Strategies for Cellulose Fiber Modification

Total Page:16

File Type:pdf, Size:1020Kb

Strategies for Cellulose Fiber Modification Strategies for Cellulose Fiber Modification Per Persson Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktors- examen fredagen den 23 april 2004 kl. 10.00 i Kollegiesalen KTH, Valhalla- vägen 79, Stockholm. Avhandlingen försvaras på engelska. This work was performed at STFI-Packforsk AB, Stockholm, Sweden. STFI-Packforsk AB is a center for research and development across the whole field of fiber, packaging and print. The Royal Institute of Technology (Kungliga Tekniska Högskolan), KTH, was founded in 1827 and is the largest of Sweden’s universities of technology. The university has over 11,000 undergraduate students, 1,500 active postgraduate students and a staff of 3,100 people. © 2004 Per Persson Trita-FPT-Report 2004:7 ISSN 1652-2443 ISRN/KTH/FPT/R-2004/7-SE ABSTRACT This thesis describes strategies for and examples of cellulose fiber modification. The ability of an engineered biocatalyst, a cellulose-binding module fused to the Candida antarctica lipase B, to catalyze ring-opening polymerization of ε- caprolactone in close proximity to cellulose fiber surfaces was explored. The water content in the system was found to regulate the polymer molecular weight, whereas the temperature primarily influenced the reaction rate. The hydrophobicity of the cellulose sample increased as a result of the presence of surface-deposited polyester. A two-step enzymatic method was also investigated. Here, Candida antarctica lipase B catalyzed the acylation of xyloglucan oligosaccharides. The modified carbohydrates were then incorporated into longer xyloglucan molecules through the action of a xyloglucan endotransglycosylase. The modified xyloglucan chains were finally deposited on a cellulose substrate. The action of Candida antarctica lipase B was further investigated in the copolymerization of ε-caprolactone and D,L-lactide. Copolymerizations with different ε-caprolactone-to-D,L-lactide ratios were carried out. Initially, the polymerization was slowed by the presence of D,L-lactide. During this stage, D,L- lactide was consumed more rapidly than ε-caprolactone and the incorporation occurred dimer-wise with regard to the lactic acid units. Morphological studies on wood fibers were conducted using a sol-gel mineralization method. The replicas produced were studied, without additional sample preparation, by electron microscopy and nitrogen adsorption. Information concerning the structure and accessibility of the porous fiber wall was obtained. Studies of never-dried kraft pulp casts revealed micro-cavities and cellulose fibrils with mean widths of 4.7 (±2) and 3.6 (±1) nm, respectively. Finally, cationic catalysis by simple carboxylic acids was studied. L-Lactic acid was shown to catalyze the ring-opening polymerization of ε-caprolactone in bulk at 120 °C. The reaction was initiated with methyl β-D-glucopyranoside, sucrose or raffinose, which resulted in carbohydrate-functionalized polyesters. The regioselectivity of the acylation was well in agreement with the corresponding lipase-catalyzed reaction. The polymerization was also initiated with a hexahydroxy-functional compound, which resulted in a dendrimer-like star polymer. The L-lactic acid was readily recycled, which made consecutive reactions using the same catalyst possible. Keywords: Candida antarctica lipase B, cationic catalysis, cellulose-binding module, dendrimer, enzymatic polymerization, fiber modification, silica-cast replica, sol-gel mineralization, organocatalysis, xyloglucan endotransglycosylase LIST OF PUBLICATIONS This thesis is based on the following publications, which in the text are referred to by their Roman numerals: I Polyester coating of cellulose fiber surfaces catalyzed by a cellulose- binding module – Candida antarctica lipase B fusion protein M.T. Gustavsson, P.V. Persson, T. Iversen, K. Hult, M. Martinelle Biomacromolecules 2004, 5, 106-112 II A two-step strategy for the enzymatic modification of cellulose fiber surfaces using Candida antarctica lipase B and the Populus tremula x tremuloides xyloglucan endotransglycosylase M.T. Gustavsson, P.V. Persson, T. Iversen, M. Martinelle, K. Hult, T.T. Teeri, H. Brumer Manuscript III Structural characterization of a lipase-catalyzed copolymerization of ε-caprolactone and D,L-lactide J. Wahlberg, P.V. Persson, T. Olsson, E. Hedenström, T. Iversen Biomacromolecules 2003, 4, 1068-1071 IV Silica-cast replicas for morphology studies on spruce and birch xylem P.V. Persson, A. Fogden, J. Hafrén, G. Daniel, T. Iversen IAWA Journal 2004, 25, in press (issue 3) V Silica nanocasts of wood fibers: a study of cell wall accessibility and structure P.V. Persson, J. Hafrén, A. Fogden, G. Daniel, T. Iversen Biomacromolecules 2004, 5, in press (issue 3) VI Selective organocatalytic ring-opening polymerization: a versatile route to carbohydrate-functionalized poly(ε-caprolactones) P.V. Persson, J. Schröder, K. Wickholm, E. Hedenström, T. Iversen Manuscript VII Direct organocatalytic synthesis of dendrimer-like star polymers P.V. Persson, T. Iversen, A. Córdova Manuscript TABLE OF CONTENTS 1 INTRODUCTION 7 2 ENZYMATIC STRATEGIES FOR FIBER MODIFICATION 9 2.1 Lipase catalysis 9 2.2 Xyloglucan endotransglycosylase catalysis 10 2.3 Polyester modification of cellulose fiber surfaces 11 2.4 Fiber modification using modified xyloglucan oligosaccharides 14 2.5 Copolymerization of ε-caprolactone and D,L-lactide 16 3 SILICA MINERALIZATION OF WOOD 18 3.1 Chemistry and structure of wood 18 3.2 Silica sol-gel 21 3.3 Mineralization of wood fibers 22 3.4 Silica casts studied by electron microscopy 23 3.5 Image analysis 25 3.6 Nitrogen adsorption 26 3.7 Image gallery 27 4 ORGANOCATALYTIC POLYMERIZATION 31 4.1 Organocatalysis 31 4.2 Ring-opening polymerization catalyzed by L-lactic acid 31 4.3 Selective acylation of carbohydrates 33 4.4 Synthesis of dendrimer-like poly(ε-caprolactone) 37 5 CONCLUDING REMARKS 39 LIST OF ABBREVIATIONS 40 ACKNOWLEDGEMENTS 41 REFERENCES 42 1 INTRODUCTION Composites of natural fibers and man-made polymers are desirable from an environmental point of view. Aliphatic polyesters are often biodegradable and biocompatible, and have good mechanical properties, and they are therefore particularly interesting. Polylactide (PLA) and poly(ε-caprolactone) (PCL) are two examples of such aliphatic polyesters. PLA is produced from lactic acid or lactide, and has mechanical properties that make the polymer promising as a matrix component in natural fiber composites. Some applications, such as automotive interior components, are already commercially viable.1 PCL, made from petroleum-derived ε-caprolactone (ε-CL), is a hydrophobic polyester with a low glass transition temperature.2 It is also notable that this cyclic monomer is liquid at room temperature and a good solvent for many compounds. Ring-opening polymerization (ROP) of cyclic esters is carried out mainly in bulk or in solution, and is normally catalyzed/initiated by an organometallic compound.3 However, ROP performed in the presence of cellulose fibers is somewhat delicate. The fibers are moist and carry numerous reactive hydroxyl groups. Tin (II) 2-ethylhexanoate, which is otherwise a common and efficient initiator/catalyst for ring-opening polymerization, is hygroscopic, hydrolyzes easily to stannous hydroxide, and is susceptible to undesired reactions with hydroxyl groups.4 A more suitable choice is therefore a biocatalyst. Lipases have been shown to efficiently catalyze transesterification reactions.5,6 The conditions need not be extremely dry; in fact, small amounts of water can be favorable for the polymerization. In Chapter 2 (papers I–III), lipase catalysis in fiber-modifying processes is summarized. Paper I describes the use of an engineered biocatalyst – the Candida antarctica lipase B equipped with a cellulose-binding module (CBM- CALB)7,8 – in the polymerization of ε-CL in close proximity to cellulose fibers. Paper II elaborates on this with a different approach; here xyloglucan oligosaccharides are acylated in a lipase-mediated step using a vinyl ester or a thiolactone, and are then incorporated into longer xyloglucan chains through the action of a xyloglucan endotransglycosylase. In the final step, the modified xyloglucan is deposited on a cellulose substrate. In paper III, the CALB- catalyzed copolymerization of ε-CL and D,L-lactide is examined with respect to mechanism and product pattern. The study also provides a hint that CBM- CALB would also be capable of catalyzing the ROP of D,L-lactide. 7 The wood ultrastructure, including the pore system, is altered during the pulping process. It is important to take these changes into account, especially those affecting the accessibility to reactants and catalysts, when designing systems for fiber modification. In Chapter 3 (IV,V), a casting method based on silica sol-gel is described. This technique allows the nanostructure of wet fibers to be transferred to a hard silica cast, which can be studied under the electron microscope or by adsorption measurements. Paper IV is primarily a reference study to demonstrate the usefulness and versatility of the casting method. Paper V deals mainly with delignified fibers, and provides a rationale for the results of the biocatalytic modifications (I,II). One important insight is that polymerization inside the fiber cell wall is unlikely to be accomplished using enzymes such as lipases due to the restricted pore size. A natural step forward is to search for a catalyst by which this could be achieved.
Recommended publications
  • United States Patent (10) Patent No.: US 9.458,297 B2 Miller (45) Date of Patent: Oct
    USOO9458297B2 (12) United States Patent (10) Patent No.: US 9.458,297 B2 Miller (45) Date of Patent: Oct. 4, 2016 (54) MODIFIED FIBER, METHODS, AND 4,898,642 A 2f1990 Moore SYSTEMS 4,900,324 A 2f1990 Chance 4,935,022 A 6, 1990 Lash (71) Applicant: WEYERHAEUSERNR COMPANY., 4,936,8651538 A S366, 1990 WelchWE Federal Way, WA (US) 5,049,235 A 9, 1991 Barcus 5,137,537 A 8, 1992 Herron (72) Inventor: Charles E. Miller, Federal Way, WA 5,5,160,789 183,707 A 11/19922f1993 BarcusHerron (US) 5, 190,563 A 3/1993 Herron 5,221,285 A 6/1993 Andrews (73) Assignee: WEYERHAEUSERNR COMPANY., 5,225,047 A 7, 1993 Graef Federal Way, WA (US) 5,247,072 A 9/1993 Ning et al. 5,366,591 A 11, 1994 Jewell (*) Notice: Subject to any disclaimer, the term of this 3.222 A 8.32 Shiki patent is extended or adjusted under 35 5,496.476 A 3/1996 Tang U.S.C. 154(b) by 0 days. 5,496.477 A 3/1996 Tang 5,536,369 A 7/1996 Norlander (21) Appl. No.: 14/320,279 5,549,791 A 8/1996 Herron 5,556,976 A 9, 1996 Jewell 1-1. 5,562,740 A 10, 1996 Cook (22) Filed: Jun. 30, 2014 5,698,074. A 12/1997 Barcus 5,705,475 A 1, 1998 T (65) Prior Publication Data 5,728,771 A 3, 1998 E. 5,843,061 A 12/1998 Chauvette US 2015/0376347 A1 Dec.
    [Show full text]
  • Effects of Fiber Weight Ratio, Structure and Fiber Modification Onto Flexural Properties of Luffa-Polyester Composites
    Advances in Materials Physics and Chemistry, 2011, 1, 78-85 doi:10.4236/ampc.2011.13013 Published Online December 2011 (http://www.SciRP.org/journal/ampc) Effects of Fiber Weight Ratio, Structure and Fiber Modification onto Flexural Properties of Luffa-Polyester Composites Lassaad Ghali1, Slah Msahli1, Mondher Zidi2, Faouzi Sakli1 1Textile Research Unit, ISET of Ksar Hellal, Ksar Hellal, Tunisia 2Laboratory of Mechanical Engineering, ENIM of Monastir, Monastir, Tunisia E-mail: [email protected], [email protected] Received August 4, 2011; revised September 12, 2011; accepted September 26, 2011 Abstract The effect of chemical modification, reinforcement structure and fiber weight ratio on the flexural proprieties of Luffa-polyester composites was studied. A unsaturated polyester matrix reinforced with a mat of Luffa external wall fibers (ComLEMat), a short Luffa external wall fibers (ComLEBC) and a short Luffa core fi- bers (ComLCBC) was fabricated under various conditions of fibers treatments (combined process, acetylat- ing and cyanoethylating) and fiber weight ratio. It resorts that acetylating and cyanoethylating enhance the flexural strength and the flexural modulus. The fiber weight ratio influenced the flexural properties of com- posites. Indeed, a maximum value of strength and strain is observed over a 10% fiber weight ratio. The uses of various reinforcement structures were investigated. The enhancement of elongation at break and the strain values of the composite reinforced by natural mat was proved. Keywords: Luffa Fibers, Composite, Flexural Properties, Fiber Weight Ratio 1. Introduction cyanoethylation on the mechanical properties of jute fi- ber reinforced polyester composite. They noted that a A combination of properties of some natural fibers in- better creep resistance at lower temperatures was ob- cluding low cost, low density, non-toxicity, no abrasion tained for the composite reinforced with cyanoethylated during processing and recyclability has arisen more in- jute fibers.
    [Show full text]
  • Hybrid Composites: Combining Cellulose Fibers and Wollastonite Mineral Fibers Into a Nylon 6 Matrix
    The Seventh International Conference on Woodfiber-Plastic Composites ~ Hybrid Composites: Combining Cellulose Fibers and Wollastonite Mineral Fibers into a Nylon 6 Matrix Rodney E. Jacobson and Daniel F. Caulfield Abstract The objective of this research was to develop a tion. Attempts to maximize the composite proper- high purity cellulose/wollastonite pellet that could ties were not the focus of this research. Stable, then be accurately metered and feed into a labora- controllable processing characteristics and re- tory scale twin-screw extruder and compounded peatability of the twin-screw extrusion trials was with a nylon 6 resin. The major focus was targeted the goal. It is the authors’ opinion that this goal on a 20 percent cellulose/20 percent wolla- was accomplished. Future research will focus on stonite/60 percent nylon 6 composite. Limited re- maximizing composite properties and determin- search with nylon 6,6 resins was also attempted ing if cellulose fibers alone or in combination with and will be discussed briefly. A process for devel- mineral fibers can be compounded on larger com- oping a cellulose/wollastonite pellet was success- mercial scale equipment. Extreme care and pre- ful and 100 Kg were produced for twin screw ex- cise processing knowledge is needed to develop a trusion processing with nylons. The 100 Kg of commercial scale process that works. If this can- pellets were then compounded via a “low temper- not be accomplished, then cellulose fibers as rein- ature compounding” technique as discussed in de- forcement in any of the high melting point engi- tail elsewhere (1). Further information can be ob- neering thermoplastics may remain as a lab- tained in U.S.
    [Show full text]
  • Surprise!Surprise! Is Never Surprised by the Things That a Message from Leave Us Anxious and Worried
    NATIONAL ASSOCIATION OF CHURCH FACILITIES MANAGERS The answer depends largely on your perspective, but we know that God Surprise!Surprise! is never surprised by the things that A MESSAGE FROM leave us anxious and worried. NACFM PRESIDENT PATRICK HART Do not be anxious about anything, but in every situation, by prayer and petition, with thanksgiving, present your requests to God. And the peace of God, which transcends all understanding, will guard your hearts and your minds in Christ Jesus. – Philippians 4:6-7 The Lord has gone before us and has a plan. The board will meet this Recently, we purchased a new car, a Fiat 500X, for my wife, Amy. She drove it month for our annual national con- home from the dealership on Saturday evening. On her way to work a few days ference planning meetings. We will later the car stalled out and couldn’t be restarted…surprise! That’s not supposed be discussing in depth and praying to happen with a brand new vehicle! After waiting four hours for the tow truck hard about where the Lord is leading and getting the car to the dealership, we were told that no loaner vehicles were the NACFM during this time. He has available…surprise! The next day I received a call from the dealership Service this and that should be no surprise. Center and was told that they needed to order parts for our new car. The parts We would appreciate your prayers would have to be shipped from Italy, so it might be a few weeks before it would for the board as we gather to chart be repaired…surprise! Oh, but they did have a loaner car available…a Fiat 500 a course for the future and finalize convertible (a very tiny car, by the way)…surprise! national conference details.
    [Show full text]
  • Natural Fibers and Fiber-Based Materials in Biorefineries
    Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom.
    [Show full text]
  • FPL Spaceboard Development
    1988. In: TAPPI proceedings of the 1988 corrugated containers conference; October 24-27; Orlando, FL. Atlanta, GA: TAPPI Press: 11-17. FPL SPACEBOARD DEVELOPMENT The Forest Products Laboratory (FPL) has developed two processing methods ( 1 , 2 ) to form, dewater and consolidate, and dry three-dimensional spaceboard sheets. This paper describes the two processing J. F. Hunt, Mechanical Engineer D. E, Gunderson, Research General Engineer methods; the strength and stiffness values of spaceboard; and the advantages, disadvantages, and 1 USDA Forest Service, Forest Products Laboratory, development challenges of the product and process. One Gifford Pinchot Dr., Madison, WI 53705-2398 BACKGROUND U.S.A. The spaceboard concept emerged from research aimed at ABSTRACT improving the support of linerboard in corrugated fiberboard and the efficient distribution of fibers in structural boards. Experiments at FPL showed that The future direction of structural products from fibers will be toward more efficient fiber the edgewise compression strength of corrugated fiberboard with press-dried linerboard and utilization through efficient design. The Forest Products Laboratory has developed two processing conventional corrugated medium was lower than It was suspected that the corrugated methods to produce three-dimensional structural anticipated. sheets and panels made from fibers. The structural medium was not providing sufficient support to the board that results from combining two sheets or two linerboard. In experiments by Vance Setterholm and panels is called FPL Spaceboard. Dennis Gunderson of FPL, a combined board made from two linerboards fully supported by a low-density foam core yielded higher edgewise compression strength The thickness of the sheet or panel generally than the combined board with the same linerboard determines which processing method to use.
    [Show full text]
  • Cellulose Nanofibers and Its Applications for Resin Reinforcements
    Chapter 14 Cellulose Nanofibers and Its Applications for Resin Reinforcements Mariko Yoshioka, Yoshiyuki Nishio, Satoru Nakamura, Yoshiyuki Kushizaki, Ryo Ishiguro, Toshiki Kabutomori, Takeo Imanishi and Nobuo Shiraishi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55346 1. Introduction It is widely recognized that technologies that can convert biomass resources into commercially viable materials are needed. Cellulose is a candidate among biomass due to its abundance in nature. The characteristics of cellulose, which include no thermoplasticity and being insoluble in ordinary solvents, have limited its applications. With the aim of widening its application possibilities, several works have been documented on mechanochemical treatments of cellulose in the dry state and in the wet states.[1-6] Endo et al. [1-4] developed novel cellulose composites by ball milling mixtures of cellulose and poly(ethylene glycol) (PEG). The composites are reported to have formed by insertion of PEG molecules among the cellulose molecular chains. [3,4] Works of Kondo et al. [5] and ours [7] appeared as patent publications. In the former case, fine cellulose powder (average powder length and width: 28 and 11 μm, respectively) was pulverized in aqueous suspension by counter collision at a pressure of 200 MPa, being done once or repeatedly up to 60 times or more, using an ultra high-pressure homogenizer, Star Burst System HJP-25005( Sugino Machine Ltd.). In our case [7], cellulose micronized powder (KC flock W-400G, average particle size 24 μm) was used in the same way at a pressure of 245 MPa, being done once or repeatedly up to ten times, using a Star Burst System HJP- 25080.
    [Show full text]
  • Research Article Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (Sio2) Nanoparticles
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2015, Article ID 493439, 9 pages http://dx.doi.org/10.1155/2015/493439 Research Article Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2) Nanoparticles Joabel Raabe,1 Alessandra de Souza Fonseca,1 Lina Bufalino,1 Caue Ribeiro,2 Maria Alice Martins,2 José Manoel Marconcini,2 Lourival M. Mendes,1 and Gustavo Henrique Denzin Tonoli1 1 DepartmentofForestScience(DCF),UniversidadeFederaldeLavras,P.O.Box3037,37200-000Lavras,MG,Brazil 2Laboratorio Nacional de Nanotecnologia para o Agronegocio (LNNA), Embrapa Instrumentacao, P.O. Box 741, 13560-970 Sao Carlos, SP, Brazil Correspondence should be addressed to Gustavo Henrique Denzin Tonoli; [email protected] Received 30 October 2014; Revised 27 January 2015; Accepted 29 January 2015 Academic Editor: Chuan Wang Copyright © 2015 Joabel Raabe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS). Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For com- posites, 5% and 10% (by weight) of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in183% relation to matrix, while moisture adsorption decreased 8.3%.
    [Show full text]
  • February 2008 ~
    SWST Newsletter ~ February 2008 ~ In This Issue (these are clickable links) News Wood Plastics Conference SWST Annual Convention 2008 Green Building RFP National Research Needs Assessment Positions IAWPS 2008 in Harbin Post-graduate Wood Science Positions at IUFRO Meeting Lakehead Wood Composites Symposium Summer Fellowships at UMaine Management Training Workshop Professorship at Gottingen Non-destructive Testing of Wood Meeting Instructor in Sustainable Construction at SUNY Forest Products Initiative Conference Business Mgt. Prof. at Virginia Tech Training Website Launched Sawmill Operations Scientist - Forintek Managing Hispanic Workforce Workshop SWST Jim Bowyer Visits Syracuse Invitation to the Visiting Scientist Program SWST International Travel Grants About SWST Wood Identification Workshop at LSU List of SWST Visiting Scientists Wood Drying Workshop at LSU Int’l Panel Products Symposium Call for Papers Note from the Editor Please send items for the April SWST Newsletter to me by the end of March. [email protected] <Back> SWST 51ST ANNUAL CONVENTION CONCEPCIÓN, CHILE The first SWST international meeting outside of North America will be held on November 10-12, 2008 in Concepción, Chile at the Universidad del Bío-Bío, a cosponsor and co-organizer of the meeting. Click here to see other sponsors. There will be four sessions during the first two days dealing with (1) Timber Engineering, (2) Global Trade in Forest Products, (3) Wood Quality: Challenges in the 21st Century, and (4) Advanced Processing of Timber in the 21st Century. Each session has a North American and South American Co-Chair. The last day of the Convention will be a day-long tour of the area and the forest products industry, beginning with a visit to Nueva Aldea.
    [Show full text]
  • Enzyme Applications in Pulp and Paper Industry
    Enzyme Applications in Pulp and Paper: An Introduction to Applications Dr. Richard Venditti Associate Professor - Director of Graduate Programs Department of Wood and Paper Science Biltmore Hall Room 1204 Raleigh NC 27695-8005 Tel. (919) 515-6185 Fax. (919) 515-6302 Email: [email protected] Slides courtesy of Phil Hoekstra. Endo-Beta 1,4 Xylanase Enzymes • Are proteins that catalyze chemical reactions • Biological cells need enzymes to perform needed functions • The starting molecules that enzymes process are called substrates and these are converted to products Endo-Beta 1,4 Xylanase Cellulase enzyme which acts on cellulose substrate to make product of glucose. Endo-Beta 1,4 Xylanase Enzymes • Are extremely selective for specific substrates • Activity affected by inhibitors, pH, temperature, concentration of substrate • Commercial enzyme products are typically mixtures of different enzymes, the enzymes often complement the activity of one another Endo-Beta 1,4 Xylanase Types of Enzymes in Pulp and Paper and Respective Substrates • Amylase --- starch • Cellulase --- cellulose fibers • Protease --- proteins • Hemicellulases(Xylanase) ---hemicellulose • Lipase --- glycerol backbone, pitch • Esterase --- esters, stickies • Pectinase --- pectins Endo-Beta 1,4 Xylanase Enzyme Applications in Pulp and Paper • Treat starches for paper applications • Enhanced bleaching • Treatment for pitch • Enhanced deinking • Treatment for stickies in paper recycling • Removal of fines • Reduce refining energy • Cleans white water systems • Improve
    [Show full text]
  • Introduction to Nfrc and Review of Mechanical
    International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 ISSN 2229-5518 318 Introduction to natural fiber reinforced polymer composites and review of mechanical properties of hemp fibers and hemp/PP composite: effects of chemical surface treatment Shaikh Sameer Rashidkhan,1 H. D. Sawant,2 1Final year student, Department of mechanical engineering, Maharashtra State Board of Technical Education, A. I. Abdul Razzak Kalsekar Polytechnic, New Panvel. 2 I/C Professor, Department of mechanical engineering, Maharashtra State Board of Technical Education, A. I. Abdul Razzak Kalsekar Polytechnic, New Panvel. Abstract—This review article introduced about natural fiber reinforced composite (NFRC) and also study of mechanical INTRODUCTION TO NFRC properties and effect of surface treatment on hemp fiber and hemp PP composites. In this article we studied about natural The natural fiber material are environmentally friendly fiber, their properties, composition and application in automobile materials compared to synthetic fiber. It is defined as fiber as well as hemp fiber’s properties and properties after chemical which are not manmade or synthetic is called natural fiber (1, surface treatment. 2, 3). It comes from both renewable and non-renewable resources. Because of good properties fiber polymer matrix Keywords -- low density, high strength, recyclability got considerable attention in various application. Natural renewable, biodegradable, fiber gives superior advantages over synthetic fiber like relatively low weight, low cost, less damage to processing INTRODUCTION equipment, good relative mechanical properties such as Synthetic polymer composite materials are currently used in tensile modulus and flexural modulus, improved surface industries to meet light-weight and high strength finish of molded parts composite, biodegradability and less requirements (4, 5, 6).
    [Show full text]
  • Natural Cellulose Fibers for Surgical Suture Applications
    polymers Article Natural Cellulose Fibers for Surgical Suture Applications María Paula Romero Guambo 1, Lilian Spencer 1, Nelson Santiago Vispo 1 , Karla Vizuete 2 , Alexis Debut 2 , Daniel C. Whitehead 3 , Ralph Santos-Oliveira 4 and Frank Alexis 1,5,* 1 School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura 100115, Ecuador; [email protected] (M.P.R.G.); [email protected] (L.S.); [email protected] (N.S.V.) 2 Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 1715231, Ecuador; [email protected] (K.V.); [email protected] (A.D.) 3 Department of Chemistry, Clemson University, Clemson, SC 29634, USA; [email protected] 4 Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil; [email protected] 5 Biodiverse Source, San Miguel de Urcuquí 100651, Ecuador * Correspondence: [email protected] Received: 10 November 2020; Accepted: 11 December 2020; Published: 18 December 2020 Abstract: Suture biomaterials are critical in wound repair by providing support to the healing of different tissues including vascular surgery, hemostasis, and plastic surgery. Important properties of a suture material include physical properties, handling characteristics, and biological response for successful performance. However, bacteria can bind to sutures and become a source of infection. For this reason, there is a need for new biomaterials for suture with antifouling properties. Here we report two types of cellulose fibers from coconut (Cocos nucifera) and sisal (Agave sisalana), which were purified with a chemical method, characterized, and tested in vitro and in vivo.
    [Show full text]