made possible by rDNA technology rDNA Recombinant DNA Process Genetic material is moved from one organism to another Materials involved are quite small rDNA Challenging and often controversial Many have opposing or negative views of biotechnolgy People in Biotech Zacharias Janssen Discovered the principle of the compound microscope in 1590 Dutch eye glass maker Anton Van Leeuwenhoek Developed single lens microscope in 1670’s First to observe tiny organisms and document observations Anton V.L. Work led to modern microscopes Electron microscope developed in 1931 by group of German scientists Gregor Mendel Formulated basic laws of heredity during mid 1800’s Austrian Botanist and monk Experimented with peas Mendel Studied inheritance of seven pairs of traits Bred and crossbred thousands of plants Determined that some traits were dominant and other recessive Mendel Findings were published in 1866 Largely ignored for 34 years Johan Friedrich Miescher Swiss Biologist Isolated nuclei of white blood cells in 1869 Led to identification of nucleic acid by Walter Flemming Walter Sutton Determined in 1903 that chromosomes carried units of heredity identified by Mendel Named “genes” in 1909 by Wilhelm Johannsen, Danish Botanist Thomas Hunt Morgan Studied genetics of fruit flies Early 1900’s Experimented with eye color His work contributed to the knowledge of X and Y chromosomes Thomas Hunt Morgan Nobel Peace Prize in 1933 for research in gene theory Ernst Ruska Build the first electron microscope in 1932 German electrical engineer Microscope offered 400X magnification Alexander Fleming Discovered penicillin in 1928 First antibiotic drug used in treating human disease Observed growth of molds (Penicillium genus) in a dish that also contracted bacteria Alexander Fleming Bacteria close to the molds were dead Extracting and purifying the molds took a decade of research Penicillin first used in 1941 Alexander Fleming Penicillin credited with saving many lives during WWII when wounded soldiers developed infections. Rosalind Elsie Franklin Research in France and England in mid 1900’s Led to discovery of structure of DNA Her early research was used to produce an atomic bomb Rosalind Franklin Set up X ray diffraction lab Photographs of DNA showed that it could have a double helix structure Rosalind Franklin Some questions surround the theft of her work in 1952 Including x ray photographs Watson and Crick James Watson Francis Crick Collaborated to produce the first model of DNA structure in 1953 Watson and Crick Described DNA dimensions and spacing of base pairs Had major impact on genetic engineering carried out today Watson Born in the US Crick – born in England Collaborative research at Cambridge University in England Norman E. Borlaug Developed wheat varieties producing high yields Research in Mexico Semi dwarf varieties Developed wheat variety that would grow in climates where other varieties would not Borlaug Nobel Peace Prize in 1971 Credited with helping relieve widespread hunger in some nations Mary Clare King Research into nature of DNA during late 1900’s Determined that 99% of human DNA is identical to chimpanzee Mary Clare King 1975 found similar gene pools between humans and chimpanzee made it possible to research hereditary causes of breast cancer Ian Wilmut Cloning of a sheep named Dolly in 1997 Produced from tissue of an adult sheep Previous cloning efforts had been from early embryos Research Use of systematic methods to answer questions. Problems
Recommended publications
  • Historiographies of Plant Breeding and Agriculture LSE Research Online URL for This Paper: Version: Accepted Version
    Historiographies of Plant Breeding and Agriculture LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101334/ Version: Accepted Version Book Section: Berry, Dominic J. (2019) Historiographies of Plant Breeding and Agriculture. In: Dietrich, Michael, Borrello, Mark and Harman, Oren, (eds.) Handbook of the Historiography of Biology. Springer. ISBN 9783319901183 (In Press) Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Historiographies of Plant Breeding and Agriculture Dominic J. Berry London School of Economics There are unique opportunities that plant breeding and agriculture offer the historian of biology, and unique ways in which the historian of biology can inform the history of plant breeding and agriculture (Harwood, 2006. Phillips and Kingsland, 2015). There are also of course questions and challenges that the study of agricultural sites share with the study of other biological sites, such as those in medicine (Wilmot 2007. Woods et al. 2018), the environment (Agar and Ward 2018), and non-agricultural industries (Bud 1993). Indeed, in some instances the agricultural, medical, environmental, and biologically industrial will be one and the same. This is to say nothing of what agricultural sites share in common with histories of science beyond biology, but that is a broader discussion I can only mention in passing (Parolini 2015).
    [Show full text]
  • Bibliographies Biotechnology, the Life Science Industry, and the Environment
    berkeley workshop on environmental pol i tics bibliographies b 04-9 biotechnology, the life science industry, and the environment an annotated bibliography Dustin R. Mulvaney and Jennifer L. Wells institute of international studies, university of california, berkeley table of contents Introduction.....................................................................................................................................1 General Overview ............................................................................................................................1 Biological Frameworks: Genetic Reductionism and Epigenetics .......................................................7 The Ethics of Biotechnologies ........................................................................................................12 The Ecological Hazards of Transgenic Crops ..................................................................................16 Politics, Science and the Social Context of Regulation....................................................................20 The Life Science Industries and Agro-Industrial Dynamics ............................................................25 The University-Industrial Complex................................................................................................31 Germplasm, Genetic Resources, and Global Governance ...............................................................35 Annotated Bibliography .................................................................................................................39
    [Show full text]
  • Biotechnology and Genetic Engineering
    GLOBAL ISSUES BIOTECHNOLOGY AND GENETIC ENGINEERING GLOBAL ISSUES BIOTECHNOLOGY AND GENETIC ENGINEERING Kathy Wilson Peacock Foreword by Charles Hagedorn, Ph.D. Professor, Environmental Microbiology, Virginia Tech GLOBAL ISSUES: BioTECHNologY AND GENETIC ENgiNeeRING Copyright © 2010 by Infobase Publishing All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Peacock, Kathy Wilson. Biotechnology and genetic engineering / Kathy Wilson Peacock; foreword by Charles Hagedorn. p.; cm. — (Global issues) Includes bibliographical references and index. ISBN 978-0-8160-7784-7 (alk. paper) 1. Biotechnology—Popular works. 2. Genetic engineering—Popular works. I. Title. II. Series: Global issues (Facts on File, Inc.) [DNLM: 1. Biotechnology. 2. Genetic Engineering. 3. Organisms, Genetically Modified—genetics. QU 450 P352b 2010] TP248.215.P43 2010 660.6—dc22 2009025794 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Text design by Erika K. Arroyo Illustrations by Dale Williams Composition by Mary Susan Ryan-Flynn Cover printed by Art Print, Taylor, Pa. Book printed and bound by Maple Press, York, Pa.
    [Show full text]
  • A Short History of Biotechnology
    Biotecnología, una historia… Cuando se habla de biotecnología en la actualidad, frecuentemente se hace referencia a procesos que involucran técnicas de ingeniería genética, como la transgénesis, por ejemplo. Sin embargo, la biotecnología incluye a un conjunto de actividades que acompañan al hombre desde tiempos remotos en gran parte de su vida cotidiana. ¿Cuáles fueron los hechos históricos considerados hitos en el desarrollo de la biotecnología, desde la fabricación de cerveza en el reinado de Nabucodonosor, hasta los desarrollos modernos? El contexto en que surge la Biotecnología La biotecnología, entendida en su sentido más amplio como “el empleo de organismos vivos y sus productos para obtener un bien o servicio”, ha formado parte de la vida cotidiana del hombre desde mucho antes que recibiera el nombre con el que se la conoce actualmente. En la transición del hábito nómada cazador-recolector a la vida en comunidad, aparecen ya indicios de actividades biotecnológicas. El comienzo de las actividades agrícolas junto con la cría de animales, el procesamiento de hierbas para uso medicinal, la preparación de pan y cerveza junto con muchos otros alimentos fermentados como el yogurt, el queso y numerosos derivados de la soja (tofu, salsa de soja, etc.), son algunos ejemplos. También lo son el uso de bálsamos derivados de plantas, y remedios de origen vegetal para tratar las heridas. Los arqueólogos han descubierto indicios de estas actividades en culturas ancestrales incluyendo a los chinos, los egipcios, los griegos y romanos, los sumerios y a otras civilizaciones que habitaron el planeta hace más de 7000 años. Estas comunidades necesitaron desarrollar esas habilidades para subsistir.
    [Show full text]
  • Biotechnology" Was First Coined in 1919 by Karl Ereky Which Means Products Are Produced from Raw Materials with the Aid of Living Organisms
    Concepts of Biotechnology The term “Biotechnology" was first coined in 1919 by Karl Ereky which means products are produced from raw materials with the aid of living organisms. Biotechnology is NOT new. Man has been manipulating living things to solve problems and improve his way of life for millennia. Early agriculture concentrated on producing food. Plants and animals were selectively bred and microorganisms were used to make food items such as beverages, cheese and bread. The late eighteenth century and the beginning of the nineteenth century saw the advent of vaccinations, crop rotation involving leguminous crops and animal drawn machinery. The end of the nineteenth century was a milestone of biology. Microorganisms were discovered, Mendel's work on genetics was accomplished and institutes for investigating fermentation and other microbial processes were established by Koch, Pasteur and Lister. Biotechnology at the beginning of the twentieth century began to bring industry and agriculture together. During World War I, fermentation processes were developed that produced acetone from starch and paint solvents for the rapidly growing automobile industry. Work in the 1930s was geared towards using surplus agricultural products to supply industry instead of imports or petrochemicals. The advent of World War II brought the manufacture of penicillin. The biotechnical focus moved to pharmaceuticals. The "cold war" years were dominated by work with microorganisms in preparation for biological warfare as well as antibiotics and fermentation processes (Goodman, 1987). Biotechnology is currently being used in many areas including agriculture, bioremediation, food processing and energy production. DNA fingerprinting is becoming a common practice in forensics. Production of insulin and other medicines is accomplished through cloning of vectors that now carry the chosen gene.
    [Show full text]
  • Biotechnology What Is Biotech?
    First Edition, 2007 ISBN 978 81 89940 34 8 © All rights reserved. Published by: Global Media 1819, Bhagirath Palace, Chandni Chowk, Delhi-110 006 Email: [email protected] Table of Contents 1. Introduction 2. Technician - Skills Needed for Biotech 3. Basic Microbiology 4. Basic Details About Biotechnology 5. Agriculture 6. Medicine 7. Recombinant DNA 8. Fermentation and Tissue Culture 9. Biological Warfare 10. Allele 11. Artificial Selection 12. Biochemical Engineering 13. Gene 14. Plasmid 15. Protein 16. RNA 17. Glossary of Terms Introduction Where would we have been had it not been for the discovery of the art of collecting seeds and cultivating them for food? Life would surely have been very different! Early man was a food gatherer, depending on nature for all his needs. He gradually moved on to being a food grower with the discovery of agriculture, and settled down in one place, learning to live in a group. This was the beginning of civilization as we know it today. Early knowledge of agriculture was an accumulation of experiences that were passed on from father to son. Some of these have been preserved as religious commandments and some in the ancient inscriptions. There is evidence to show that as early as 2000 BC the Egyptian civilization followed particular dates for sowing and reaping. Some Greek and Roman classics give instructions on how to get a higher yield. The development of agriculture made it apparent that more food could be extracted from a given area of land by encouraging useful and hardy plant and animal species, and discouraging others.
    [Show full text]
  • Module 2 Biotechnology: History, State of the Art, Future. Lecture Notes
    MODULE 2 BIOTECHNOLOGY: HISTORY, STATE OF THE ART, FUTURE. LECTURE NOTES: UNIT 1 INTRODUCTION TO BIOTECHNOLOGY, HISTORY AND CONCEPTS DEFINITION Dr Marcel Daba BENGALY Université Ouaga I Pr Joseph KI ZERBO Final version, February 2017 Disclaimer This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union. 1 This Unit 1 of Module 2 is an integral part of the six Master's level course modules (each of 20 hrs) in the field of agricultural biotechnology as elaborated by the EDULINK-FSBA project (2013-2017) which are: Module 1: Food security, agricultural systems and biotechnology Module 2: Biotechnology: history, state of the art, future Module 3: Public response to the rise of biotechnology Module 4: Regulation on and policy approaches to biotechnology Module 5: Ethics and world views in relation to biotechnology Module 6: Tailoring biotechnology: towards societal responsibility and country specific approaches PRESENTATION OF MODULE 2 INTRODUCTION Achieving food security in its totality (food availability, economic and physical access to food, food utilization and stability over time) continues to be a challenge not only for the developing nations, but also for the developed world. The difference lies in the magnitude of the problem in terms of its severity and proportion of the population affected. According to FAO statistics, a total of 842 million people in 2011–13, or around one in eight people in the world, were estimated to be suffering from chronic hunger.
    [Show full text]
  • Biotechnology 101 P1: FBQ/JZK P2: FBQ Ggbd030-Fm.Tex Ggbd030 GR3542/Shmaefsky September 7, 2006 11:28
    P1: FBQ/JZK P2: FBQ ggbd030-fm.tex ggbd030 GR3542/Shmaefsky September 7, 2006 11:28 Biotechnology 101 P1: FBQ/JZK P2: FBQ ggbd030-fm.tex ggbd030 GR3542/Shmaefsky September 7, 2006 11:28 Recent Titles in the Science 101 Series Evolution 101 Randy Moore and Janice Moore P1: FBQ/JZK P2: FBQ ggbd030-fm.tex ggbd030 GR3542/Shmaefsky September 7, 2006 11:28 Biotechnology 101 Brian Robert Shmaefsky Science 101 GREENWOOD PRESS r Westport, Connecticut London P1: FBQ/JZK P2: FBQ ggbd030-fm.tex ggbd030 GR3542/Shmaefsky September 7, 2006 11:28 Library of Congress Cataloging-in-Publication Data Shmaefsky, Brian. Biotechnology 101 / Brian Robert Shmaefsky. p. cm.—(Science 101, ISSN 1931–3950) Includes bibliographical references (p. ) and index. ISBN 0–313–33528–1 (alk. paper) 1. Biotechnology. I. Title. TP248.215.S56 2006 660.6–dc22 2006024555 British Library Cataloguing in Publication Data is available. Copyright © 2006 by Brian Robert Shmaefsky All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2006024555 ISBN: 0–313–33528–1 ISSN: 1931–3950 First published in 2006 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 P1: FBQ/JZK P2: FBQ ggbd030-fm.tex ggbd030 GR3542/Shmaefsky September 7, 2006 11:28 Contents Series Foreword xi Preface xiii 1.
    [Show full text]
  • Culture, Risk, and the Prospect of Genetically Modified Organisms As Viewed by Tāngata Whenua
    Culture, Risk, and the Prospect of Genetically Modified Organisms as Viewed by Tāngata Whenua Terre Satterfield, Mere Roberts, Mark Henare, Melissa Finucane, Richard Benton, and Manuka Henare Culture, Risk and the Prospect of Genetically Modified Organisms as Viewed by Tāngata Whenua By Terre Satterfield, Mere Roberts, Mark Henare, Melissa Finucane, Richard Benton, and Manuka Henare Whakatane: Te Whare Wānanga o Awanuiārangi May 2005 The research reported in this report has been supported under Contract UOA X0234 from the Foundation for Research Science and Technology, Wellington, New Zealand through the University of Auckland and Te Whare Wānanga o Awanuiārangi. The authors would like to thank all those who made this project possible. Their willingness to embark upon this journey with us into the largely unknown was greatly appreciated. Nō reira, mā te Atua koutou e manaaki, e tiaki i ngā wā katoa. Their views presented here provide an in-depth insight into the values and beliefs of a wide range of tangata whenua concerning genetically modified organisms. We hope their gift will make a valuable contribution to this subject area, and provide sustenance for those who seek to travel further on this journey. We wish to thank the James Henare Research Centre at the University of Auckland who provided a home for the first stages of this project and, along with our Māori Advisory Committee members (Dr. Merimeri Penfold, Father Henare Tait, Pereme Porter and Rua Rakena), provided much appreciated manaakitanga for this project. Project Director: Dr Mere Roberts, Te Whare Wānanga o Awanuiārangi Associate Researchers: Dr Terre Satterfield, The University of British Columbia Dr Melissa Finucane, Kaiser Permanente Center for Health Research, Honolulu, Hawai’i Dr Manuka Henare, The University of Auckland Advisor: Professor Richard Benton, The University of Waikato Graduate Assistant: Mark Henare, Cambridge University CONTENTS 1.
    [Show full text]
  • The Biotechnology's Importance for Society. Consumer's Acceptance Of
    Romanian Journal of Cognitive Behavioral Therapy and Hypnosis Volume 4, Issue 1-2, January –June 2017 Editorial The Biotechnology’s importance for society. Consumer’s acceptance of biotechnological products. Nastasia Belc National Research & Development Institute for Food Bioresources, IBA Bucharest, Romania Claudia Elena Moșoiu, Sorin Corneliu Iorga National Research & Development Institute for Food Bioresources, IBA Bucharest, Romania Abstract Biotechnology is a very complex field which requires a wide multisciplinarity and that can be the one of the reliable ways to be used for developing several sectors such as: aqua- and agriculture, food industry, pharma industry, medical sector, veterinary medicine field or environment protection sector (forestry, soils, waters). Biotechnology has been used since ancient times for food production and preservation, but only in the last 2 centuries sufficient new knowledge has been accumulated in order to establish biotechnology as a specific field of expertise and competence. Green (agriculture), red (medical), white (industrial) and blue (water) biotechnologies are used for obtaining energetic, agricole, pharmaceutic, food and environmental protection products based on the microorganisms potential through genetic engineering techniques and their derivates such as microbian enzymes, by specialists having knowledge in chemistry, biochemistry, molecular biology, microbiology, informatics technology and nanotechnologies. The biotechnological products should be accepted by consumers (industrial, from
    [Show full text]
  • Introduction to Biotechnology
    Introduction to Biotechnology The root words of biotechnology are ancient Greek: • Bios: "life" • Technikos: “Skillfully made "tool" • Logos: "Study of," "word," "essence" Biotechnology- “The study of living tools"- is used in agriculture, food processing, industrial production, environmental cleanup and medicine. A set of modern tools that utilize living organisms or parts of it cell or tissue or genes/DNA to make or modify or improve plants or animals or develop microorganisms for specific use or their large scale production. "Utilization of organisms or its organells or biological process to make product or to solve problems for the welfare of mankind." The Convention on Biological Diversity (CBD, 2000) biotechnology means "any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use". Biotechnology - production of goods and services using biological organisms, systems and process. History of Biotechnology: Biotechnology seems to be leading a sudden new biological revolution. Biotechnology is NOT new. Man has been manipulating living things to solve problems and improve his way of life for millennia. The term biotechnology was coined in 1919 by Karl Ereky, an Hungarian engineer. At that time, the term meant all the lines of work by which products are produced from raw materials with the aid of living organisms. Although now most often associated with the development of drugs, historically biotechnology has been principally associated with food such as malnutrition and famine. The history of biotechnology begins on brewing techniques for beer. Early agriculture concentrated on producing food. Plants and animals were selectively bred and microorganisms were used to make food items such as beverages, cheese and bread.
    [Show full text]
  • History of Genetics Book Collection Catalogue
    History of Genetics Book Collection Catalogue Below is a list of the History of Genetics Book Collection held at the John Innes Centre, Norwich, UK. For all enquires please contact Mike Ambrose [email protected] +44(0)1603 450630 Collection List Symposium der Deutschen Gesellschaft fur Hygiene und Mikrobiologie Stuttgart Gustav Fischer 1978 A69516944 BOOK-HG HG œ.00 15/10/1996 5th international congress on tropical agriculture 28-31 July 1930 Brussels Imprimerie Industrielle et Finangiere 1930 A6645004483 œ.00 30/3/1994 7th International Chromosome Conference Oxford Oxford 1980 A32887511 BOOK-HG HG œ.00 20/2/1991 7th International Chromosome Conference Oxford Oxford 1980 A44688257 BOOK-HG HG œ.00 26/6/1992 17th international agricultural congress 1937 1937 A6646004482 œ.00 30/3/1994 19th century science a selection of original texts 155111165910402 œ14.95 13/2/2001 150 years of the State Nikitsky Botanical Garden bollection of scientific papers. vol.37 Moscow "Kolos" 1964 A41781244 BOOK-HG HG œ.00 15/10/1996 Haldane John Burdon Sanderson 1892-1964 A banned broadcast and other essays London Chatto and Windus 1946 A10697655 BOOK-HG HG œ.00 15/10/1996 Matsuura Hajime A bibliographical monograph on plant genetics (genic analysis) 1900-1929 Sapporo Hokkaido Imperial University 1933 A47059786 BOOK-HG HG œ.00 15/10/1996 Hoppe Alfred John A bibliography of the writings of Samuel Butler (author of "erewhon") and of writings about him with some letters from Samuel Butler to the Rev. F. G. Fleay, now first published London The Bookman's Journal
    [Show full text]