KRAS Oncogene in Non-Small Cell Lung Cancer: Clinical Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

KRAS Oncogene in Non-Small Cell Lung Cancer: Clinical Perspectives Román et al. Molecular Cancer (2018) 17:33 https://doi.org/10.1186/s12943-018-0789-x REVIEW Open Access KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target Marta Román1,2, Iosune Baraibar1,2, Inés López2, Ernest Nadal3, Christian Rolfo4, Silvestre Vicent2,5,6 and Ignacio Gil-Bazo1,2,5,6* Abstract Lung neoplasms are the leading cause of death by cancer worldwide. Non-small cell lung cancer (NSCLC) constitutes more than 80% of all lung malignancies and the majority of patients present advanced disease at onset. However, in the last decade, multiple oncogenic driver alterations have been discovered and each of them represents a potential therapeutic target. Although KRAS mutations are the most frequently oncogene aberrations in lung adenocarcinoma patients, effective therapies targeting KRAS have yet to be developed. Moreover, the role of KRAS oncogene in NSCLC remains unclear and its predictive and prognostic impact remains controversial. The study of the underlying biology of KRAS in NSCLC patients could help to determine potential candidates to evaluate novel targeted agents and combinations that may allow a tailored treatment for these patients. The aim of this review is to update the current knowledge about KRAS-mutated lung adenocarcinoma, including a historical overview, the biology of the molecular pathways involved, the clinical relevance of KRAS mutations as a prognostic and predictive marker and the potential therapeutic approaches for a personalized treatment of KRAS-mutated NSCLC patients. Background a slight improvement in the survival of patients with ad- Lung cancer is the most common cancer worldwide both vanced NSCLC, reducing symptoms and improving the in terms of incidence (1.8 million new cases estimated in quality of life. In fact, the effect of the combination of dif- 2012) and mortality (1.6 million annual deaths). In fact, ferent chemotherapeutic agents with a platinum com- lung cancer is the leading cause of death by cancer [1, 2]. pound in patients with advanced disease observed no Non-small cell lung cancer (NSCLC) comprises about 80% significant differences between the different doublets of all lung cancer cases [3]. When patients are diagnosed tested [6]. Those poor results have been significantly im- in early stages of NSCLC the survival rates are relatively proved over the last decade through different therapeutic higher after surgical resection [4]. However, at the time of strategies such as the incorporation of a third antiangio- diagnosis, the majority of patients have already developed genic drug to a platinum-based doublet [7], the combin- advanced disease and the median survival barely exceeds ation of cisplatin with the antifolate drug pemetrexed [8] 18 months from diagnosis [5]. Patients with untreated and the implementation of pemetrexed maintenance metastatic NSCLC present an overall survival (OS) rate at monotherapy after tumor response or stabilization induced one year of only 10%, with a median survival of around 4 by a platinum-based doublet [9]. to 5 months. Classically, chemotherapy has demonstrated Also during the last decade, a number of genetic alter- ations have been described in NSCLC, being Kristen Rat Sarcoma viral oncogene (KRAS), Epidermal Growth Factor * Correspondence: [email protected] Receptor EGFR Anaplastic Lymphoma Kinase ALK Marta Román and Iosune Baraibar are co-shared first authorship. ( )and ( ) Silvestre Vicent and Ignacio Gil-Bazo are co-shared senior authorship. the most commonly altered oncogenes acting as tumor gen- 1Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, omic drivers [10]. The use of targeted therapies in NSCLC Spain EGFR ALK 2Program of Solid Tumors and Biomarkers, Center for Applied Medical individuals with an actionable driver, as and ,has Research, Pamplona, Spain shown high clinical efficacy in comparison with patients in Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Román et al. Molecular Cancer (2018) 17:33 Page 2 of 14 whom no molecular targets for a personalized therapy are HRAS and KRAS oncogenes were identified in human blad- identified [11]. In contrast, regarding KRAS oncogene, al- der and lung carcinoma cell lines, respectively [25, 26]. The though the KRAS-MAPK pathway is downstream of EGFR third member of the human RAS gene family, designated as signaling, KRAS-mutation driven lung cancers, which are NRAS, was described in human sarcoma cell lines in 1983 mainly adenocarcinomas, do not respond to EGFR tyrosine [27, 28]. kinase inhibitors (TKIs) [12]. Moreover, KRAS activation is Mariano Barbacid’s group first established the relation- one of the signaling pathways involved in resistance to ship between RAS genes and lung cancer in 1984. They EGFR TKIs and monoclonal antibodies. In spite of the conducted a landmark study which evidenced the pres- EGFR inhibition by TKIs, KRAS activation allows the ence of an activating mutation of KRAS oncogene in a downstream signaling mediated by EGF [13]. human lung cancer specimen that was not observed in Previous studies have reported that the occurrence normal tissue of the same patient [29]. Soon after, the of EGFR and KRAS mutations is strictly mutually prevalence of mutational KRAS activation in lung can- exclusive and each of these genetic alterations is cers, specifically in NSCLC, was demonstrated [30]. associated with specific clinical characteristics such KRAS mutations have been found to be almost an exclu- as pathological features, clinical background and sive feature of adenocarcinomas and are more frequent prognostic or predictive implications [14, 15]. Never- in Western populations. Pooled frequencies of KRAS theless, recent studies have described concomitant mutations range from 6.7% to 40.0% for ever/heavy genetic alterations such as EGFR or Echinoderm smokers and from 2.9 to 11.4 for never/light smokers microtubule-associated protein-like 4 (EML4) ALK [31]. During the following two decades, studies of RAS translocation with KRAS (EGFR/KRAS or EML4- focused on its biology and biochemical characteristics ALK/KRAS), most of them associated with an ac- both in normal and cancer cells, as well as in the signal- quired mutation after treatment that promotes drug ing cascade in which RAS is involved [32]. Nevertheless, resistance [16, 17]. Tumor heterogeneity according despite the increase in systematic studies of the RAS to which different mutations may coexist in different oncogene, no clinically applicable therapeutic inhibition tumor cells or in the same tumor cell could explain has proven to be successful for over 30 years. After mul- this phenomenon of concomitance. EML4-AKT/ tiple failed attempts to inhibit RAS either directly or in- KRAS double alteration represents the most common directly (downstream effectors and post-transcriptional concomitant genomic aberration and is associated modifications), ‘The RAS Initiative’ arose (2013), to fa- with poor prognosis and resistance to anti-ALK cilitate connections among RAS researchers to promote agents. Tumors with concomitant EGFR/KRAS muta- new ideas and technologies to bear on RAS. Even so, tion usually show the typical histologic patterns and RAS inhibition and the development of novel therapies cell characteristics of EGFR-mutated tumors and cor- remain an unmet clinical need [33–37]. relates with a better response to EGFR-TKIs therapy [10, 18, 19]. KRAS biology Effective therapies against KRAS have not been de- RAS proteins, including KRAS, are intracellular guanine veloped yet. Indeed, NSCLC adenocarcinoma patients nucleotide binding proteins (G proteins) which belong to with tumors harboring KRAS mutations, that account the family of small GTPases. G proteins are composed of a for 25% of the cases, show a shorter median survival G or catalytic domain, which binds guanine nucleotides (2.41 years) compared to patients candidates to per- and activates signaling, and a C-terminal hypervariable re- sonalized therapies [20, 21]. Despite all clinical ad- gion (HVR) that incorporates farnesyl or prenyl groups vances regarding personalized therapy, there is still a (post-transcriptional modifications). These modifications highly remarkable unmet clinical need since a very diverge in each isoform because of the sequence variability well-known and highly prevalent tumor driver muta- of the HVR and locate RAS proteins to the cell membrane, tion in NSCLC patients, such as KRAS, still remains where they perform their signaling function [38, 39]. The refractory to pharmacological inhibition. downstream signaling is regulated by two alternative states of RAS proteins: RAS-GTP (active form) and RAS-GDP Historical overview (inactive form). RAS-GTP complex activates several down- The ability of single-stranded murine sarcoma virus, stream signaling effectors such as the canonical Raf-MEK- Kirsten and Harvey, to transform normal mammalian genes
Recommended publications
  • Targeting the LKB1 Tumor Suppressor
    Send Orders for Reprints to [email protected] 32 Current Drug Targets, 2014, 15, 32-52 Targeting the LKB1 Tumor Suppressor Rui-Xun Zhao and Zhi-Xiang Xu* Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: LKB1 (also known as serine-threonine kinase 11, STK11) is a tumor suppressor, which is mutated or deleted in Peutz-Jeghers syndrome (PJS) and in a variety of cancers. Physiologically, LKB1 possesses multiple cellular functions in the regulation of cell bioenergetics metabolism, cell cycle arrest, embryo development, cell polarity, and apoptosis. New studies demonstrated that LKB1 may also play a role in the maintenance of function and dynamics of hematopoietic stem cells. Over the past years, personalized therapy targeting specific genetic aberrations has attracted intense interests. Within this review, several agents with potential activity against aberrant LKB1 signaling have been discussed. Potential strate- gies and challenges in targeting LKB1 inactivation are also considered. Keywords: LKB1 (serine-threonine kinase 11, STK11), AMP-activated protein kinase (AMPK), tumor suppression, mutations, targeting therapeutics. INTRODUCTION THE BIOLOGICAL FUNCTIONS OF LKB1 The LKB1 gene, also known as serine-threonine kinase Cell Metabolism 11 (STK11), was first identified by Jun-ichi Nezu of Chugai About a decade ago, studies from three different groups Pharmaceuticals in 1996 in a screen aimed at identifying new established that LKB1 is the long-sought kinase that phos- kinases [1]. The human LKB1 gene has been mapped to phorylates AMPK [9-11]. AMPK is a heterotrimeric enzyme chromosome 19p13.3. The gene spans 23 kb and is com- complex consisting of a catalytic subunit and regulatory posed of nine coding exons and a noncoding exon [2].
    [Show full text]
  • Overexpression and Selective Anticancer Efficacy of ENO3 in STK11 Mutant Lung Cancers
    Molecules and Cells Overexpression and Selective Anticancer Efficacy of ENO3 in STK11 Mutant Lung Cancers Choa Park1,3, Yejin Lee1,3, Soyeon Je1,3, Shengzhi Chang1, Nayoung Kim1, Euna Jeong2, and Sukjoon 1,2, Yoon * 1Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea, 2Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea, 3These authors contributed equally to this work. *Correspondence: [email protected] https://doi.org/10.14348/molcells.2019.0099 www.molcells.org Oncogenic gain-of-function mutations are clinical biomarkers lung cancer, constituting ~80% to 90% of all lung can- for most targeted therapies, as well as represent direct targets cers (Novello et al., 2016; Planchard et al., 2018). NSCLC for drug treatment. Although loss-of-function mutations is classified into three types: lung adenocarcinoma (LUAD), involving the tumor suppressor gene, STK11 (LKB1) are squamous cell carcinoma, and large cell carcinoma. LUAD important in lung cancer progression, STK11 is not the direct accounts for approximately 30% of lung cancers (Gill et al., target for anticancer agents. We attempted to identify cancer 2011). Serine/threonine kinase 11 (STK11), also known as liv- transcriptome signatures associated with STK11 loss-of- er kinase B1 (LKB1), is a major tumor suppressor gene in lung function mutations. Several new sensitive and specific gene cancers. Particularly, STK11 is the most inactivated tumor expression markers (ENO3, TTC39C, LGALS3, and MAML2) suppressor gene in NSCLC (Carretero et al., 2004; Chen et were identified using two orthogonal measures, i.e., fold al., 2016; Facchinetti et al., 2017). Although STK11 inactiva- change and odds ratio analyses of transcriptome data from tion (i.e., loss-of-function mutation) occurs in ~30% of LUAD cell lines and tissue samples.
    [Show full text]
  • STK11 Gene Serine/Threonine Kinase 11
    STK11 gene serine/threonine kinase 11 Normal Function The STK11 gene (also called LKB1) provides instructions for making an enzyme called serine/threonine kinase 11. This enzyme is a tumor suppressor, which means that it helps keep cells from growing and dividing too fast or in an uncontrolled way. This enzyme helps certain types of cells correctly orient themselves within tissues ( polarization) and assists in determining the amount of energy a cell uses. This kinase also promotes a type of programmed cell death known as apoptosis. In addition to its role as a tumor suppressor, serine/threonine kinase 11 function appears to be required for normal development before birth. Health Conditions Related to Genetic Changes Breast cancer Inherited changes in the STK11 gene greatly increase the risk of developing breast cancer, as well as other types of cancer, as part of Peutz-Jeghers syndrome (described above). These mutations are thought to account for only a small fraction of all breast cancer cases. Peutz-Jeghers syndrome Inherited mutations in the STK11 gene cause Peutz-Jeghers syndrome, a condition characterized by the development of noncancerous growths called hamartomatous polyps in the gastrointestinal tract and a greatly increased risk of developing several types of cancer. More than 340 STK11 gene mutations have been identified in people with this condition. Many of these mutations result in the production of an abnormally short, nonfunctional version of the serine/threonine kinase 11 enzyme. Other mutations change single protein building blocks (amino acids) used to build the enzyme. Mutations in the STK11 gene impair the enzyme's tumor suppressor function, allowing cells to grow and divide without control or order.
    [Show full text]
  • The Tumor Suppressor Gene LKB1 Is Associated with Prognosis in Human Breast Carcinoma1
    Vol. 8, 2085–2090, July 2002 Clinical Cancer Research 2085 Advances in Brief The Tumor Suppressor Gene LKB1 Is Associated with Prognosis in Human Breast Carcinoma1 Zan Shen, Xian-Feng Wen, Fei Lan, patients with PJS (1). PJS is an autosomal dominant-inherited Zhen-Zhou Shen, and Zhi-Ming Shao2 disorder, which is characterized by predisposition to gastroin- testinal polyposis, mucocutaneous melanin pigmentation, and Department of Surgery, Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200032, People’s Republic of China [Z. S., various neoplasms (1). The incidence of cancer among patients X-F. W., F. L., Z-Z. S., Z-M. S.] with PJS has been estimated to be 18-fold higher than in the general population (1). Moreover, tumors associated with PJS have acquired somatic mutations in the remaining wild-type Abstract allele of LKB1, strongly implicating LKB1 as a tumor suscep- Purpose: LKB1 (also called STK11) is a recently iden- tibility gene (2). Most of the mutations in PJS families are point tified tumor suppressor gene in which its mutation can lead and truncation mutations within the kinase domain of LKB1, to Peutz-Jeghers syndrome, characterized by gastrointesti- suggesting that the kinase activity of LKB1 is critical to its nal polyps and cancers of different organ systems. Weak function (1, 3). expression of this gene does occur at a certain frequency in Because PJS patients show a predisposition to a wide sporadic breast cancer. This indicates that LKB1 gene may spectrum of cancers, including breast cancer, it is speculated relate to the tumorigenesis of breast cancer. that LKB1 has a tumor suppressor function in the breast cancer Experimental Design: To investigate the function of the of PJS.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • Targeting STK11-Inactivation Induced Invasion and Harnessing Β-Catenin
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Targeting STK11-Inactivation Induced Invasion and Harnessing ฀-Catenin - CBP/P300 Signaling as a Potential Therapeutic Option in Cutaneous Melanoma Dzung, Andreas Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-194962 Dissertation Published Version Originally published at: Dzung, Andreas. Targeting STK11-Inactivation Induced Invasion and Harnessing ฀-Catenin - CBP/P300 Signaling as a Potential Therapeutic Option in Cutaneous Melanoma. 2020, University of Zurich, Faculty of Medicine. Targeting STK11-Inactivation Induced Invasion and Harnessing -Catenin - CBP/P300 Signaling as a Potential Therapeuticβ Option in Cutaneous Melanoma Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Andreas Li-Wen Michael Dzung von Wettingen AG, Schweiz .......................................................................... Promotionskommission Prof. Dr. Med. Reinhard Dummer (Vorsitz) Prof. Dr. Mitch Levesque (Leitung der Dissertation) Prof. Dr. Lucas Pelkmans Prof. Dr. Berend Snijder Zürich, 2020 2 Melanoma - Overview This thesis is dedicated to my mother, Ruth Amacher-Dzung, who lost the battle against melanoma, and to my father, Dacfey Dzung. I feel eternally grateful for your love, guidance and for all that I have learnt from you. Thank you, for giving me the chance to grow up and to be raised in a happy and loving family environment. I will always look up to you and sincerely hope, I will be able to pass what you taught me onto the next generation. Melanoma - Overview 3 Contents I. Abstract ............................................................................................................................ 6 II.
    [Show full text]
  • The Altered Activity of P53 Signaling Pathway by STK11 Gene Mutations
    Jiang et al. BMC Medical Genetics (2018) 19:141 https://doi.org/10.1186/s12881-018-0626-5 RESEARCHARTICLE Open Access The altered activity of P53 signaling pathway by STK11 gene mutations and its cancer phenotype in Peutz-Jeghers syndrome Yu-Liang Jiang1,2†, Zi-Ye Zhao3,4†, Bai-Rong Li2†, Fu Yang3, Jing Li2, Xiao-Wei Jin2, Hao Wang4, En-Da Yu4, Shu-Han Sun3* and Shou-Bin Ning2* Abstract Background: Peutz-Jeghers syndrome (PJS) is caused by mutations in serine/threonine kinase 11 (STK11) gene. The increased cancer risk has been connected to P53 pathway. Methods: PJS probands with STK11 mutation were included in the function analysis. P53 activity elevated by STK11 mutants was investigated using dual-luciferase reporter assay in vitro after constructing expression vectors of STK11 wild type and mutants generated by site-directed substitution. The association between the P53 activity and clinicopathological factors was analysis, especially the cancer history. Results: Thirteen probands with STK11 mutations were involved, and within the mutations, c.G924A was novel. P53 activity elevation caused by 6 truncating mutations were significantly lower than that of STK11 wild type (P < 0.05). Family history of cancer was observed in 5 families. Within them, P53 activity was reduced and cancer occurred before 40 in 2 families, while it was not significantly changed and cancers happened after 45 in the other 3 families. Conclusions: The affected P53 activity caused by STK11 mutations in PJS patients is significantly associated with protein truncation, while cancer risk in PJS can be elevated through pathways rather than P53 pathway.
    [Show full text]
  • Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activ
    biomedicines Article Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines Bashir Lawal 1,2,† , Yen-Lin Liu 3,4,5,6,† , Ntlotlang Mokgautsi 1,2 , Harshita Khedkar 1,2, Maryam Rachmawati Sumitra 1,2, Alexander T. H. Wu 6,7,8,9,* and Hsu-Shan Huang 1,2,9,10,11,* 1 PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; [email protected] (B.L.); [email protected] (N.M.); [email protected] (H.K.); [email protected] (M.R.S.) 2 Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan 3 Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan; [email protected] 4 Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan 5 Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 6 TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan 7 The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei 11031, Taiwan 8 Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan 9 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan 10 School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan 11 PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Citation: Lawal, B.; Liu, Y.-L.; Taipei 11031, Taiwan Mokgautsi, N.; Khedkar, H.; Sumitra, * Correspondence: [email protected] (A.T.H.W.); [email protected] (H.-S.H.) M.R.; Wu, A.T.H.; Huang, H.-S.
    [Show full text]
  • STK11/KRAS Mutational Frequency in Stage IV Lung Adenocarcinoma Adrenal Metastases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector BRIEF Report Somatic STK11 and Concomitant STK11/KRAS Mutational Frequency in Stage IV Lung Adenocarcinoma Adrenal Metastases Ferga C. Gleeson, MD,* Benjamin R. Kipp, PhD,† Michael J. Levy, MD,* Jesse S. Voss, CT(ASCP),† Michael B. Campion,† Douglas M. Minot, CT(ASCP),† Zheng J. Tu, PhD,‡ Eric W. Klee, PhD,‡ Konstantinos N. Lazaridis, MD,*§ and Sarah E. Kerr, MD† Abstract: Somatic serine/threonine kinase 11 (STK11) also known as such therapies. The ability to individualize therapies based liver kinase B1 (LKB1) is a tumor suppressor gene and ranks as the third on genetic testing of tumors represents significant progress. most frequently mutated gene in lung adenocarcinoma. However, cur- Other gene rearrangements (ROS1 and RET) have been iden- rent molecular testing guidelines recommend evaluating for epidermal tified as therapeutic targets in lung cancer, but are rare events. growth factor receptor mutations and ALK fusions to guide therapy in Little emphasis has been placed on mutated tumor suppressor all patients with advanced stage adenocarcinoma, regardless of gender, genes. The Tumor Sequencing Project identified 26 signifi- race, or smoking history. Identifying alternative “driver” mutations and cantly mutated oncogenes and tumor suppressor genes. The using actionable targeted pharmacotherapy is a key approach to pro- most frequently identified tumor suppressor genes were TP53 1 viding effective individualized medical care. The analytical sensitivity (70%), STK11 (18%), and CDKN2A (5%). and parallel multigene approach of targeted next-generation sequenc- Somatic serine/threonine kinase 11 (STK11) encodes the ing is an attractive methodology for use for cytology specimens.
    [Show full text]
  • Hereditary Cancer Panel Descriptions
    Genetic Testing for Hereditary and Somatic Cancers Hereditary Cancer Panels Key Features: • Includes sequencing and CNV analyses • Rigorous classification adhering to ACMG guidelines • 100% coverage of targeted regions at >50x • Multiple panel options available • Sensitivity and specificity >99% Panel Genes BRCA1, BRCA2 panel* BRCA1, BRCA2 Breast Cancer panel** ATM, BRCA1, BRCA2, CDH1, CHEK2, NBN, NF1, PALB2, PTEN, STK11, TP53 Breast and Gynecologic ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MLH1, MSH2, MSH6, NBN, NF1, PALB2, PMS2, Cancer panel** PTEN, RAD51C, RAD51D, STK11, TP53 Colorectal Cancer panel** APC, AXIN2, BMPR1A, CHEK2, EPCAM, GREM1, MLH1, MSH2, MSH3, MSH6, MUTYH, NTHL1, PMS2, POLD1, POLE, PTEN, SMAD4, STK11, TP53 Hereditary Cancer panel** APC, ATM, AXIN2, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, CTNNA1, DICER1, EPCAM, GREM1, HOXB13, KIT, MEN1, MLH1, MSH2, MSH3, MSH6, MUTYH, NBN, NF1, NTHL1, PALB2, PDGFRA, PMS2, POLD1, POLE, PTEN, RAD50, RAD51C, RAD51D, SDHA, SDHB, SDHC, SDHD, SMAD4, SMARCA4, STK11, TP53, TSC1, TSC2, VHL *$600 CAD, with genetic counselling | ** $729 CAD, with genetic counselling Panel Genes Gastric Cancer panel APC, BMPR1A, CDH1, CTNNA1, EPCAM, KIT, MLH1, MSH2, MSH6, NF1, PDGFRA, PMS2, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TP53 Hyperparathyroidism AP2S1, CASR, CDC73, CDKN1B, GNA11, MEN1, RET Cancer panel Melanoma Cancer panel BAP1, BRCA2, CDK4, CDKN2A, MITF, POT1, PTEN, RB1, TP53 Myelodysplastic / ATM, BLM, CEBPA, EPCAM, GATA2, HRAS, MLH1, MSH2, MSH6, NBN, NF1, PMS2, RUNX1, TERC, TERT,
    [Show full text]
  • Phase II Study of Everolimus in Patients with Advanced Solid Malignancies with TSC1, TSC2, NF1, NF2, Or STK11 Mutations
    Phase II Study of Everolimus in Patients with Advanced Solid Malignancies with TSC1, TSC2, NF1, NF2, or STK11 Mutations Washington University School of Medicine Division of Oncology 660 South Euclid Avenue, Campus Box 8056 St. Louis, MO 63110 Protocol#: 201502067 Version Date: 02/15/17 Principal Investigator: Saiama Waqar, M.D. Phone: (314) 362-5737 E-mail: [email protected] Sub-Investigators Modality Ramaswamy Govindan, M.D. Medical Oncology Maria Q. Baggstrom, M.D. Medical Oncology Daniel Morgensztern, M.D. Medical Oncology Feng Gao, Ph.D. Biostatistics Study Drug(s): Everolimus (RAD001, Afinitor / Votubia) IND#: 125661 EXEMPT Clinical Trials.gov# NCT02352844 CONFIDENTIAL The information contained in this document is regarded as confidential and, except to the extent necessary to obtain informed consent, may not be disclosed to another party unless law or regulations require such disclosure. Persons to whom the information is disclosed must be informed that the information is confidential and may not be further disclosed by them Protocol Version: 02/15/17 Page 1 of 53 Phase II Study of Everolimus in Patients with Advanced Solid Malignancies with TSC1, TSC2, NF1, NF2 or STK11 Mutations Protocol Revision History Initial Approval Version 05/04/2015 Amendment #1 Version 09/10/2015 Amendment #2 Version 12/15/2015 Amendment #3 Version 04/25/2016 Amendment #4 Version 02/15/2017 Protocol Version: 02/15/17 Page 2 of 53 Phase II Study of Everolimus in Patients with Advanced Solid Malignancies with TSC1, TSC2, NF1, NF2, or STK11 Mutations
    [Show full text]
  • Resistance to Durvalumab and Durvalumab Plus Tremelimumab Is
    Author Manuscript Published OnlineFirst on July 6, 2021; DOI: 10.1158/2159-8290.CD-20-1543 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. STK11/LKB1 ms for Cancer Discovery 2 Jun 2021 Resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in non-small-cell lung cancer patients and is reversed by STAT3 knockdown Nabendu Pore,1# Song Wu,1# Nathan Standifer,1 Maria Jure-Kunkel,1,2 Melissa de los Reyes,1 Yashaswi Shrestha,1 Rebecca Halpin,1 Raymond Rothstein,1 Kathy Mulgrew,1 Stephen Blackmore,1 Philip Martin,1 John Meekin III,1 Matthew Griffin,3 Ina Bisha,4 Theresa A. Proia,3 Ricardo J. Miragaia,5 Ronald Herbst,1,6 Ashok Gupta,1 Shaad E. Abdullah,7 Rajiv Raja,1 Melanie M. Frigault,1 J. Carl Barrett,1 Phillip A. Dennis,1 Maria Libera Ascierto,1†* Michael D. Oberst1†* 1AstraZeneca, Gaithersburg, MD, USA; 2Current: Genmab A/S, Copenhagen, Denmark; 3AstraZeneca, Waltham, MA, USA; 4AstraZeneca, Munich, Germany; 5AstraZeneca, Cambridge, United Kingdom; 6Current: Pyxis Oncology, Boston, MA, USA; 7Current: Immunocore, Rockville, MD, USA #Primary authors, contributed equally; †Senior authors, contributed equally; *Corresponding authors. Running title: CPI resistance in STK11mut NSCLC is reversed by STAT3 knockdown Keywords: durvalumab, tremelimumab, non-small-cell lung cancer, STK11, STAT3 Financial support: These studies were sponsored by AstraZeneca. At the time this analysis was conducted, all authors were employees of and shareholders in AstraZeneca. *Corresponding authors Maria Ascierto, PhD and Michael Oberst, PhD AstraZeneca One MedImmune Way Gaithersburg, MD 20878, USA Phone: 301-398-4540 (MLA); 301-398-4247 (MDO) 1 Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021.
    [Show full text]