New Insights on Secondary Minerals from Italian Sulfuric Acid Caves Ilenia M
International Journal of Speleology 47 (3) 271-291 Tampa, FL (USA) September 2018 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie New insights on secondary minerals from Italian sulfuric acid caves Ilenia M. D’Angeli1*, Cristina Carbone2, Maria Nagostinis1, Mario Parise3, Marco Vattano4, Giuliana Madonia4, and Jo De Waele1 1Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy 2DISTAV, Department of Geological, Environmental and Biological Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy 3Department of Geological and Environmental Sciences, University of Bari Aldo Moro, Piazza Umberto I 1, 70121 Bari, Italy 4Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123 Palermo, Italy Abstract: Sulfuric acid minerals are important clues to identify the speleogenetic phases of hypogene caves. Italy hosts ~25% of the known worldwide sulfuric acid speleogenetic (SAS) systems, including the famous well-studied Frasassi, Monte Cucco, and Acquasanta Terme caves. Nevertheless, other underground environments have been analyzed, and interesting mineralogical assemblages were found associated with peculiar geomorphological features such as cupolas, replacement pockets, feeders, sulfuric notches, and sub-horizontal levels. In this paper, we focused on 15 cave systems located along the Apennine Chain, in Apulia, in Sicily, and in Sardinia, where copious SAS minerals were observed. Some of the studied systems (e.g., Porretta Terme, Capo Palinuro, Cassano allo Ionio, Cerchiara di Calabria, Santa Cesarea Terme) are still active, and mainly used as spas for human treatments. The most interesting and diversified mineralogical associations have been documented in Monte Cucco (Umbria) and Cavallone-Bove (Abruzzo) caves, in which the common gypsum is associated with alunite-jarosite minerals, but also with baryte, celestine, fluorite, and authigenic rutile-ilmenite-titanite.
[Show full text]