Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol Against E. Coli with an Improved Method

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol Against E. Coli with an Improved Method See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/38072806 Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. coli with an Improved Method ARTICLE in JOURNAL OF FOOD SCIENCE · SEPTEMBER 2009 Impact Factor: 1.7 · DOI: 10.1111/j.1750-3841.2009.01287.x · Source: PubMed CITATIONS READS 82 443 4 AUTHORS, INCLUDING: Ruisong Pei Bao-Ping Ji University of Wisconsin–Madison China Agricultural University 12 PUBLICATIONS 232 CITATIONS 18 PUBLICATIONS 244 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Ruisong Pei letting you access and read them immediately. Retrieved on: 20 February 2016 JFS M: Food Microbiology and Safety Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. coli with an Improved Method RUI-SONG PEI,FENG ZHOU,BAO-PING JI, AND JING XU ABSTRACT: In this study, the antibacterial activities of eugenol, cinnamaldehyde, thymol, carvacrol, and their combinations against E. coli were investigated separately. First, broth macro-dilution assay was adopted to deter- mine the minimal inhibitory concentration (MIC) of the 4 components. Second, the combination testing was per- formed using chequerboard method. Finally, the combined effects were evaluated with an improved method, which was based on the indices of fractional inhibitory concentration (FIC) and Effect of the Combination (EC) jointly. The results indicated that MICs of the 4 components were 1600, 400, 400, and 400 mg/L, respectively; treatments with cinnamaldehyde/eugenol, thymol/eugenol, carvacrol/eugenol, and thymol/carvacrol revealed synergistic ef- fects according to the 2 indices. By means of combination, MICs of eugenol, cinnamaldehyde, thymol, and carvacrol decreased to 400, 100, 100, and 100 mg/L, respectively. Consequently, the negative impacts of unpleasant smell of these 4 components could be minimized, making it possible to add them to foods as preservatives. In addition, this improved evaluation method provided a more accurate and comprehensive way to evaluate combined effects. Keywords: antibacterial activity, E. coli, essential oils component, evaluation method, synergism & Safety M: Food Microbiology Introduction EOs in semiskimmed milk (Karatzas and others 2001) and tenfold he antibacterial effects of essential oils (EOs) and their compo- more in pork liver sausage (Pandit and Shelef 1994). T nents have been examined recently. It has been reported that To enhance the antimicrobial activities, the EOs components the essential oils of the oregano and thyme were effective against have been used in combination with other antibacterial agents and strains of E. coli (Dorman and Deans 2000). The major antibacte- a variety of treatments. Karatzas and others (2000) reported that the rial components of these oils are carvacrol and its isomer thymol combined effects of carvacrol, cinnamaldehyde, and thymol with (Burt and others 2005). Studies have shown that the essential oils of mild heat treatment could reduce the viability of L. monocytogenes. thyme and clove are effective against Listeria monocytogenes (Singh Ettayebi and others (2000) found that the combination of nisin and and others 2003). The inhibitory effects of thyme and basil EOs, car- thymol could effectively control the foodborne pathogenic bacte- vacrol, and thymol toward Shigella sonnei and Shigella flexneri were ria, so that the required concentration of nisin and tymol would investigated (Bagamboula and others 2004). Other researchers re- be decreased. Other methods were also reported in previous stud- ported the antimicrobial effects of carvacrol, cinnamaldehyde, and ies, including combined with modified atmosphere (Chouliara and thymol on growth of Bacillus cereus (Valero and Giner 2005). others 2007), sodium citrate and monolaurin (Blaszyk and Holley An increasing number of people prefer natural and minimal 1998), and nisin and diglycerol fatty acid ester (Solomakos and oth- processed food products, which are regarded as safe and more ers 2008). However, it is hard to compare the results of these re- nutritional. Many EOs and their components, including eugenol, ports because researchers choose different methods to perform the cinnamaldehyde, thymol, and carvacrol, have been registered by combination testing and adopt various indices to evaluate the re- the European Commission and are considered to present no risk sults, which leads to nonstandard outcomes (Fyfe and others 1998; to the health of customers (Burt 2004). Therefore, it is possible to Ettayebi and others 2000; Delaquis and others 2002). Thus, there is use them as preservatives to extend the shelf life of selected foods a clear need to develop an effective and standardized way to evalu- considering their safety and antimicrobial activities. However, the ate and quantify the synergistic effects of EOs combination. organoleptic quality of foods could be affected by the taste of these The chequerboard method combined with fractional inhibitory components; besides, even greater addition is needed to achieve concentration (FIC) index is commonly used to test the antimicro- the same effect in foods, because the antimicrobial effects would bial abilities of drugs in medicine. Many researchers have also used be weakened in some particular situations (Shelef 1983; Smid and this method to study the antimicrobial abilities of EOs (Shin and Gorris 1999). For instance, it would need more than twofold more Kang 2003; Filoche and others 2005; Si and others 2008). In our previous studies, we tested the combined effects of components themselves or with chelator and organic acids against Salmonella MS 20090150 Submitted 2/19/2009, Accepted 6/17/2009. Authors are with typhimurium using the EC index (Zhou and others 2007a, 2007b). College of Food Science and Nutritional Engineering, China Agricultural Therefore, based on the previous reports, we tried to use these 2 in- Univ., 17 Qinghua Donglu, Haidian District, Beijing, China. Direct in- quiries to author Zhou (E-mail: [email protected]). dices jointly to develop a more comprehensive way to quantify the synergistic effects of EOs combination. C 2009 Institute of Food Technologists R Vol. 74, Nr. 7, 2009—JOURNAL OF FOOD SCIENCE M379 doi: 10.1111/j.1750-3841.2009.01287.x Further reproduction without permission is prohibited An improved evaluation method of combination effects . Eugenol, cinnamaldehyde, thymol, and carvacrol were 4 com- suspensions and aliquots of 1 mL of each component at a concen- monly used antibacterial components of the EOs of clove, tration of 4 times the targeted final concentration were dispensed cinnamon, oregano, and thyme (Demo and others 2001; Kwon and in the tubes. One tube with 4 mL of MHB without adding any com- others 2003; Valero and Giner 2005). The major objective of this ponents was set as control. The experiment was carried out at least study was to investigate the separate and combined antibacterial thrice. The MICs were determined as described previously. activities of these 4 components against E. coli; furthermore, an im- Two kinds of indices were adopted to evaluate the interactions. proved method was developed to evaluate and quantify synergistic The FIC, which is the sum of the FICs for each component; and combinations. the FIC is calculated as follows: for component A the FIC equals the MIC of component A in combination divided by the MIC of compo- Materials and Methods nent A alone. The interactions are considered synergistic if the FIC index is less than 1, additive if the FIC is equal to 1, indifferent if the Bacterial strains and growing conditions FIC index is between 1 and 2, and antagonistic if the FIC index is E. coli CGMCC 1.487 (obtained from China General Microbio- greater than 2 (Franzot and Casadevall 1997). logical Culture Collection Center, Beijing, China) was maintained The EC, which was described in our previous studies (Zhou and on Mueller–Hinton agar (MHA) (Beijing Chemical Corp., Beijing, others 2007a) and the EC is calculated using the following formula: ◦ China) slants at 4 C. Cells were prepared by 16-h culture in Mueller ◦ –Hinton broth (MHB) (Beijing Chemical Corp.) at 37 C. EC = Log DPI − Log DPII A 16-h culture was diluted with MHB to achieve an inoculum of 6 1 × 10 CFU/mL approximately. The number of cells in the suspen- The Log DPI and Log DPII represented the Log DP of the combina- sions was estimated by duplicate plating from tenfold serial dilu- tion system and the single agent, respectively. tion on MHA and counting the colonies after incubation at 37 ◦C The synergistic effects of the combinations were determined for 24 h. based on 3 principles. (1) The decrease in populations (>90%): linked with the defini- < < − M: Food Microbiology EO components tion of DP,it was concluded that only when DP 0.1 (log DP 1) Cinnamaldehyde (≥98%) and eugenol (≥98%) were obtained that the combinations of various reagents had significant antibac- & Safety from Fluka (Buchs, Switzerland). Carvacrol (≥98%) and thymol terial activity. (≥99%) were obtained from Sigma (St. Louis, Mo., U.S.A.). Certain (2) When there was significant difference (analyzed by the one- amount of each component filter-sterilized (0.22-μm-pore filter; way analysis of variance [ANOVA]) between the antibacterial ac- Millipore Corp, Bedford, Mass., U.S.A.) was added to MHB to ob- tivity of the combination and
Recommended publications
  • Chapter 6—Clove Oil (Eugenol)
    Chapter 6—Clove Oil (Eugenol) OH CH3 O Eugenol Chapter 6: Clove oil 6-2 6 Table of Contents — Clove Oil (Eugenol) 6.1 INTRODUCTION ......................................................................................................................................... 6-4 6.2 CLOVE OIL AND EUGENOL TOXICITY TO HUMANS AND LEVELS OF CONCERN ................ 6-6 6.2.1 HEALTH EFFECTS ...................................................................................................................................... 6-7 6.2.1.A Acute Effects—Sensitization ........................................................................................................... 6-7 6.2.1.B Acute Effects—Skin, Eyes and Respiratory System ........................................................................ 6-7 6.2.1.C Acute Effects—Systemic Poisoning ................................................................................................ 6-7 6.2.1.D Effects in Human Cells .................................................................................................................... 6-8 6.2.1.E Levels of Concern for Humans ........................................................................................................ 6-8 6.2.2 PESTICIDE ILLNESS REPORTS .................................................................................................................... 6-9 6.3 EUGENOL TOXICITY TO ANIMALS AND PLANTS AND LEVELS OF CONCERN .................... 6-10 6.3.1 MAMMALS .............................................................................................................................................
    [Show full text]
  • Understanding and Managing the Transition Using Essential Oils Vs
    MENOPAUSE: UNDERSTANDING AND MANAGING THE TRANSITION USING ESSENTIAL OILS VS. TRADITIONAL ALLOPATHIC MEDICINE by Melissa A. Clanton A thesis submitted in partial fulfillment of the requirements for the Diploma of Aromatherapy 401 Australasian College of Health Sciences Instructors: Dorene Petersen, Erica Petersen, E. Joy Bowles, Marcangelo Puccio, Janet Bennion, Judika Illes, and Julie Gatti TABLE OF CONTENTS List of Tables and Figures............................................................................ iv Acknowledgments........................................................................................ v Introduction.................................................................................................. 1 Chapter 1 – Female Reproduction 1a – The Female Reproductive System............................................. 4 1b - The Female Hormones.............................................................. 9 1c – The Menstrual Cycle and Pregnancy....................................... 12 Chapter 2 – Physiology of Menopause 2a – What is Menopause? .............................................................. 16 2b - Physiological Changes of Menopause ..................................... 20 2c – Symptoms of Menopause ....................................................... 23 Chapter 3 – Allopathic Approaches To Menopausal Symptoms 3a –Diagnosis and Common Medical Treatments........................... 27 3b – Side Effects and Risks of Hormone Replacement Therapy ...... 32 3c – Retail Cost of Common Hormone Replacement
    [Show full text]
  • The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol
    molecules Article The Effects of Eugenol, Trans-Cinnamaldehyde, Citronellol, and Terpineol on Escherichia coli Biofilm Control as Assessed by Culture-Dependent and -Independent Methods Magdalena A. Olszewska 1,* , Astrid G˛edas 1 and Manuel Simões 2,* 1 Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn, Poland; [email protected] 2 LEPABE–Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.A.O.); [email protected] (M.S.); Tel.: +48-89-5233729 (M.A.O.); +351-22508-1654 (M.S.); Fax: +351-22508-1449 (M.S.) Received: 14 May 2020; Accepted: 5 June 2020; Published: 6 June 2020 Abstract: Bacterial biofilms contribute to problems with preserving food hygiene, jeopardizing any conventional intervention method used by the food industry. Hence, the approach of using essential oil (EO) compounds effective in biofilm control has considerable merit and deserves in-depth research. In this study, the effect of selected EO compounds (eugenol, trans-cinnamaldehyde, citronellol, and terpineol) was assessed on Escherichia coli biofilm control by plate count, resazurin assay, and Syto® 9/PI (-/propidium iodide) staining coupled with flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The selected EO compounds effectively inhibited the growth of planktonic E. coli at low concentrations of 3–5 mM, revealing a high antimicrobial activity. EO compounds markedly interfered with biofilms too, with trans-cinnamaldehyde causing the most prominent effects. Its antibiofilm activity was manifested by a high reduction of cell metabolic activity (>60%) and almost complete reduction in biofilm cell culturability.
    [Show full text]
  • The Synthesis of Vanillin
    The synthesis of vanillin - learning about aspects of sustainable chemistry by comparing different syntheses La síntesis de la vainilla - aprendiendo sobre aspectos de química sostenible mediante la comparación de diferentes síntesis NICOLE GARNER1, ANTJE SIOL2 , INGO EILKS1 1 Institute for Science Education, University of Bremen, 2 Center for Environmental Research and Sustainable Technology, University of Bremen, Germany, [email protected] Abstract • Prevention This paper discusses one way of integrating the aspects of sustainable chemistry into • Atom Economy secondary and undergraduate chemistry education. Two different synthesis reactions • Less Hazardous Chemical Syntheses for vanillin are presented, which both use isoeugenol as the starting reagent. Whereas • Designing Safer Chemicals the first synthesis is performed using conventional chemistry techniques, second • Safer Solvents and Auxiliaries approach employs strategies inspired by sustainable chemistry. The discussion • Design for Energy Efficiency covers how comparison of these two experiments can aid in learning about selected • Use of Renewable Feedstocks sustainable chemistry principles. • Reduce Derivatives Key words: education for sustainable development, chemistry education, green • Catalysis chemistry, vanillin • Design for Degradation • Real-time Analysis for Pollution Prevention Resumen • Inherently Safer Chemistry for Accident Prevention Este artículo analiza una manera de integrar los aspectos de la química sostenible en la escuela secundaria y en bachillerato.
    [Show full text]
  • Electroanalysis May Be Used in the Vanillin Biotechnological Production
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20317 Official URL: https://doi.org/10.1007/s12010-013-0631-2 To cite this version: Giraud, William and Mirabel, Marie and Comtat, Maurice Electroanalysis may be used in the Vanillin Biotechnological Production. (2014) Applied Chemistry and Biotechnology, 172 (4). 1953-1963. ISSN 0273-2289 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Electroanalysis may be used in the Vanillin Biotechnological Production William Giraud & Marie Mirabel & Maurice Comtat Abstract This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode.
    [Show full text]
  • Identification of Flavour Additives in Tobacco Products to Develop A
    Research paper Tob Control: first published as 10.1136/tobaccocontrol-2016-052961 on 11 February 2017. Downloaded from Identification of flavour additives in tobacco products to develop a flavour library Erna JZ Krüsemann, Wouter F Visser, Johannes WJM Cremers, Jeroen LA Pennings, Reinskje Talhout ► Additional material is ABStract flavoured tobacco products over unflavoured 2 published online only. To view Objectives This study combines chemical analysis products. Furthermore, Kreslake and colleagues please visit the journal online (http:// dx. doi. org/ 10. 1136/ and flavour descriptions of flavour additives used in analysed data from tobacco industry documents, tobaccocontrol- 2016- 052961). tobacco products, and provides a starting point to build which show that tobacco companies use strat- an extensive library of flavour components, useful for egies to manipulate sensory characteristics of National Institute for Public product surveillance. cigarettes, for instance the menthol content, to Health and the Environment Methods Headspace gas chromatography-mass facilitate smoking initiation.3 According to them, (RIVM), Bilthoven, The Netherlands spectrometry (GC-MS) was used to compare 22 this strategy has been most successful in attracting commercially available tobacco products (cigarettes youth and young adult smokers. Correspondence to and roll-your-own) expected to have a characterising Overall, tobacco products with a characterising Professor Reinskje Talhout, flavour and 6 commercially available products not flavour stimulate young people to initiate smoking National Institute for Public expected to have a characterising flavour with 5 and therefore contribute to an increased use of Health and the Environment reference products (natural tobacco leaves and research 1 4 (RIVM), Antonie van tobacco products. Leeuwenhoeklaan 9, 3721 MA cigarettes containing no flavour additives).
    [Show full text]
  • Bio-Based Thermosetting Copolymers of Eugenol and Tung Oil Harris Handoko Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Bio-based thermosetting copolymers of eugenol and tung oil Harris Handoko Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanics of Materials Commons, and the Polymer Chemistry Commons Recommended Citation Handoko, Harris, "Bio-based thermosetting copolymers of eugenol and tung oil" (2014). Graduate Theses and Dissertations. 13757. https://lib.dr.iastate.edu/etd/13757 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bio-based thermosetting copolymers of eugenol and tung oil by Harris Handoko A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Material Science and Engineering Program of Study Committee: Samy Madbouly, Co-Major Professor Lawrence Genalo, Co-Major Professor Xiaoli Tan David Grewell Iowa State University Ames, Iowa 2014 Copyright © Harris Handoko, 2014. All rights reserved. ii TABLE OF CONTENTS LIST OF ABBREVIATIONS………………………………………………………………...... iv ACKNOWLEDGEMENT…………………………………………………………………..… vi ABSTRACT…………………………………………………………………………………..... vii CHAPTER 1: BACKGROUND INFORMATION 1.1
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0054021 A1 Dalko Et Al
    US 20030054021A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0054021 A1 Dalko et al. (43) Pub. Date: Mar. 20, 2003 (54) 7-OXO-DHEACOMPOUNDS FOR TREATING (30) Foreign Application Priority Data KERATINOUS CONDITIONS/AFFLICTIONS Jun. 14, 2001 (FR)............................................ 01/07804 (76) Inventors: Maria Dalko, Gif Sur Yvette (FR); Publication Classification Alexandre Cavezza, Tremblay-En-France (FR); Elisabeth (51) Int. Cl." ....................... A61K 31/695; A61K 31/66; Picard-Lesboueyries, Velizy (FR); A61K 31/58; A61K 31/56; Beatrice Renault, Saint Maurice (FR); A61K 7/OO Veronique Burnier, Paris (FR) (52) U.S. Cl. ............................ 424/401; 514/63; 514/172; 514/176; 514/177; 514/143 Correspondence Address: (57) ABSTRACT Norman H. Stepno, Esquire BURNS, DOANE, SWECKER & MATHIS, 7-Oxo-DHEA derivatives, various of which are themselves L.L.P. novel compounds, are well Suited for cosmetically/therapeu P.O. Box 1404 tically treating adverse conditions/afflictions of a keratinous Alexandria, VA 22313-1404 (US) Substrate/material, notably of human skin, hair, eyelashes and nails, to improve the appearance thereof, in particular to prevent or treat Signs of aging of the Skin and/or a dull (21) Appl. No.: 10/170,679 complexion and/or skin or hair pigmentation disorders and/ or dryneSS of the skin and/or hyperSeborrhoea and/or hyper Seborrhoea-related imperfections and/or Sensitive skin and/ (22) Filed: Jun. 14, 2002 or dandruff and/or natural hair loSS and/or baldness. US 2003/0054021 A1 Mar. 20, 2003 7-OXO-DHEACOMPOUNDS FOR TREATING KERATINOUS CONDITIONS/AFFLICTIONS (I) Me O CROSS-REFERENCE TO PRIORITY APPLICATION Me 0001.
    [Show full text]
  • Method of Preparing Vanillin
    (19) TZZ¥Z_T (11) EP 3 045 444 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 20.07.2016 Bulletin 2016/29 C07C 47/58 (2006.01) (21) Application number: 15750614.8 (86) International application number: PCT/CN2015/085408 (22) Date of filing: 29.07.2015 (87) International publication number: WO 2016/000664 (07.01.2016 Gazette 2016/01) (84) Designated Contracting States: • LIU, Zhenjiang AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Jiaxing City, Zhejiang 314000 (CN) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • YAO, Yueliang PL PT RO RS SE SI SK SM TR Jiaxing City, Zhejiang 314000 (CN) Designated Extension States: • WANG, Chaoyang BA ME Jiaxing City, Zhejiang 314000 (CN) Designated Validation States: • WU, Jianxin MA Jiaxing City, Zhejiang 314000 (CN) • ZHAO, Feifei (30) Priority: 30.06.2014 CN 201410304472 Jiaxing City, Zhejiang 314000 (CN) (71) Applicant: JIAXING ZHONGHUA CHEMICAL CO., (74) Representative: Johnson, Richard Alan et al LTD. Mewburn Ellis LLP Nanhu District City Tower Jiaxing City, 40 Basinghall Street Zhejiang 314000 (CN) London EC2V 5DE (GB) (72) Inventors: Remarks: • MAO, Haifang A request for restoration of the right of priority under Jiaxing City, Zhejiang 314000 (CN) Rule 49ter.2 PCT is pending before the EPO as • WANG, Lizhi designated Office. Jiaxing City, Zhejiang 314000 (CN) (54) METHOD OF PREPARING VANILLIN (57) A method of preparing vanillin comprises weigh- water with the volume ratio of water to the first solvent ing eugenol, a strong alkali,
    [Show full text]
  • Eugenol—The Active Principle from Cloves Inhibits 5-Lipoxygenase Activity and Leukotriene-C4 in Human PMNL Cells
    ARTICLE IN PRESS Prostaglandins, Leukotrienes and Essential Fatty Acids 74 (2006) 23–27 www.elsevier.com/locate/plefa Eugenol—The active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells H. Raghavenraa, B.T. Diwakra, B.R. Lokeshb, K.A. Naidua,Ã aDepartment of Biochemistry and Nutrition, Central Food Technological Research Institute, Cheluvamba Mansion, Mysore, Karnataka 570 020, India bLipid Science and Traditional Foods, Mysore, Karnataka, India Received 30 June 2005; received in revised form 11 July 2005; accepted 11 August 2005 Abstract Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-Lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C4 (LTC4). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC4 in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC4 in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.
    [Show full text]
  • Efficacy of Benzocaine, Eugenol, and Menthol As Anesthetics for Freshwater Angelfish
    Journal of Aquatic Animal Health 30:210–216, 2018 © 2018 American Fisheries Society ISSN: 0899-7659 print / 1548-8667 online DOI: 10.1002/aah.10030 ARTICLE Efficacy of Benzocaine, Eugenol, and Menthol as Anesthetics for Freshwater Angelfish Rafael de Souza Romaneli, Andre Zuffo Boaratti, Andressa Tellechea Rodrigues, Daniel Monge de Almeida Queiroz, Kifayat Ullah Khan, Thiago Matias Torres Nascimento, and Joao~ Batista Kochenborger Fernandes Aquaculture Center, Sao~ Paulo State University, Via de Acesso Paulo Donato Castellane s/n, 14884-900 Jaboticabal, Sao~ Paulo, Brazil Cleber Fernando Menegasso Mansano* Campus Fernandopolis, Brazil University, Estrada Projetada F-1, s/n Fazenda Santa Rita, 15600-000 Fernandopolis, Sao~ Paulo, Brazil Abstract For the production and commercialization of ornamental fish species, it is indispensable to collect biometric data that facilitate the selection of animals for trade and genetic improvement of the stock. However, during the handling process, fish receive more stress if proper anesthetics are not used. Thus, application of appropriate anesthetics is an important tool for minimizing stress in animals. The objective of this study was to determine the effective concentra- tions of benzocaine, eugenol, and menthol for achieving anesthesia in Freshwater Angelfish Pterophyllum scalare and to develop induction and recovery response curves for different concentrations of these anesthetics. In total, 75 fish were exposed to five concentrations of the three anesthetics in a completely randomized design: benzocaine at 60, 85, 110, 135, and 160 mg/L; eugenol at 40, 80, 120, 160, and 200 mg/L; and menthol at 50, 75, 150, 200, and 250 mg/L. Each concentration (5 fish/concentration) consisted of five replicates, with each replicate represented by a single fish.
    [Show full text]
  • Caryophylli-Aetheroleum-Summary-Report-Committee-Veterinary-Medicinal-Products En.Pdf
    The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/406/98-FINAL May 1998 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS CARYOPHYLLI AETHEROLEUM SUMMARY REPORT 1. Caryophylli aetheroleum is the volatile oil of the flower buds of Syzygium aromaticum (L.) Merr. & Perry (synonym: cloves), which contain 15 to 18% of the oil. The oil contains: eugenol (80 to 90%), eugenyl acetate (2 to 27%), ß-caryophyllene (5 to 12%), methyl salicylate, methyl eugenol, benzaldehyde, methyl amyl keton and a-ylangene. 2. Caryophylli aetheroleum is contained in two veterinary medicinal combination products containing 9 and 6 other active ingredients, respectively. The concentration of Caryophylli aetheroleum in the first product is 0.008%. It is administered as a nose-spray to newborn of all food producing species as a respiratory stimulant. The dose ranges from 0.1 g to 0.3 g, depending on body weight. The maximum single dose of Caryophylli aetheroleum is 0.024 mg. The treatment may be repeated after 10 to 15 seconds. In the other product, Caryophylli aetheroleum is contained in a concentration of 0.5%. The oinment is used for disinfection of the udder and to prevent transmission of diseases of the udder of cattle, horses, goats, sheep, and pigs. The ointment is used as frequently as is required. Caryophylli aetheroleum is traditionally used orally in human medicine as a carminative, and occasionally for the treatment of flatulent colic, and topically for symptomatic relief of toothache. The doses used are 0.05 to 0.2 ml. Cloves, which contain Caryophylli aetheroleum, are used as a spice and for flavouring of food.
    [Show full text]