1 The Role of Extracellular Matrix Phosphorylation on Energy Dissipation in 2 Bone 3 4 Stacyann Bailey1, Grazyna E. Sroga1, Betty Hoac2, Orestis L. Katsamenis3, Zehai Wang4, 5 Nikolaos Bouropoulos5, Marc D. McKee2,6, Esben S. Sorensen7, Philipp J. Thurner8, and Deepak 6 Vashishth1 7 8 9 1Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, 10 Rensselaer Polytechnic Institute, Troy, NY, USA. 11 2Faculty of Dentistry, McGill University, Montreal, QC, Canada. 12 3Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK 13 4Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic 14 Institute, Troy, NY, USA. 15 5Department of Material Science, University of Patras, Patras, Greece 16 6Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, 17 QC, Canada. 18 7 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark 19 8Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, 20 Vienna, Austria. 21 22 Corresponding Author: 23 Deepak Vashishth, PhD 24 Professor of Biomedical Engineering 25 Rensselaer Polytechnic Institute 26 110 8th Street, Troy NY 12180, USA 27 Phone: 518-276-2296 28 Email:
[email protected] 29 1 30 Abstract 31 32 Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in 33 various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key 34 structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation 35 level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities. 36 Phosphorylation increased cohesion between osteopontin polymers, and adhesion of osteopontin 37 to hydroxyapatite, enhancing energy dissipation. Fracture toughness, a measure of bone’s 38 mechanical competence, increased with ex-vivo phosphorylation of wildtype mouse bones and 39 declined with ex-vivo dephosphorylation.