Microcalcifications in Breast Cancer: Lessons from Physiological Mineralization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Serum Protein Biomarker Discovery in Duchenne Muscular Dystrophy
Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy Yetrib Hathouta, Edward Brodyb, Paula R. Clemensc,d, Linda Cripee, Robert Kirk DeLisleb, Pat Furlongf, Heather Gordish- Dressmana, Lauren Hachea, Erik Henricsong, Eric P. Hoffmana, Yvonne Monique Kobayashih, Angela Lortsi, Jean K. Mahj, Craig McDonaldg, Bob Mehlerb, Sally Nelsonk, Malti Nikradb, Britta Singerb, Fintan Steeleb, David Sterlingb, H. Lee Sweeneyl, Steve Williamsb, and Larry Goldb,1 aResearch Center for Genetic Medicine, Children’s National Medical Center, Washington, DC 20012; bSomaLogic, Inc., Boulder, CO 80301; cNeurology Service, Department of Veteran Affairs Medical Center, Pittsburgh, PA 15240; dUniversity of Pittsburgh, Pittsburgh, PA 15213; eThe Heart Center, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 15213; fParent Project Muscular Dystrophy, Hackensack, NJ 07601; gDepartment of Physical Medicine and Rehabilitation, University of California Davis School of Medicine, Davis, CA 95618; hDepartment of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202; iThe Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; jDepartment of Pediatrics, University of Calgary, Alberta Children’s Hospital, Calgary, AB, Canada T3B 6A8; kDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045; and lDepartment of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610 Contributed -
Acemannan Stimulates Bone Sialoprotein, Osteocalcin, Osteopon- Tin and Osteonectin Expression in Periodontal Ligament Cells in V
Original Article บ ท วิ ท ย า ก า ร Acemannan Stimulates Bone Sialoprotein, Osteocalcin, Osteopon- tin and Osteonectin Expression in Periodontal Ligament Cells in Vitro Pintu-on Chantarawaratit1,2,4, Polkit Sangvanich3 and Pasutha Thunyakitpisal2,4 1Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand 2Dental Biomaterials Program, Graduate School, Chulalongkorn University, Bangkok, Thailand 3Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 4Research Unit of Herbal Medicine and Natural Products of Dental Application, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand Correspondence to: Pasutha Thunyakitpisal, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34, Henri-Dunant Rd, Patumwan, Bangkok 10330, Thailand Email: [email protected] Abstract The periodontium is composed of both soft and hard tissues, thus hard tissue regeneration is one of the most important processes in periodontal regeneration. Bone sialoprotein, osteocalcin, osteopontin and osteonectin are non- collagenous matrix proteins which play vital roles in the mineralization of hard tissue. Recent studies have demonstrated that acemannan, a polysaccharide extracted from Aloe vera gel, upregulated the expression of proteins involved in hard tissue regeneration. This study investigated effect of acemannan on bone sialoprotein, osteocalcin, osteopontin and osteonectin expression in human periodontal ligament cells. Primary periodontal ligament cells were isolated from impacted third molars and then treated with acemannan in vitro. The mRNA expression of bone sialoprotein and osteocalcin and the protein levels of osteopontin and osteonectin were determined using reverse transcription-polymerase chain reaction and western blot analysis, respectively. One-way analysis of variance and Dunnett multiple comparisons were performed to analyze the data. -
CHAPTER 41 Target Genes: Bone Proteins 719
CHAPTER 41 Target Genes: Bone Proteins 719 45. Bellows CG, Reimers SM, Heersche JN 1999 Expression of 61. Price PA, Williamson MK, Lothringer JW 1981 Origin of the mRNAs for type-I collagen, bone sialoprotein, osteocalcin, vitamin K-dependent bone protein found in plasma and its and osteopontin at different stages of osteoblastic differentia- clearance by kidney and bone. J Biol Chem 256:12760–12766. tion and their regulation by 1,25-dihydroxyvitamin D3. Cell 62. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Tissue Res 297:249–259. Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, 46. Broess M, Riva A, Gerstenfeld LC 1995 Inhibitory effects of Karsenty G 1996 Increased bone formation in osteocalcin- 1,25(OH)2 vitamin D3 on collagen type I, osteopontin, and deficient mice. Nature 382:448–452. osteocalcin gene expression in chicken osteoblasts. J Cell 63. Chenu C, Colucci S, Grano M, Zigrino P, Barattolo R, Biochem 57:440–451. Zambonin G, Baldini N, Vergnaud P, Delmas PD, Zallone AZ 47. Yoon K, Buenaga R, Rodan GA, Prince CW, Butler WT 1994 Osteocalcin induces chemotaxis, secretion of matrix pro- 1987 Tissue specificity and developmental expression of teins, and calcium-mediated intracellular signaling in human rat osteopontin. Biochem Biophys Res Commun 148: osteoclast-like cells. J Cell Biol 127:1149–1158. 1129–1136. 64. Watts NB 1999 Clinical utility of biochemical markers of bone 48. Beresford JN, Joyner CJ, Devlin C, Triffitt JT 1994 The effects remodeling. Clin Chem 45:1359–1368. of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic 65. -
Method for Predicting the Occurence of Lung Metastasis in Breast Cancer Patients
(19) TZZ ¥ __T (11) EP 2 253 721 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 24.11.2010 Bulletin 2010/47 C12Q 1/68 (2006.01) (21) Application number: 10175619.5 (22) Date of filing: 26.02.2008 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Lidereau, Rosette HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT 92230, Gennevilliers (FR) RO SE SI SK TR • Driouch, Keltouma Designated Extension States: 93260, Les Lilas (FR) AL BA MK RS • Landemaine, Thomas 92100, Boulogne-Billancourt (FR) (30) Priority: 26.02.2007 EP 07300823 (74) Representative: Catherine, Alain et al (62) Document number(s) of the earlier application(s) in Cabinet Harlé & Phélip accordance with Art. 76 EPC: 7 rue de Madrid 08709219.3 / 2 115 170 75008 Paris (FR) (71) Applicants: Remarks: • INSERM (Institut National de la Santé et de la This application was filed on 07-09-2010 as a Recherche Medicale) divisional application to the application mentioned 75013 Paris (FR) under INID code 62. • Centre Rene Huguenin 92210 Saint-Cloud (FR) (54) Method for predicting the occurence of lung metastasis in breast cancer patients (57) The present invention relates to the prognosis tasis in one or more tissue or organ of patients affected of the progression of breast cancer in a patient, and more with a breast cancer. particularly to the prediction of the occurrence of metas- EP 2 253 721 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 253 721 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to the prognosis of the progression of breast cancer in a patient, and more particularly to the prediction of the occurrence of metastasis in one or more tissue or organ of patients affected with a breast cancer. -
Effects of Dentine Matrix Extracts on Phenotype and Behaviour of Dental Pulp Progenitor Cells
The Effect of Dentine Conditioning Agents on Solubilisation of Bioactive Dentine Matrix Components and Dentine Regeneration A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy Cardiff University October 2015 Leili Sadaghiani Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University I II Acknowledgements At the start I would like to express my sincere appreciation to my supervisors, Prof. Alastair Sloan and Prof. Christopher Lynch for providing insight, guidance and encouragement throughout this work. As well as lending excellent support, they allowed me intellectual freedom in this project which enabled me grow as a scientist and I am very grateful for that. I would also like to thank Prof. Rachel Waddington for her valuable guidance during the project work. I also take this opportunity to express my gratitude to all members of the Mineralised Tissue Group, including the academic, technical and postdoctoral staff as well as postgraduate students. They provided immense support to this work by sharing their knowledge, expertise and above all friendship. The groups has to be congratulated for being such an efficient, cohesive and happy team. It has been a real joy and my pleasure to work with each and every member within it. Finally, I would like to thank my beloved family; my husband Saeed and my sons Soroush and Sepehr. I would not have been able to complete this journey without their love, understanding and support. I must also thank my parents for encouraging me in all of my pursuits in life. I would not be the person I am without them. -
Innate Mechanisms of Antimicrobial Defense Associated with the Avian Eggshell Megan Rose-Martel
Innate Mechanisms of Antimicrobial Defense Associated with the Avian Eggshell Megan Rose-Martel Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa © Megan Rose-Martel, Ottawa, Canada, 2015 Dedication This thesis is dedicated to the loving memory of my father. He was a man in constant pursuit of knowledge. I was constantly reminded of how proud he was of my accomplishments, both personal and scientific. He read every article I published, every poster I created and inquired constantly about the research I was conducting, wanting to know every detail. His unwavering support and encouragement was invaluable to the completion of this thesis. I am extremely saddened that he is not here with us to see the completion of this chapter of my life which would have never been possible without him. I also dedicate this thesis to my loving husband, my wonderful mother and my darling daughter for their endless love, patience and support that they show towards me every day of my life. They have helped me through the most difficult times by listening to me, making me laugh and always having faith that I could make it. They are and will always be a constant source of comfort, love and happiness. ii Acknowledgments I would like to express my sincere gratitude to my supervisor and mentor, Dr. Maxwell Hincke, for the opportunity to work in his laboratory. His encouragement, guidance and motivation throughout my Ph.D. -
2598 Biomineralization of Bone: a Fresh View of the Roles of Non-Collagen
[Frontiers in Bioscience 16, 2598-2621, June 1, 2011] Biomineralization of bone: a fresh view of the roles of non-collagenous proteins Jeffrey Paul Gorski1 1Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Proposed mechanisms of mineral nucleation in bone 3.1. Biomineralization Foci 3.2. Calcospherulites 3.3. Matrix vesicles 4. The role of individual non-collagenous proteins 4.1. Bone Sialoprotein 4.2. Noggin 4.3. Chordin 4.4. Osteopontin 4.5. Osteopontin, bone sialoprotein, and DMP1 form individual complexes with MMPs 4.6. Bone acidic glycoprotein-75 4.7. Dentin matrix protein1 4.8. Osteocalcin 4.9. Fetuin (alpha2HS-glycoprotein) 4.10. Periostin 4.11. Tissue nonspecific alkaline phosphatase 4.12. Phospho 1 phosphatase 4.13. Ectonucleotide pyrophosphatase/phosphodiesterase 4.14. Biological effects of hydroxyapatite on bone matrix proteins 4.15. Sclerostin 4.16. Tenascin C 4.17. Phosphate-regulating neutral endopeptidase (PHEX) 4.18. Matrix extracellular phosphoglycoprotein (MEPE, OF45) 4.19. Functional importance of proteolysis in activation of transglutaminase and PCOLCE 4.20. Neutral proteases in bone 5. Summary and Perspective 6. Acknowledgements 7. References 1. ABSTRACT The impact of genetics has dramatically affected nteractions which act in positive and negative ways to our understanding of the functions of non-collagenous regulate the process of bone mineralization. Several new proteins. Specifically, mutations and knockouts have examples from the author’s laboratory are provided defined their cellular spectrum of actions. -
Chemical Properties Biological Description Solubility Information
Data Sheet (Cat.No.T0947) Dexamethason acetate Chemical Properties CAS No.: 1177-87-3 Formula: C24H31FO6 Molecular Weight: 434.51 Appearance: Solid Storage: 0-4℃ for short term (days to weeks), or -20℃ for long term (months). Biological Description Description Dexamethasone Acetate is the acetate salt form of Dexamethasone, a synthetic adrenal corticosteroid with potent anti-inflammatory properties. In addition to binding to specific nuclear steroid receptors, dexamethasone also interferes with NF-kB activation and apoptotic pathways. This agent lacks the salt-retaining properties of other related adrenal hormones. Targets(IC50) Annexin A1: None Glucocorticoid Receptor: None IL receptor: None iNOS: None In vitro Dexamethasone inhibits COX-2 mRNA expression induced by IL-1 in human articular chondrocytes. [1] Dexamethasone suppresses the cyclooxygenase-2 induction by tumor necrosis factor α (TNFα) with an IC50 of 1 nM in MC3T3-E1 cells. Dexamethasone binds to the glucocorticoid receptor and then to the glucocorticoid response element. [2]Dexamethasone (10 μM) induces osteoblastic differentiation of rat bone marrow stromal cell cultures with elevated mRNA expression of alkaline phosphatase osteopontin, bone sialoprotein, and osteocalcin. [3] Dexamethasone (5 μM) treatment decreases proliferation of adult hippocampal neural progenitor cells and SRE-driven gene expression. [5] In vivo Dexamethasone (2 mg/kg) reduces the number of the BrdU-labeled hepatocytes by 80% in male Fischer F344 rats. Dexamethasone (2 mg/kg) pretreatment suppresses the expression of both TNF and IL-6 after partial hepatectomy and significantly reduces the proliferative response of the hepatocytes in male Fischer F344 rats. Dexamethasone also severely diminishes the induction and expansion of oval cells induced by the 2- acetylaminofluorene/partial hepatectomy (AAF/PH) protocol but does not have any effect on the proliferation of the bile duct cells stimulated by bile duct ligation. -
Dentine Sialophosphoprotein Signal in Dentineogenesis and Dentine Regeneration M.M
EuropeanMM Liu et Cells al. and Materials Vol. 42 2021 (pages 43-62) DOI: 10.22203/eCM.v042a04 DSPP signalling in dentine ISSN formation 1473-2262 DENTINE SIALOPHOSPHOPROTEIN SIGNAL IN DENTINEOGENESIS AND DENTINE REGENERATION M.M. Liu1,2, W.T. Li1,3, X.M. Xia1,4, F. Wang5, M. MacDougall6 and S. Chen1 1 Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA 2 Department of Endodontics, School of Stomatology, Tongji University, Shanghai, 200072, China 3 Department of Pathology, Weifang Medical University, Weifang, 261053, China 4 Department of Obstetrics and Gynaecology, Second Xiangya Hospital, Central South University Changsha, 410011, China 5 Department of Anatomy, Fujian Medical University, Fuzhou, 350122, China 6 UBC Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada Abstract Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. -
Deciphering the Relevance of Bone ECM Signaling
cells Review Deciphering the Relevance of Bone ECM Signaling Natividad Alcorta-Sevillano y, Iratxe Macías y, Arantza Infante * and Clara I. Rodríguez * Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; [email protected] (N.A.-S.); [email protected] (I.M.) * Correspondence: [email protected] (A.I.); [email protected] (C.I.R.) These authors contributed equally. y Received: 20 October 2020; Accepted: 7 December 2020; Published: 7 December 2020 Abstract: Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility. -
The Transcription Factor Osterix (SP7) Regulates Bmp6induced Human Osteoblast Differentiation
ORIGINAL RESEARCH ARTICLE 2677 JournalJournal ofof Cellular The Transcription Factor Physiology Osterix (SP7) Regulates BMP6-Induced Human Osteoblast Differentiation FENGCHANG ZHU,1 MICHAEL S. FRIEDMAN,1 WEIJUN LUO,2 PETER WOOLF,3 1 AND KURT D. HANKENSON * 1Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 2Department of Biomedical Engineering, School of Engineering, University of Michigan, Ann Arbor, Michigan 3Department of Chemical Engineering, School of Engineering, University of Michigan, Ann Arbor, Michigan The transcription factor Osterix (Sp7) is essential for osteoblastogenesis and bone formation in mice. Genome wide association studies have demonstrated that Osterix is associated with bone mineral density in humans; however, the molecular significance of Osterix in human osteoblast differentiation is poorly described. In this study we have characterized the role of Osterix in human mesenchymal progenitor cell (hMSC) differentiation. We first analyzed temporal microarray data of primary hMSC treated with bone morphogenetic protein-6 (BMP6) using clustering to identify genes that are associated with Osterix expression. Osterix clusters with a set of osteoblast-associated extracellular matrix (ECM) genes, including bone sialoprotein (BSP) and a novel set of proteoglycans, osteomodulin (OMD), osteoglycin, and asporin. Maximum expression of these genes is dependent upon both the concentration and duration of BMP6 exposure. Next we overexpressed and repressed Osterix in primary hMSC using retrovirus. The enforced expression of Osterix had relatively minor effects on osteoblastic gene expression independent of exogenous BMP6. However, in the presence of BMP6, Osterix overexpression enhanced expression of the aforementioned ECM genes. Additionally, Osterix overexpression enhanced BMP6 induced osteoblast mineralization, while inhibiting hMSC proliferation. -
What Triggers Cell-Mediated Mineralization?
Chapter 1 General introduction Based on What triggers cell-mediated mineralization? Leonie F.A. Huitema1,2 and Arie B. Vaandrager1 1 Department of Biochemistry and Cell Biology, 2 Department of Equine Sciences, Faculty of Veterinary Medicine, and Graduate School Animal Health. Front Biosci. 2007; 12; 2631-2645 Chapter 1 General introduction into cell-mediated mineralization Mineralization is an essential requirement for normal skeletal development, which is generally accomplished through the function of two cell types, osteoblasts and chondrocytes [1]. Soft tissues do not mineralize under normal conditions but, under certain pathological conditions some tissues like articular cartilage and cardiovascular tissues are prone to mineralization (Table 1) [2;3]. Mineralization of articular cartilage contributes to significant morbidity because of its association with joint inflammation and worsening of the progression of osteoarthritis [4]. Articular cartilage calcification occurs in association with aging, degenerative joint disease (e.g. osteoarthritis), some genetic disorders and various metabolic disorders [4-7]. Similarly, arterial calcification occurs with advanced age, atherosclerosis, metabolic disorders, including end stage renal disease and diabetes mellitus, and some genetic disorders [8]. Arterial calcification contributes to hypertension and increased risks of cardiovascular events, leading to morbidity and mortality [9]. While pathological mineralization has long been considered to result from physiochemical precipitation of calcium and phosphate, recent studies have provided evidence that soft tissue mineralization is a regulated process, which has many similarities with bone formation [10;11]. For now it is unclear why soft tissues have the tendency to mineralize. Therefore, the purpose of this review is to discuss the components involved in cell-mediated mineralization.