Anergic and Regulatory T Lymphocytes Functional and Molecular Comparison Of

Total Page:16

File Type:pdf, Size:1020Kb

Anergic and Regulatory T Lymphocytes Functional and Molecular Comparison Of Functional and Molecular Comparison of Anergic and Regulatory T Lymphocytes Birgit Knoechel, Jens Lohr, Shirley Zhu, Lisa Wong, Donglei Hu, Lara Ausubel and Abul K. Abbas This information is current as of September 29, 2021. J Immunol 2006; 176:6473-6483; ; doi: 10.4049/jimmunol.176.11.6473 http://www.jimmunol.org/content/176/11/6473 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/05/18/176.11.6473.DC1 Material References This article cites 54 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/176/11/6473.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Functional and Molecular Comparison of Anergic and Regulatory T Lymphocytes1 Birgit Knoechel,2* Jens Lohr,2* Shirley Zhu,† Lisa Wong,† Donglei Hu,† Lara Ausubel,3* and Abul K. Abbas4* Tolerance in vivo is maintained by multiple mechanisms that function to prevent autoimmunity. An encounter of CD4؉ T cells with a circulating self-Ag leads to partial thymic deletion, the development of CD25؉ regulatory T cells (Tregs), and functional anergy in the surviving CD25؊ population. We have compared anergic and regulatory T cells of the same Ag specificity generated in vivo by the systemic self-Ag. Anergic cells are unresponsive to the self-Ag that induces tolerance, but upon transfer into a new host and immunization, anergic cells can induce a pathologic autoimmune reaction against tissue expressing the same Ag. Tregs, in contrast, are incapable of mediating harmful reactions. To define the basis of this functional difference, we have compared gene expression profiles of anergic and regulatory T cells. These analyses show that Tregs express a distinct molecular signature, but Downloaded from anergic cells largely lack such a profile. Anergic cells express transcripts that are associated with effector differentiation, e.g., the effector cytokines IL-4 and IFN-␥. Anergic cells do not produce these cytokines in response to self-Ag, because the cells exhibit a proximal signaling block in response to TCR engagement. Thus, anergy reflects an aborted activation pathway that can readily be reversed, resulting in pathologic effector cell responses, whereas Treg development follows a distinct developmental pathway that extinguishes effector functions. The Journal of Immunology, 2006, 176: 6473–6483. http://www.jimmunol.org/ cell tolerance to self-Ags is maintained by three principal To address these questions, we have generated a Tg mouse that mechanisms: anergy (functional unresponsiveness), dele- expresses a secreted form of OVA (sOVA) in the circulation T tion (apoptotic death), and suppression by regulatory T (sOVA Tg mouse) and crossed these animals with TCR Tg mice lymphocytes (1–7). Many of the studies on which this conclusion expressing the DO11.10 (referred to hereafter as DO11) OVA- is based have relied on cloned cell lines or polyclonal stimuli (8– specific TCR. This is the first experimental system in which both 10). Much less has been done to address the mechanisms of T cell anergic and regulatory T cells are induced by a single self-Ag in tolerance induced in normal T cells by self-Ags, especially in vivo. the same Ag-specific population, and thus it is possible to formally 5 by guest on September 29, 2021 Transgenic (Tg) mouse models are valuable for defining the fates compare the two cell populations. In this work we show that an- of T cells that encounter their cognate Ag in different forms. A ergic and regulatory T cells can be distinguished on the basis of large number of studies have shown that deletion, anergy, and function and gene expression profiles. Microarray analysis re- ϩ suppression by CD25 regulatory T cells (Tregs) are all demon- vealed that anergic CD4ϩ T cells express very few specific genes. strable with Ag receptor Tg T cells (11–17). However, few studies However, they express abundant mRNA for cytokine genes such have formally compared the properties of anergic and regulatory T as Ifn-␥ and Il4 that are typically assigned to Th cells with effector cells induced in one T cell population by one Ag. In particular, function, suggesting that anergic cells in this setting may be given the considerable interest in inducing T cell anergy as a ther- “poised” to become true effector cells. We demonstrate that this apeutic strategy, it is important to ask whether this may be more or differentiation also occurs if tolerance is induced de novo when T less effective than generating Tregs. It is also unclear whether the cells newly encounter a tolerogenic Ag in an adoptive transfer biochemical and molecular characteristics of anergic and regula- model (18). Similar to T cells that have encountered self-Ag during tory T cells are distinct or show some overlap. development, the transferred T cells express IFN-␥ mRNA within four days after encounter with the self-Ag. Anergic T cells can *Department of Pathology and †Diabetes Center, University of California San Fran- even be triggered to secrete IFN-␥ upon stimulation in vivo. How- cisco School of Medicine, San Francisco, California 94143 ever, at the same time anergic cells develop a proximal signaling ϩ Received for publication August 9, 2005. Accepted for publication March 15, 2006. defect leading to decreased Ca2 mobilization upon TCR stimu- The costs of publication of this article were defrayed in part by the payment of page lation. Importantly, we show that the state of anergy can be broken charges. This article must therefore be hereby marked advertisement in accordance in that anergic T cells are unresponsive to the systemic self-Ag but with 18 U.S.C. Section 1734 solely to indicate this fact. retain their ability to trigger severe pathologic autoimmunity. In 1 This work was supported by National Institutes of Health Grant PO1 AI35297 and Deutsche Forschungsgemeinschaft Fellowships KN 533/1-1 and LO 808/1-1. contrast, regulatory T cells are incapable of causing harmful au- 2 These authors contributed equally to this work. toimmune reactions, and they express a large number of genes that 3 Current address: City of Hope Medical Center, Duarte, CA 91010. are specific to this lineage. Our studies suggest that anergy induc- tion is a double-edged sword in which a signaling block and 4 Address correspondence and reprint requests to Dr. Abul K. Abbas, Department of Pathology, University of California San Francisco, 505 Parnassus Avenue, M590, San aborted effector responses develop simultaneously and that this Francisco, CA 94143-0511. E-mail address: [email protected] balance may be easily tipped. Regulatory T cells, in contrast, are 5 Abbreviations used in this paper: Tg, transgenic; HPRT, hypoxanthine phosphori- incapable of effector responses, suggesting that they develop by a bosyltransferase; mOVA, membrane-bound OVA; sOVA, soluble form of OVA; RIP, rat insulin promoter; RMA, robust multiarray average; Treg, CD25ϩ regulatory T distinct pathway. These data have implications for a variety of cell. approaches attempting to induce tolerance in vivo. Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 6474 ANERGIC AND REGULATORY T LYMPHOCYTES Materials and Methods from DO11 mice were used as responders and stimulated on 25,000 APCs with 1 ␮g/ml OVA. The input of responder cells remained constant. KJ1- Mice ϩ ϩ ϩ ϩ ϩ Ϫ 26 CD4 CD25 and KJ1-26 CD4 CD25 T cells from double-Tg mice All experimental mice were used at 6–12 wk of age. All mice were age and were used as suppressors and, starting from equal numbers, were titrated in sex matched Ϯ2 wk. BALB/c mice were purchased from Charles River 1/4 dilutions. [3H]Thymidine (1 ␮Ci/well) was added during the last 16 h Laboratory. Tg mice expressing the DO11 TCR specific for the chicken of culture, and incorporation was measured by scintillation counting after OVA peptide (OVA323–339) in the context of the MHC class II molecule 72 h of culture. I-Ad were obtained from K. Murphy (Washington University, St. Louis, MO). RNA purification and amplification sOVA Tg mice express a soluble form of OVA in the serum under KJ1-26ϩCD4ϩCD25Ϫ (anergic) and CD25ϩ (Treg) T cells from DO11 ϫ control of the metallothionein promoter I and were generated by cloning sOVA Tg and KJ1-26ϩCD4ϩCD25Ϫ cells from DO11 mice (naive) were the OVA cDNA into the metallothionein locus control region expression sorted from lymph nodes. Activated cells were recovered as cycled KJ1– vector 2999 (kindly provided by R. D. Palmiter (University of Washington, 26ϩCD4ϩ cells from BALB/c mice that had been transferred with 5 ϫ 106 Seattle, WA) (19) and injecting the construct into blastocysts from FVB CFSE-labeled DO11 cells and immunized with 200 ␮g of OVA in IFA 4 mice. Founders were screened for OVA expression by Southern blotting days before sorting. Cells from up to four mice were pooled for each and ELISA (anti-OVA; Research Diagnostics), and one founder expressing ϳ individual sample per group.
Recommended publications
  • The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology
    Cell, Vol. 104, 487±501, February 23, 2001, Copyright 2001 by Cell Press The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology Richard M. Locksley,*²³k Nigel Killeen,²k The receptors and ligands in this superfamily have and Michael J. Lenardo§k unique structural attributes that couple them directly to *Department of Medicine signaling pathways for cell proliferation, survival, and ² Department of Microbiology and Immunology differentiation. Thus, they have assumed prominent ³ Howard Hughes Medical Institute roles in the generation of tissues and transient microen- University of California, San Francisco vironments. Most TNF/TNFR SFPs are expressed in the San Francisco, California 94143 immune system, where their rapid and potent signaling § Laboratory of Immunology capabilities are crucial in coordinating the proliferation National Institute of Allergy and Infectious Diseases and protective functions of pathogen-reactive cells. National Institutes of Health Here, we review the organization of the TNF/TNFR SF Bethesda, Maryland 20892 and how these proteins have been adapted for pro- cesses as seemingly disparate as host defense and or- ganogenesis. In interpreting this large and highly active Introduction area of research, we have focused on common themes that unite the actions of these genes in different tissues. Three decades ago, lymphotoxin (LT) and tumor necro- We also discuss the evolutionary success of this super- sis factor (TNF) were identified as products of lympho- familyÐsuccess that we infer from its expansion across cytes and macrophages that caused the lysis of certain the mammalian genome and from its many indispens- types of cells, especially tumor cells (Granger et al., able roles in mammalian biology.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity
    Neuropsychopharmacology (2016) 41, 2530–2540 © 2016 American College of Neuropsychopharmacology. All rights reserved 0893-133X/16 www.neuropsychopharmacology.org Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity Marion Schwaiger1, Marianna Grinberg2, Dirk Moser1, Johannes CS Zang1, Markus Heinrichs3,4, Jan G Hengstler5, Jörg Rahnenführer2, Steve Cole6 and Robert Kumsta*,1 1 2 Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany; Department of Statistics, TU Dortmund University, Dortmund, Germany; 3Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany; 4Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany; 5Leibniz Research Centre for 6 Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany; David Geffen School of Medicine, University of California, Los Angeles, CA, USA Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA = expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n 30) with a history of early childhood = adversity, and a control group (n 30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary- adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine–cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes In
    ORIGINAL ARTICLE Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes in African American Families From the American Diabetes Association GENNID (Genetics of NIDDM) Study Cohort Steven C. Elbein,1,2 Swapan K. Das,1,2 D. Michael Hallman,3 Craig L. Hanis,3 and Sandra J. Hasstedt4 OBJECTIVE—We used a single nucleotide polymorphism (SNP) map in a large cohort of 580 African American families to identify regions linked to type 2 diabetes, age of type 2 diabetes ype 2 diabetes is marked by a clear genetic diagnosis, and BMI. propensity, a high concordance in identical twins, tendencies for both diabetes and age of RESEARCH DESIGN AND METHODS—After removing outli- onset to be familial (1), and marked differences ers and problematic samples, we conducted linkage analysis T in prevalence among ethnic groups (2). Despite consider- using 5,914 SNPs in 1,344 individuals from 530 families. Linkage analysis was conducted using variance components for type 2 able evidence for a genetic predisposition, unraveling the diabetes, age of type 2 diabetes diagnosis, and BMI and nonpara- genetic etiology has been daunting, with few confirmed metric linkage analyses. Ordered subset analyses were con- genes identified from genome-wide linkage scans. Recent ducted ranking on age of type 2 diabetes diagnosis, BMI, waist successes with genome-wide association scans (3) have circumference, waist-to-hip ratio, and amount of European ad- greatly increased the number of confirmed genetic loci, mixture. Admixture mapping was conducted using 4,486 markers but these successes have been limited primarily to Cauca- not in linkage disequilibrium.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters
    pharmaceuticals Review Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters Teresa Iannaccone 1, Carmine Sellitto 1,2,* , Valentina Manzo 1,2 , Francesca Colucci 1, Valentina Giudice 1 , Berenice Stefanelli 1 , Antonio Iuliano 1, Giulio Corrivetti 3 and Amelia Filippelli 1,2 1 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; [email protected] (T.I.); [email protected] (V.M.); [email protected] (F.C.); [email protected] (V.G.); [email protected] (B.S.); [email protected] (A.I.); afi[email protected] (A.F.) 2 Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy 3 European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-089673848 Abstract: Pharmacogenomics can identify polymorphisms in genes involved in drug pharma- cokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient’s genotype, also in psychiatric and neurological settings. Citation: Iannaccone, T.; Sellitto, C.; However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagno- Manzo, V.; Colucci, F.; Giudice, V.; Stefanelli, B.; Iuliano, A.; Corrivetti, sis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, G.; Filippelli, A. Pharmacogenetics of because their benefit in clinical practice is still controversial. In this review, we summarize the current Carbamazepine and Valproate: Focus knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs.
    [Show full text]
  • Role and Regulation of Snon/Skil and PLSCR1 Located at 3Q26.2
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 9-18-2014 Role and Regulation of SnoN/SkiL and PLSCR1 Located at 3q26.2 and 3q23, Respectively, in Ovarian Cancer Pathophysiology Madhav Karthik Kodigepalli University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Cell Biology Commons, Microbiology Commons, and the Molecular Biology Commons Scholar Commons Citation Kodigepalli, Madhav Karthik, "Role and Regulation of SnoN/SkiL and PLSCR1 Located at 3q26.2 and 3q23, Respectively, in Ovarian Cancer Pathophysiology" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5426 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role and Regulation of SnoN/SkiL and PLSCR1 Located at 3q26.2 and 3q23, Respectively, in Ovarian Cancer Pathophysiology by Madhav Karthik Kodigepalli A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Meera Nanjundan, Ph.D. Richard Pollenz, Ph.D. Patrick Bradshaw, Ph.D. Sandy Westerheide, Ph.D. Date of Approval: September 18, 2014 Keywords: Chemotherapeutics, phospholipid scramblase, toll-like receptor, interferon, dsDNA Copyright © 2014, Madhav Karthik Kodigepalli Dedication I dedicate this research at the lotus feet of Bhagwan Sri Sathya Sai Baba and all the Masters for I am what I am due to their divine grace.
    [Show full text]
  • Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
    Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC).
    [Show full text]
  • Genetically Lowered Microsomal Epoxide Hydrolase Activity And
    Author Manuscript Published OnlineFirst on June 8, 2011; DOI: 10.1158/1055-9965.EPI-10-1165 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals Julie Lee1,2, Morten Dahl1,2, Børge G. Nordestgaard1,2,3 1Department of Clinical Biochemistry and 2The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, 3The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, 1-3Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. Running title: EPHX1 and increased risk of tobacco-related cancer Keywords: Carcinogen-detoxifying enzymes; polymorphisms in carcinogen metabolism and cancer risk; polymorphisms in genes related to androgen and estrogen metabolism in cancer risk; microsomal epoxide hydrolase; EPHX1. 1 Word count Text only: 3330 (max 5000) Abstract: 250 (max 250) References: 38 (max 50) Figures and tables: 3 + 2 (max. 6) Supplementary figures and tables: 1 + 2 Financial support: The following sources supported this work by one grant each: The Danish Lung Foundation; The Danish Heart Association; The Capital Region of Denmark Research Foundation; Chief Physician Johan Boserup and Lise Boserup’s Fund; The Augustinus Foundation; Herlev Hospital, Copenhagen University Hospital; and The European Respiratory Society. Corresponding author: Børge G. Nordestgaard, MD, DMSc., Chief Physician, Professor. Department of Clinical Biochemistry 54M1, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark, Phone: +45 4488 3297. Fax: +45 4488 3311, Email: [email protected] Conflict of interest: All authors declare no conflict of interest. 1 Downloaded from cebp.aacrjournals.org on September 29, 2021.
    [Show full text]