Bioactive Metabolites of Bulbine Natalensis (Baker): Isolation, Characterization, and Antioxidant Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aldrich FT-IR Collection Edition I Library
Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL -
CPY Document
3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not. -
Enhancing the Yields of Phenolic Compounds During Fermentation Using Saccharomyces Cerevisiae Strain 96581
Food and Nutrition Sciences, 2014, 5, 2063-2070 Published Online November 2014 in SciRes. http://www.scirp.org/journal/fns http://dx.doi.org/10.4236/fns.2014.521218 Enhancing the Yields of Phenolic Compounds during Fermentation Using Saccharomyces cerevisiae Strain 96581 Adam A. Banach, Beng Guat Ooi* Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA Email: *[email protected] Received 2 September 2014; revised 28 September 2014; accepted 15 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Phenylethanol, tyrosol, and tryptophol are phenolic compounds or fusel alcohols formed via the Ehrlich pathway by yeast metabolism. These compounds can yield health benefits as well as con- tribute to the flavors and aromas of fermented food and beverages. This research shows that Sac- charomyces cerevisiae Strain 96581 is capable of producing significantly higher levels of these three compounds when the precursor amino acids were supplemented into either the Chardonnay concentrate for wine-making or the malt concentrate for brewing English Ale. Strain 96581 can produce phenylethanol, tyrosol, and tryptophol as high as 434 mg/kg, 365 mg/kg, and 129 mg/kg, respectively, in the beer fermentation. The performance of Ale yeast WLP002 from White Labs Inc. was also analyzed for comparison. Strain 96581 outperformed WLP002 in the control beer, the amino acids supplemented beer, and the kiwi-beer background. This shows that Strain 96581 is more effective than WLP002 in converting the malt and the kiwi fruit supplements via its endo- genous enzymes. -
356-372 Published Online 2014 February 15
Copyright © 2013, American-Eurasian Network for Scientific Information publisher American-Eurasian Journal of Sustainable Agriculture JOURNAL home page: http://www.aensiweb.com/aejsa.html 2013 December; 7(5): pages 356-372 Published Online 2014 February 15. Research Article A Review on a Mangrove Species from the Sunderbans, Bangladesh: Barringtonia racemosa (L.) Roxb. Md. Zahirul Kabir, Sk. Mizanur Rahman, Md. Rashedul Islam, Prashanta Kumer Paul, Shahnaz Rahman, Rownak Jahan, Mohammed Rahmatullah Faculty of Life Sciences, University of Development Alternative, Dhanmondi, Dhaka-1209, Bangladesh Received: November 03, 2013; Revised: January 13, 2014; Accepted: January 17, 2014 © 2013 AENSI PUBLISHER All rights reserved ABSTRACT Barringtonia racemosa is considered a mangrove associated species and found in various regions of Southeast and East Asia, as well as Micronesian and Polynesian islands and northern Australia. Important chemicals that have been found in the plant include betulinic acid, ellagic acid, gallic acid, germanicol, germanicone, lupeol, stigmasterol and taraxerol. Antibacterial, antifungal and antinociceptive activities have been reported for extracts from the plant. Traditional medicine practices include the whole plant as a remedy for itch; the roots are considered to be antimalarial, the bark and/or leaves are used in case of boils, snake bites, rat poisonings, gastric ulcer, high blood pressure, chicken pox and as a depurative, the fruits are used as remedy for cough, asthma and diarrhea, while the seeds are used for cancer like diseases and for eye inflammation. Key words: Barringtonia racemosa, Sunderbans, medicinal, Bangladesh INTRODUCTION Barringtonia racemosa (L.) Blume Eugenia racemosa L. Barringtonia racemosa is considered a Butonica apiculata Miers mangrove associated species and found in various Barringtonia insignis Miq. -
TRITERPENES from Minquartia Guianensis (Olacaceae) and in VITRO ANTIMALARIAL ACTIVITY
Quim. Nova, Vol. 35, No. 11, 2165-2168, 2012 TRITERPENES FROM Minquartia guianensis (Olacaceae) AND IN VITRO ANTIMALARIAL ACTIVITY# Lorena Mayara de Carvalho Cursino e Cecilia Veronica Nunez* Laboratório de Bioprospecção e Biotecnologia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araujo, 2936, 69060-001 Manaus – AM, Brasil Renata Cristina de Paula e Maria Fernanda Alves do Nascimento Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antonio Artigo Carlos, 6627, 31270-901 Belo Horizonte – MG, Brasil Pierre Alexandre dos Santos Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Rua Alexandre Amorim, 330, 69010-300 Manaus – AM, Brasil Recebido em 24/5/12; aceito em 21/9/12; publicado na web em 9/11/12 Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3β-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even -
Price-List 2012-13
Sanjay International Price-List 2012-13 Sanjay International Mr. Sanjay Mital +(91)-9810163421 No. 3439/5, Gali Bajrang Bali Chawri Bazar - Delhi, Delhi - 110 006, India http://www.indiamart.com/sanjayinternational/ Sanjay International Terms of Sale PRICES : Prices mentioned in the Price List are ruling at the time of printing of the Price List and subject to change without prior notice. Goods shall be invoice at prices ruling on the date of dispatch. TAXES & DUTIES : Sales Tax, MVAT, Octrio Duty, other Duties & Levies will be charged extra as applicable at the time of supply. For exemption of Sales Tax & Octrio Exemption Certificate should be sent along with order. PAYMENTS : Payments are to be made by Demand draft / cheques drawn on 'Sanjay international.' payable at Delhi. In the event of payment through bank the customer has to retire the documents immediately on presentation of the documents by the bank. The interest @21% will be charged on all the payments received after due dates. BULK REQUIREMENTS : Requirements/Enquiries for bulk packing and large quantities for any items will be considered. INSURANCE : Goods are packed with utmost care and forwarded at Customer's risk. No responsibility is taken for breakages or loss in transit. Goods can be insured at the customer's request at 1% of the invoice value. Charges for insurance will be made in the invoice itself. MINIMUM ORDER : All orders invoiced over Rs.25,000/- net shall be dispatched F.O.R. Delhi by transport, freight extra. Goods can be dispatched by Post, courier/angadia or by Passenger Train on customer's request freight will be born by customer. -
Atlas of Pollen and Plants Used by Bees
AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer. -
Biochemical Basis of the Antidiabetic Activity of Oleanolic Acid and Related Pentacyclic Triterpenes
PERSPECTIVES IN DIABETES Biochemical Basis of the Antidiabetic Activity of Oleanolic Acid and Related Pentacyclic Triterpenes Jose M. Castellano, Angeles Guinda, Teresa Delgado, Mirela Rada, and Jose A. Cayuela Oleanolic acid (OA), a natural component of many plant food and widely distributed in the plant kingdom as free acid or as medicinal herbs, is endowed with a wide range of pharmacolog- aglycone of triterpenoid saponins. More than 120 plant ical properties whose therapeutic potential has only partly been species have been described by their relevant OA con- exploited until now. Throughout complex and multifactorial tents (3), but few of them are socioeconomically impor- mechanisms, OA exerts beneficial effects against diabetes and tant crops as is olive (Olea europaea L.). OA is a component metabolic syndrome. It improves insulin response, preserves of the cuticle waxes that cover fruit and leaf epidermis. It is functionality and survival of b-cells, and protects against diabetes especially abundant in the olive leaf, where it represents up complications. OA may directly modulate enzymes connected to to 3.5% of the dry weight (4). insulin biosynthesis, secretion, and signaling. However, its major contributions appear to be derived from the interaction with im- OA and related triterpenes possess interesting pharma- portant transduction pathways, and many of its effects are con- cological properties, including the antioxidant, micro- sistently related to activation of the transcription factor Nrf2. bicide, antidiabetic, anti-inflammatory, hypolipidemic, and Doing that, OA induces the expression of antioxidant enzymes antiatherosclerotic actions (5–7). They interfere in the and phase II response genes, blocks NF-kB, and represses the development of different types of cancer (7) and neuro- polyol pathway, AGEs production, and hyperlipidemia. -
From Euphorbia Lathyris L., Euphorbiaceae
Pentacyclic Triterpenoids in Epicuticular Waxes from Euphorbia lathyris L., Euphorbiaceae Herbert Hemmers, Paul-Gerhard Gülz Botanisches Institut der Universität zu Köln, Gyrhofstraße 15, D-5000 Köln 41, Bundesrepublik Deutschland Franz-Josef Marner Institut für Biochemie der Universität zu Köln, An der Bottmühle 2, D-5000 Köln 1, Bundesrepublik Deutschland Victor Wray GBF Braunschweig, Mascheroder Weg 1. D-3300 Braunschweig, Bundesrepublik Deutschland Z. Naturforsch. 44c, 193 — 201 (1989); received November 2/December 23, 1988 Euphorbia lathyris , Epicuticular Wax Composition, Triterpenols, Triterpenones, Triterpenol Esters The chemical composition of the leaf surface wax of Euphorbia lathyris L. was analysed using TLC, GC, GC-MS and NMR. A predominance of pentacyclic triterpenoids and primary alcohols was observed. They together constituted 60% of the total wax. Seven triterpenols: taraxerol, ß- amyrin, lupeol, isomotiol, a-fernenol, simiarenol. i|>-taraxasterol and eight triterpenones: taraxe- rone, ß-amyrinone, lupenone, isomotione, a- and ß-fernenone, simiarenone and filicanone were isolated. Among them, ß-amyrin and lupeol were found esterified with homologous series of fatty acids. The minor part of wax was formed by long chained and predominantly saturated alkanes, wax esters, aldehydes and free fatty acids. Introduction containing latex which provides a potential, renew able source for the production of liquid fuels and Euphorbia lathyris L. (sect. lathyris), a member of other chemical materials [2, 4—7], Hence E. lathyris the spurge family (Euphorbiaceae), is a glabrous, glaucous, biennial plant up to 150 cm in height with may play an important role as an energy-plant in the numerous axillary shoots [1]. Probably native only in future. Polycyclic triterpenes are another no less impor the eastern and central mediterranean regions, it spread from there throughout South, West and Cen tant group of chemical constituents present in the tral Europe and later has been introduced into latex of E. -
Phylogenetics of Alooideae (Asphodelaceae)
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 Phylogenetics of Alooideae (Asphodelaceae) Jeffrey D. Noll Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Noll, Jeffrey D., "Phylogenetics of Alooideae (Asphodelaceae)" (2003). Retrospective Theses and Dissertations. 19524. https://lib.dr.iastate.edu/rtd/19524 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phylogenetics of Alooideae (Asphodelaceae) by Jeffrey D. Noll A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology- and Evolutionary Biology Program of Study Committee: Robert S. Wallace (Major Professor) Lynn G. Clark Gregory W. Courtney Melvin R. Duvall Iowa State University Ames, Iowa 2003 Copyright ©Jeffrey D. Noll, 2003. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Jeffrey D. Noll has met the requirements of Iowa State University Signatures have been redacted for privacy 111 TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Thesis Organization 2 CHAPTER 2: REVIEW OF ALOOIDEAE TAXONOMY AND PHYLOGENETICS 3 Circumscription of Alooideae 3 Characters of Alooideae 3 Distribution of Alooideae 5 Circumscription and Infrageneric Classification of the Alooideae Genera 6 Intergeneric Relationships of Alooideae 12 Hybridization in Alooideae 15 CHAPTER 3. -
A Catalytic Asymmetric Total Synthesis of (−)-Perophoramidine
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A catalytic asymmetric total synthesis of (À)-perophoramidine† Cite this: Chem. Sci.,2015,6,349 B. M. Trost,* M. Osipov, S. Kruger¨ and Y. Zhang We report a catalytic asymmetric total synthesis of the ascidian natural product perophoramidine. The synthesis employs a molybdenum-catalyzed asymmetric allylic alkylation of an oxindole nucleophile and a monosubstituted allylic electrophile as a key asymmetric step. The enantioenriched oxindole product from this transformation contains vicinal quaternary and tertiary stereocenters, and is obtained in high yield along with high levels of regio-, diastereo-, and enantioselectivity. To install the second quaternary Received 19th June 2014 stereocenter in the target, the route utilizes a novel regio- and diastereoselective allylation of a cyclic Accepted 30th July 2014 imino ether to deliver an allylated imino ether product in near quantitative yield and with complete DOI: 10.1039/c4sc01826e regio- and diastereocontrol. Oxidative cleavage and reductive amination are used as final steps to access www.rsc.org/chemicalscience the natural product. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction while that of the communesins is cis. From a biological perspective, perophoramidine (1) displays cytotoxicity against m In 2002, Ireland and coworkers reported the isolation and the HCT116 colon carcinoma cell line with an IC50 of 60 M. structural elucidation of a novel polycyclic alkaloid, (+)-per- The combination of its complex, densely functionalized struc- ophoramidine (1) from the Philippine ascidian organism Per- ture and cytotoxic properties make perophoramidine (1)an ophora namei (Fig. 1).1 The structure of (+)-perophoramidine (1) attractive target for asymmetric total synthesis. -
Nicolet Standard Collection of FT-IR Spectra
Nicolet Standard Collection of FT-IR Spectra Library Listing – 3,119 spectra This collection is suited to the needs of analytical services and investigational laboratories. It provides a wide array of common chemicals in a lower cost package and can be used in combination with the Nicolet Standard Collection of FT-Raman Spectra to provide analysts a higher degree of confidence when identifying unknowns. The Nicolet Standard Collection of FT-IR Spectra includes 3,119 spectra of common chemicals with representatives of major functional groups and combinations of functional groups. It contains the same chemical series available in the Nicolet Standard Collection of FT-Raman Spectra. These matched libraries can be used alone or in combination with Thermo Fisher’s unique OMNIC Linked Search software. Nicolet Standard Collection of FT-IR Spectra Index Compound Name Index Compound Name 1177 (+)-1,4-Androstadiene-3,17-dione 1498 (+/-)-Ketamine .HCl; 2-(2- 140 (+)-11a-Hydroxyprogesterone, 95% Chlorophenyl)-2- 1221 (+)-2'-Deoxyuridine, 99+% (methylamino)cyclohex 2999 (+)-2,3-O-Benzylidene-D-threitol 1104 (+/-)-Octopamine .HCl, 98% 1291 (+)-2-Phenyl-1-propanol, 97% 2541 (+/-)-Pantothenol 933 (+)-3-Nitro-L-tyrosine, 99% 2058 (+/-)- 833 (+)-4-Cholesten-3-one Tetracyclo[6.6.2.0(2,7).0(9,14)]hexadec 739 (+)-6-Aminopenicillanic acid, 96% a-2,4,6,9,11,13-he 2361 (+)-Arabinogalactan 579 (+/-)-a-Benzoin oxime, 99% 2545 (+)-Boldine .HCl; 1,10- 2290 (+/-)-cis-2-Methylcyclohexanol, 97% Dimethoxyaporphine-2,9-diol .HCl 2287 (+/-)-trans-1,2-Dibromocyclohexane,