<<

IMPROVING OUR UNDERSTANDING OF

SRC VARIABLE

by

Kathleen Elizabeth Moncrieff

A thesis submitted to the faculty of

Saint Mary's University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Astronomy

April 2011, Halifax, Nova Scotia

Copyright © 2011 Kathleen Elizabeth Moncrieff

Approved: Dr. David G. Turner, Chair

Approved: Dr. C. Ian Short, Committee Member

Approved: Dr. Eric G. Hintz, External Examiner

Date: April 20, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition

395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada

Your file Votre reference ISBN: 978-0-494-79650-4 Our file Notre reference ISBN: 978-0-494-79650-4

NOTICE: AVIS:

The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats.

The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission.

In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these.

While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis.

••I Canada ABSTRACT

IMPROVING OUR UNDERSTANDING OF

SRC VARIABLE STARS

Kathleen Elizabeth Moncrieff

Department of Astronomy and Physics

Doctor of Philosophy in Astronomy

April 2011

SRC variables are evolved stars (mostly M supergiants) that vary in brightness with semi-regular periods ranging from several months to several . Their light variation is caused by a combination of pulsation, convection, and other processes such as dust ejections. Much data exist for the stars, but they have been under-utilized. We studied 49 individual SRC variables using archival and newly-obtained data. We present new results including cyclic variation in , spectral type, and class, period analysis, and changes in period and mean magnitude for individual stars. We have re-examined the period-luminosity and period-radius rela­ tions, and discovered a new relationship among spectral type, luminosity class, and light amplitude. To aid in future studies of the stars, we have subdivided them into three categories based on the quality of available data and the likelihood that they are periodic rather than simply varying irregularly. ii ACKNOWLEDGMENTS

I would like to thank my supervisor, David Turner, and the various people who have been on my committee throughout the process, Ian Short, Eric Hintz, Marcin Sawicki, and Phil Bennett, for their support and guidance. I am also grateful for the support of the other SMU students I have worked beside over the last four years, including (in no particular order) Andy Marquis, Liz Arcila, Jayme Derrah, Dan Majaess, Jon Ramsey, James Wurster, Mike Casey, Dave Williamson, Chris Geroux, Larkin Duelge, Catherine Lovekin, Bobby Sorba, Nick MacDonald, Jon Savoy, Anneya Golob, Michael Gruberbauer, Diego Castaneda, and Jason Sharpe. I would also like to thank Dave Lane, Elfrie , Florence Woolaver, Jenna Hurry, David Guenther, and the other members of the Astronomy and Physics department for their support. We would like to thank Bob Wing and Roger Griffin for providing us with their data. We thank the Dominion Astrophysical Observatory for the use of the 1.8-m telescope. We also thank Dave Balaam at the DAO for digitizing the photographic spectrum. We also acknowledge with thanks the variable observations from the AAVSO International Database contributed by observers worldwide and used in this research. We thank the Harvard College Observatory and David Dunlap Observatory for the use of their photographic plate archives. Finally, I would like to thank my family members and friends who are like family members for their continued support. Thank you to Marjorie Moncrieff, David Moncrieff, Kelly Moncrieff, James Moncrieff, Benjamin Moncrieff, Tabitha Buehler, David Buehler, Matt Lund, Liberty Evanko, and Marie Burgess. Without you, this would not have happened.

iii Contents

Acknowledgments iii

1 Introduction 1 1.1 Cool Luminous Variable Stars 1 1.2 Motivation 3 1.3 Previous Work 4 1.3.1 The Work of Alfred Joy 4 1.3.2 The Work of Stothers 5 1.3.3 The Work of White and Wing 5 1.3.4 The Work of Roberta Humphreys 5 1.3.5 The Work of David Gray 6 1.3.6 The Work of Levesque and Massey 6 1.3.7 The Work of Turner and Rohanizadegan 7 1.3.8 Questions Left Unanswered by Previous Work 7 1.4 Photometry 7 1.5 Spectroscopy 9 1.6 Radial Velocities 11 1.7 Causes of Variability 12

2 Observations and Data Reduction 14 2.1 AAVSO Observations 14 2.2 Data from the Harvard College Observatory Photographic Plate Col­ lection 15 iv 2.3 Radial Velocity Measurements from Roger Griffin 15 2.4 Radial Velocity and Spectral Type Measurements from Joy 15 2.5 Spectrophotometric Measurements from Bob Wing 15 2.6 Photographic Spectra from the David Dunlap Observatory 16 2.7 Photographic Spectra from the Dominion Astrophysical Observatory . 16 2.8 CCD Spectra from the Dominion Astrophysical Observatory 17 2.9 Data Reduction for CCD Spectra 17 2.9.1 Continuum Calibration 18

3 Data Analysis 20 3.1 Period Determination 20 3.2 Spectral Classification 27 3.3 The Scale 32 3.4 Radial Velocity Measurement 32

4 Results for Individual Stars 35 4.1 Explanation of Table Columns for Individual Stars 40 4.2 SS Andromedae 42 4.3 V Arietis 46 4.4 UX Aurigae 47 4.5 V394 Aurigae 50 4.6 RS Cancri 52 4.7 UZ Canis Majoris 56 4.8 BZ Carinae 58 4.9 CK Carinae 61 4.10 CL Carinae 63 4.11 EV Carinae 65 4.12 IX Carinae 67 4.13 PZ Casseopeiae 69 4.14 73 v 4.15 SW Cephei 77 4.16 VV Cephei 80 4.17 MY Cephei 85 4.18 fi Cephei 86 4.19 T Ceti 91 4.20 RW Cygni 95 4.21 AZ Cygni 99 4.22 BC Cygni 103 4.23 V Eridani 107 4.24 TV Geminorum 109 4.25 IS Geminorum 113 4.26 V959 Herculis 115 4.27 a Herculis 117 4.28 RV Hydrae 121 4.29 W Indus ' 123 4.30 U Lacertae 125 4.31 Y Lyncis 128 4.32 S2 Lyrae 132 4.33 a Orionis 134 4.34 141 4.35 T Persei 145 4.36 W Persei 149 4.37 RS Persei 153 4.38 SU Persei 157 4.39 XX Persei 161 4.40 AD Persei 165 4.41 BU Persei 169 4.42 FZ Persei 173 4.43 V411 Persei 177 vi 4.44 VX Sagittarii 180 4.45 KW Sagittarii 182 4.46 AH Scorpii 185 4.47 CE Tauri 187 4.48 W Trianguli 191 4.49 CM Velorum 195 4.50 FG Vulpeculae 197 4.51 Summary of Results 199

5 Group-Wide Trends 204 5.1 Insights From the Radial Velocity Curves 204 5.2 Spectral Type-Amplitude Relation 206 5.3 Period-Luminosity and Period-Radius Relations 210 5.3.1 Other Period-Luminosity Relations of Note 214 5.4 Size Changes 216

5.5 Remarks 220

6 Conclusions and Future Directions 221

References 223

A Spectra 228

B Light Curves 258

C Periodograms 378

D Observing Logs 403

D.l DAO CCD Spectra 403 D.l.l 2005 403 D.l.2 2006 405 D.1.3 2007 406 vii D.1.4 2008 407 D.1.5 2009 408 D.1.6 2010 409 D.2 Scanned DAO Photographic Spectra 410

vm List of Tables

2.1 White and Wing Filters 16 3.1 Especially useful lines for classification 29 3.2 Approximate luminosity classification ratios 30 3.3 Keenan's classification criteria for M stars 31 3.4 Effective temperature scale for M supergiants, taken from Levesque & Massey (2005) 33 4.1 Summary of Information for Individual Stars 37 4.2 Summary of Information for Individual Stars (continued) 38 4.3 Summary of Information for Individual Stars (continued) 39 4.4 AAVSO Observations of SS Andromedae 43 4.5 Spectroscopic observations of SS Andromedae 43 4.6 AAVSO Observations of FArietis 46 4.7 AAVSO Observations of UX Aurigae 48 4.8 Spectroscopic observations of UX Aurigae 48 4.9 Spectroscopic observations of V394 Aurigae 50 4.10 AAVSO Observations of V394 Aurigae 50 4.11 AAVSO Observations of RS Cancri 52 4.12 Spectroscopic observations of RS Cancri 53 4.13 AAVSO Observations of UZ Canis Majoris 56 4.14 AAVSO Observations of BZ Carinae 58 4.15 Spectroscopic observations of BZ Carinae 59 4.16 AAVSO Observations of CK Carinae 61 4.17 AAVSO Observations of CL Carinae 63 ix 4.18 AAVSO Observations of EV Carinae 65 4.19 AAVSO Observations of IX Carinae 67 4.20 AAVSO Observations of PZ Casseopeiae 69 4.21 Spectroscopic observations of PZ Casseopeia 70 4.22 AAVSO Observations of W Cephei 73 4.23 Spectroscopic observations of W Cephei 74 4.24 AAVSO Observations of SW Cephei 77 4.25 Spectroscopic observations of SW Cephei 78 4.26 AAVSO Observations of VV Cephei 81 4.27 Spectroscopic observations of VV Cephei 81 4.28 Spectroscopic observations of MY Cephei 85 4.29 AAVSO Observations of \i Cephei 87 4.30 Spectroscopic observations of /i Cephei 88 4.31 AAVSO Observations of T Ceti 91 4.32 Spectroscopic observations of T Ceti 92 4.33 AAVSO Observations of RW Cygni 95 4.34 Spectroscopic observations of RW Cygni 96 4.35 AAVSO Observations of AZ Cygni 99 4.36 Spectroscopic observations of AZ Cygni 100 4.37 AAVSO Observations of BC Cygni 103 4.38 Spectroscopic observations of BC Cygni 104 4.39 AAVSO Observations of KEridani 107 4.40 AAVSO Observations of TV Geminorum 109 4.41 Spectroscopic observations of TV Geminorum 110 4.42 AAVSO Observations of IS Geminorum 113 4.43 AAVSO Observations of V959 Herculis 115 4.44 Spectroscopic observations of V959 Herculis 115 4.45 AAVSO Observations of a Herculis 117 4.46 Spectroscopic observations of a Herculis 118 x 4.47 AAVSO Observations of RV Hydrae 121 4.48 AAVSO Observations of W Indus 123 4.49 AAVSO Observations of U Lacertae 126 4.50 Spectroscopic observations of U Lacertae 126 4.51 AAVSO Observations of Y Lyncis 128 4.52 Spectroscopic observations of Y Lyncis 129 4.53 AAVSO Observations of S2 Lyrae 132 4.54 Spectroscopic observations of S2 Lyrae 132 4.55 Spectroscopic observations of a Orionis 135 4.56 Spectroscopic observations of a Orionis (continued) 136 4.57 AAVSO Observations of a Orionis 136 4.58 Angular Diameter of a Orionis 137 4.59 AAVSO Observations of S Persei 142 4.60 Spectroscopic observations of S Persei 142 4.61 AAVSO Observations of T Persei 146 4.62 Spectroscopic observations of T Persei 146 4.63 AAVSO Observations of W Persei 149 4.64 Spectroscopic observations of W Persei 150 4.65 AAVSO Observations of RS Persei 154 4.66 Spectroscopic observations of RS Persei 154 4.67 AAVSO Observations of SU Persei 158 4.68 Spectroscopic observations of SU Persei 158 4.69 AAVSO Observations of XX Persei 162 4.70 Spectroscopic observations of XX Persei 162 4.71 AAVSO Observations of AD Persei 166 4.72 Spectroscopic observations of AD Persei 166 4.73 AAVSO Observations of BU Persei 170 4.74 Spectroscopic observations of BU Persei 170 4.75 AAVSO Observations of FZ Persei 174 xi 4.76 Spectroscopic observations of FZ Persei 174 4.77 AAVSO Observations of V411 Persei 177 4.78 Spectroscopic observations of V411 Persei 178 4.79 AAVSO Observations of VX Sagittarii 180 4.80 AAVSO Observations of KW Sagittarii 182 4.81 Spectroscopic observations of KW Sagitarii 182 4.82 AAVSO Observations of AH Scorpii 185 4.83 AAVSO Observations of CE Tauri 187 4.84 Spectroscopic observations of CE Tauri 188 4.85 Spectroscopic observations of W Trianguli 191 4.86 AAVSO Observations of W Trianguli 192 4.87 AAVSO Observations of CM Velorum 195 4.88 AAVSO Observations of FG Vulpeculae 197 4.89 Spectroscopic observations of FG Vulpeculae 197 4.90 Summary of Results 199 4.91 Summary of Results (continued) 200 4.92 Summary of Results (continued) 201 4.93 Summary of Results (continued) 202 4.94 Summary of Results (continued) 203 5.1 Stars that reach smallest dimensions near light maximum (Phase 0.75- 0.99 and 0.00-0.25) 205 5.2 Stars that reach smallest dimensions near light minimum (Phase 0.25- 0.75) 205 5.3 Stars used in spectral type-amplitude relation 209 5.4 Stars used in period-luminosity and period-radius relations 213 5.5 Bolometric corrections from Levesque & Massey (2005) 213 5.6 Size Changes 219 D.l 2005 Observing Log 404 D.2 2006 Observing Log 405 xii D.3 2007 Observing Log 406 D.4 2008 Observing Log 407 D.5 2009 Observing Log 408 D.6 2010 Observing Log 409 D.7 Scanned DAO Photographic Spectra 410

xm List of Figures

1.1 S Persei 3 2.1 Continuum Calibration 19 3.1 Peranso observations window 21 3.2 Peranso period determination using CLEANest routine 22 3.3 Peranso period determination using ANOVA routine 23 3.4 Spectral Window for S Persei 24 3.5 Peranso prominent periods window example 25 3.6 Peranso CLEANest workbench example 26 3.7 Peranso time of maximum light-finding example 26 3.8 4953A spectral type indicator 28 3.9 4389A luminosity class indicator 29 3.10 Using RVIDLINES 34 4.1 SS And spectra 44 4.2 SS And period and magnitude changes 45 4.3 UX Aur spectra 49 4.4 V394 spectra 51 4.5 RS Cnc spectra 54 4.6 RS Cnc period and magnitude changes 55 4.7 UZ CMa period and magnitude changes 57 4.8 BZ Car spectra 59 4.9 BZ Car period and magnitude changes 60 4.10 CK Car period and magnitude changes 62 4.11 CL Car period and magnitude changes 64 xiv 4.12 EV Car period and magnitude changes 66 4.13 IX Car period and magnitude changes 68 4.14 PZ Cas spectra 71 4.15 PZ Cas period and magnitude changes 72 4.16 W Cep spectra 75 4.17 W Cep period and magnitude changes 76 4.18 SW Cep spectra 79 4.19 VV Cep spectra 82 4.20 VV Cep period and magnitude changes 83

4.21 VV Cep VR residuals 84 4.22 MY Cep spectrum 85 4.23 fi spectra 89 4.24 /j, Cep period and magnitude changes 90 4.25 /J, spectra 93 4.26 T Cet period and magnitude changes 94 4.27 RW Cyg spectra 97 4.28 RW Cyg period and magnitude changes 98 4.29 AC Cyg spectra 101 4.30 AZ Cyg period and magnitude changes 102 4.31 BC Cyg spectra 105 4.32 BC Cyg period and magnitude changes 106 4.33 V Eri period and magnitude changes 108 4.34 TV Gem spectra Ill 4.35 TV Gem period and magnitude changes 112 4.36 IS Gem period and magnitude changes 114 4.37 V959 Her spectra 116 4.38 a Her spectra 119 4.39 a Her period and magnitude changes 120 4.40 RV Hya period and magnitude changes 122 xv 4.41 W Ind period and magnitude changes 124 4.42 U Lac spectra 127 4.43 Y Lyn spectra 130 4.44 Y Lyn period and magnitude changes 131 4.45 S2 Lyr period and magnitude changes 133 4.46 a Ori spectra 138 4.47 a Ori angular diameter 139 4.48 a Ori period and magnitude changes 140 4.49 S Per spectra 143 4.50 S Per period and magnitude changes 144 4.51 T Per spectra 147 4.52 T Per period and magnitude changes 148 4.53 W Per spectra 151 4.54 W Per period and magnitude changes 152 4.55 RS Per spectra 155 4.56 RS Per period and magnitude changes 156 4.57 SU Per spectra 159 4.58 SU Per period and magnitude changes 160 4.59 XX Per spectra 163 4.60 XX Per period and magnitude changes 164 4.61 AD Per spectra 167 4.62 AD Persei period and magnitude changes 168 4.63 BU Per spectra 171 4.64 BU Per period and magnitude changes 172 4.65 FZ Per spectra 175 4.66 FZ Per period and magnitude changes 176 4.67 V411 Per spectra 179 4.68 VX Sgr period and magnitude changes 181 4.69 KW Sgr spectra 183 xvi 4.70 KW Sgr period and magnitude changes 184 4.71 AH Sco period and magnitude changes 186 4.72 CE Tau spectra 189 4.73 CE Tau period and magnitude changes 190 4.74 W Tri spectra 193 4.75 W Tri period and magnitude changes 194 4.76 CM Vel period and magnitude changes 196 4.77 FGVul spectra 198 5.1 Spectral type-amplitude relation 208 5.2 AV vs T for varying AT values 208 5.3 Period-luminosity relation 212 5.4 Period-radius relation 212 A.l SS Andromedae Spectra 228 A.2 UX Aurigae Spectra 229 A.3 RS Cancri Spectra 230 A.4 PZ Casseopeiae Spectra 231 A.5 W Cephei Spectra 232 A.6 SW Cephei Spectra 233 A.7 VV Cephei Spectra 234 A.8 MY Cephei Spectra 235 A.9 \i Cephei Spectra 236 A.10 RW Cygni Spectra 237 A.ll AZ Cygni Spectra 238 A.12 BC Cygni Spectra 239 A.13 TV Geminorum Spectra 240 A.14 a Herculis Spectra 241 A.15 U Lacertae Spectra 242 A.16 Y Lyncis Spectra 243 A.17 a Orionis Spectra 244 xvii A.18 S Persei Spectra 245 A.19 T Persei Spectra 246 A.20 W Persei Spectra 247 A.21 RS Persei Spectra 248 A.22 SU Persei Spectra 249 A.23 XX Persei Spectra 250 A.24 AD Persei Spectra 251 A.25 BU Persei Spectra 252 A.26 FZ Persei Spectra 253 A.27 V411 Persei Spectra 254 A.28 CE Tauri Spectra 255 A.29 W Triangulum Spectra 256 A.30 FG Vulpeculae Spectra 257 B.l SS And light curve 258 B.2 SS And light curve expanded view 259 B.3 V Ari light curve 260 B.4 V Ari light curve - expanded view 261 B.5 UX Aur light curve 262 B.6 UX Aur light curve - expanded view 263 B.7 V394 Aur light curve 264 B.8 RS Cnc light curve 265 B.9 RS Cnc light curve - expanded view 266 B.10 UZ CMa light curve 267 B.ll UZ CMa light curve - expanded view 268 B.12 BZ Car light curve 269 B.13 BZ Car light curve - expanded view 270 B.14 CK Car light curve 271 B.15 CK Car light curve - expanded view 272 B.16 CL Car light curve 273 xviii B.17 CL Car light curve - expanded view 274 B.18 CL Car photographic light curve 275 B.19 CL Car photographic light curve - expanded view 276 B.20 EV Car light curve 277 B.21 EV Car light curve - expanded view 278 B.22 IX Car light curve 279 B.23 IX Car light curve - expanded view 280 B.24 IX Car photographic light curve 281 B.25 IX Car photographic light curve - expanded view 282 B.26 PZ Cas light curve 283 B.27 PZ Cas light curve - expanded view 284 B.28 W Cep light curve 285 B.29 W Cep light curve - expanded view 286 B.30 SW Cep light curve 287 B.31 SW Cep light curve - expanded view 288 B.32 VV Cep light curve 289 B.33 VV Cep light curve - expanded view 290 B.34 \i Cep light curve 291 B.35 fj, Cep light curve 292 B.36 \i Cep light curve - expanded view, continued 293 B.37 T Cet light curve 294 B.38 T Cet light curve - expanded view 295 B.39 RW Cyg light curve 296 B.40 RW Cyg light curve - expanded view 297 B.41 AZ Cyg light curve 298 B.42 AZ Cyg light curve - expanded view 299 B.43 BC Cyg light curve 300 B.44 BC Cyg light curve - expanded view 301 B.45 BC Cyg photographic light curve 302 xix B.46 BC Cyg photographic light curve - expanded view 303 B.47 V Eri light curve 304 B.48 V Eri light curve - expanded view 305 B.49 TV Gem light curve 306 B.50 TV Gem light curve - expanded view 307 B.51 IS Gem light curve 308 B.52 IS Gem light curve - expanded view 309 B.53 V959 Her light curve 310 B.54 a. Her light curve 311 B.55 a Her light curve - expanded view 312 B.56 RV Hya light curve 313 B.57 RV Hya light curve - expanded view 314 B.58 W Ind light curve 315 B.59 W Ind light curve - expanded view 316 B.60 U Lac light curve 317 B.61 U Lac light curve - expanded view 318 B.62 Y Lyn light curve 319 B.63 Y Lyn light curve - expanded view 320 B.64 S2 Lyr light curve 321 B.65 62 Lyr light curve - expanded view 322 B.66 a Ori light curve 323 B.67 a Ori light curve - expanded view 324 B.68 S Per light curve 325 B.69 S Per light curve - expanded 326 B.70 S Per expanded light curve continued 327 B.71 S Per photographic light curve 328 B.72 S Per photographic light curve - expanded view 329 B.73 T Per light curve 330 B.74 T Per light curve - expanded view 331 xx B.75 T Per photographic light curve 332 B.76 T Per photographic light curve - expanded view 333 B.77 W Per light curve 334 B.78 W Per light curve 335 B.79 W Per photographic light curve 336 B.80 W Per photographic light curve - expanded view 337 B.81 RS Per light curve 338 B.82 RS Per light curve - expanded view 339 B.83 RS Per photographic light curve 340 B.84 RS Per photographic light curve - expanded view 341 B.85 SU Per light curve 342 B.86 SU Per light curve - expanded view 343 B.87 SU Per photographic light curve 344 B.88 SU Per photographic light curve - expanded view 345 B.89 XX Per light curve 346 B.90 XX Per light curve - expanded view 347 B.91 XX Per photographic light curve 348 B.92 XX Per photographic light curve - expanded view 349 B.93 AD Persei light curve 350 B.94 AD Persei light curve - expanded view 351 B.95 AD Per photographic light curve 352 B.96 AD Per photographic light curve - expanded view 353 B.97 BU Per light curve 354 B.98 BU Per light curve - expanded view 355 B.99 BU Per photographic light curve 356 B.lOO BU Per photographic light curve - expanded viw 357 B.101 FZ Per light curve 358 B.102 FZ Per light curve - expanded view 359 B.103 FZ Per photographic light curve 360 xxi B.104 FZ Per photographic light curve - expanded view 361 B.105 V411 Per light curve 362 B.106 V411 Per photographic light curve 363 B.107 V411 Per photographic hght curve - expanded view 364 B.108 VX Sgr light curve 365 B.109 VX Sgr light curve - expanded view 366 B.110 KW Sgr light curve 367 B.lll KW Sgr light curve - expanded view 368 B.112 AH Sco light curve 369 B.113 AH Sco light curve - expanded view 370 B.114 CE Tau light curve 371 B.115 CE Tau light curve - expanded view 372 B.116 W Tri light curve 373 B.117 W Tri light curve - expanded view 374 B.118 CM Vel light curve 375 B.119 CM Vel light curve - expanded view 376 B.120 FG Vul light curve 377 C.l SS And and Vari periodograms 379 C.2 UX Aur and V394 Aur periodograms 380 C.3 RS Cnc and UZ CMa periodograms 381 C.4 BZ Car and CK Car periodograms 382 C.5 CL Car and EV Car periodograms 383 C.6 IX Car and PZ Cas periodograms 384 C.7 W Cep and SW Cep periodograms 385 C.8 VV Cep and /i Cep periodograms 386 C.9 T Cet and RW Cyg periodograms 387 CIO AZ Cyg and BC Cyg periodograms 388 C.ll V Eri and TV Gem periodograms 389 C.12 IS Gem and V959 Her periodograms 390 xxii C.13 a Her and RV Hya periodograms 391 C.14 W Ind and U Lac periodograms 392 C.15 Y Lyn and 52 Lyr periodograms 393 C.16 a Ori and S Per periodograms 394 C.17 T Per and W Per periodograms 395 C.18 RS Per SU Per periodograms 396 C.19 XX Per and AD Per periodograms 397 C.20 BU Per and FZ Per periodograms 398 C.21 V411 Per and VX Sgr periodograms 399 C.22 KW Sgr and AH Sco periodograms 400 C.23 CE Tau and W Tri periodograms 401 C.24 CM Vel and FG Vul periodograms 402

xxm Chapter 1

Introduction

1.1 Cool Luminous Variable Stars

Most luminous stars on the cool side of the H-R diagram are light variable. Those of largest light amplitude are the Mira variables, all M giants with periods of variability of typically several hundred days. They are moderately regular, although all cool variables exhibit random fluctuations in period from cycle to cycle that are evidence for some chaotic influences affecting the mechanism, probably regular pul­ sation, that dominates the light variations. Closely related to Miras are semi-regular variables types A and B (SRA's and SRB's). Both types are also late-type giants. SRAs exhibit persistent periodicity, but with smaller light amplitude than Miras (AV less than 2m.5), while SRBs exhibit either poorly-defined periodicity or alternating intervals of periodic and slow irregular changes. As a group, the stars represent a mixture of population types ranging from old disk stars of nearly solar to thick disk and near-halo stars of low

metallicity. Their masses must lie close to that of the , around 1-2 M0, with surface temperatures typical of M giants, 3000-4000 K. Somewhat related are type D semi-regular variables (SRD), which comprise a mixed group of giant and supergiant variables of spectral types F, G, and K, rather than M. They are not well understood given that they comprise a mix of types in terms of their variability. A subgroup, the UU Herculis stars, display cepheid-like variability (Fernie 1986). The type C semi-regulars (SRC) are uniquely different from Miras, SRAs,

SRBs, and SRDs in comprising a group of 15-20 M0 red supergiants of spectral type M, all of young disk, Population I metallicity with ages of less than 10 million years. They have masses on the order of 15-25 M0 (Stothers & Leung 1971), effective 1 temperatures below 4,000 K (van Dyck et al. 1988; Levesque & Massey 2005), and radii of at least several hundred R0 (van Dyck et al. 1988). Many are surrounded by large circumstellar dust shells created mainly by their ongoing mass loss (Humphreys & Lockwood 1972; Stencel et al. 1988). They represent stars that were O-type main sequence objects during their hydrogen burning stage, but are now in the early or final stages of helium burning (or carbon burning, etc.), about to end their lives as core-collapse supernovae (Smartt 2009) on time scales that may be as short as a few decades to several hundred years, given the time steps evident in the last stages of evolution of 20 MQ stars (Weaver et al. 1978). The nature of their variability may therefore provide clues to the time remaining prior to their eventual demise. Like Miras, SRAs, and SRBs, the SRC variables also appear to display random fluctuations in period (Turner et al. 2006). Establishment of reliable long-term trends in the stars therefore requires observations over many decades, or even centuries. Their periods of variability are also somewhat larger than Miras, SRAs, and SRBs. Most have periods of one or two years or even longer, although a handful of the stars appear to display periods of only a few months. Closely related to the semi-regular variables (class SR) are stars that display much less well-organized variability, typically at low light amplitudes lm.0. Such objects are designated as class L, the slow irregular variables, and split into two subclasses: LB, M giants similar to the SRB variables, and LC, M supergiants similar to the SRC variables. Despite many years of observation of such stars by AAVSO observers, it has not yet been possible to establish reliable values for their likely periods of variability (Percy & Terziev 2011). While some may display a degree of repeatable light variability like that of the SR stars, precise estimates of V or B brightness are needed to demonstrate that. Whether an M supergiant variable was assigned to the SRC class or the LC classes depended upon the nature of the original study. Therefore, some SRC variables of small amplitude may have been assigned to the class on the basis of an older study tied to a restricted interval of time where they displayed a rare degree of light curve 2 stability. Likewise, some LC variables may have been assigned to the class on the basis of simply a lack of sizable light variations or a lack of observational data. Some SRC variables may therefore be of the LC classification, while some LC variables may eventually prove to be low amplitude SRC's once more extensive series of observations become available.

Figure 1.1: S Persei, an SRC Variable. Combined image created by the author using images from the Digitized Sky Survey.

1.2 Motivation

SRC variables, like other M supergiants, are thought to be the precursors to most core-collapse supernovae. Their periods and change with time. Like other pulsating variables, they appear to exhibit a period-luminosity relation, which means they have a potential use as distance indicators both within our own and on the extragalactic scale. They have been identified in several nearby . As young Population I objects, they could also be used as tracers of spiral structure in our Galaxy (see, for example, Humphreys 1970).

3 One of the first, and one of very few, comprehensive studies of variation in M stars was made by Joy (1942). He compiled a collection of observations of spectral type and radial velocity of 118 irregular M-type variables. He found periods for some of the stars in his set, and for a subset of those he listed the phase at which the observations were made. He emphasized the importance of obtaining simultaneous light and radial velocity information in order to understand the relationship between the two variations. Although there have been many observations of Joy's M stars in the 68 years since his paper was published, there have been few attempts to study the group of SRC variables in depth. There is much we can learn about SRC variables and there are decades of underused observations of the stars. We have examined archival as well as newly-obtained observations to see what we can learn about how the stars behave as individual objects and as a group. Understanding how SRC variables evolve leads to a better understanding of the processes that occur in the late stages of . Having an organized collection of temporal spectroscopic and photometric information available for SRC variables will help future efforts to model and understand the behavior of the stars. The purpose of this thesis is to collect available observational data for the stars and to use them to study the properties of the class in greater detail than has been done previously.

1.3 Previous Work

1.3.1 The Work of Alfred Joy

As mentioned previously, Joy (1942) published a survey of spectroscopic and photometric observations of 118 "Less Regular M-Type Variable Stars". He observed that the general behavior of the stars resembles that of Mira, an M giant and one of the first known variable stars. He described their light curves as considerably irregular with periods that range from poorly-defined to fairly definite. He noted that the group is heterogeneous and likely contains several types of variable stars. One of

4 those types would later come to be known as the SRC variables. His survey includes a list of spectral types and brightness amplitudes with observation epochs that we use in a later chapter to examine how the stars have been changing temporally. We have made use of some of Joy's measurements in our study of the stars' cyclic variations in spectral type and radial velocity.

1.3.2 The Work of Stothers

Stothers (1969) showed that pulsation can account for the primary periods of variability in M supergiants. He calculated Q values for several M supergiants and showed that they agreed with those predicted by pulsation theory. He also noted that the cyclical variations in magnitude, spectral type, and radius, and the existence of a period-luminosity relation, suggest that the stars are pulsating.

1.3.3 The Work of White and Wing

White & Wing (1978) created a spectrophotometric classification system that used measurements in eight narrow-band filters to determine spectral types of M supergiants from photoelectric photometry. They recognized that it is difficult to classify M supergiants using conventional techniques as all M supergiants are variable and there are no reliable standard stars to use for comparison. Their system used eight narrow-band interference filters in the near- that measure TiO and CN band strengths. They observed 128 M supergiants, determined spectroscopic information on temperatures and luminosities for all of the stars, and listed spectral type and luminosity class ranges for several of the more variable stars. We have obtained some of their spectrophotometric measurements and used them in our study of the changes in the stars' spectral types.

1.3.4 The Work of Roberta Humphreys

Humphreys (Humphreys 1970; Humphreys & Lockwood 1972; Humphreys et al. 1972; Humphreys 1983; Humphreys & Ney 1984; Elias et al. 1985) did extensive 5 work on supergiant stars in the and nearby galaxies, including some SRC variables. She used M supergiants to calculate distances to some nearby galaxies. In addition to having observed the photometric and spectroscopic properties of individ­ ual stars in our own Galaxy, she compared the properties of Galactic M supergiants to the properties of M supergiants in other galaxies, finding that the average spectral types of the groups are earlier in galaxies with lower average . She com­ piled a catalog of bright stars in OB associations and clusters, and we have taken most of the distance moduli that we use to examine the SRC period-luminosity relation from her catalog.

1.3.5 The Work of David Gray

Gray (Gray 2000, 2001, 2005, 2008) studied one SRC variable, a Orionis, in detail, using spectroscopic data. He found evidence that convection contributes to the star's brightness variations. The star's surface appears to be dominated by as few as 2-10 giant convection cells with lifetimes comparable to the star's primary period of approximately 400 days. By extension we can infer that convection contributes to the brightness variations of other SRC variables. It is important to remember that the stars also have long secondary periods on the order of 10 times their primary periods, and convection obviously does not explain all of the variation. Pulsation must also play a role. Gray's work highlights the complexity of the stars' atmospheres and shows us that their behavior is the result of several different processes occurring simultaneously and interacting.

1.3.6 The Work of Levesque and Massey

Levesque & Massey (2005) studied the physical properties and effective tem­ perature scale of M supergiants in our Galaxy and in the Magellanic Clouds. They used MARCS models to determine spectral types and an effective temperature scale for the stars. They found that the stars were not as cool as had previously been

6 believed, and they refined the positions of the stars in the H-R diagram, bringing them closer to agreement with evolutionary tracks.

1.3.7 The Work of Turner and Rohanizadegan

Turner et al. (2006) present one of very few comprehensive studies of the brightness variations of a particular SRC variable, BC Cygni, over a long time scale. The study also illustrates the usefulness of archival data for learning about such stars. Our project performs some of the same analyses as that paper, but for more of the stars in the group.

1.3.8 Questions Left Unanswered by Previous Work

Much of the work done previously focuses on the spectroscopic and photomet­ ric properties of the stars, but very little of it addressed their variable nature. In the following chapters we examine the stars individually and as a group with the goal of improving our understanding of their variations. In chapter 4 we look at how the peri­ ods and average magnitudes have changed for individual stars and at cyclical changes in spectral type and radial velocity. In chapter 5 we examine properties of the group of stars using the chapter 4 results. We reinvestigate the period-luminosity relation and present a new relationship for the light amplitude as a function of spectral type and luminosity class.

1.4 Photometry

Ideally, the light variations of these stars would have been studied decades ago by means of precise photoelectric photometry. Unfortunately, dedicated observing runs of several years are needed for that purpose, something not possible at most observatories, and seasonal effects make color corrections for such cool, red stars unstable and difficult to establish reliably from one night to another.

7 Instead, all photometric studies of cool variable stars are made using pho­ tographic plates of specific star fields, or from collections of (mostly) visual, pho­ tographic, and photoelectric observations made by members of the American As­ sociation of Observers (AAVSO). This study makes use of AAVSO observations available via the AAVSO online database at http://www.aavso.org as well as estimates made from survey plates in the Harvard College Observatory Pho­ tographic Plate Collection. The Harvard plates were scanned for the fields of several SRC variables in several sessions by the author, Dr. David Turner, and recent Saint Mary's B.Sc. graduate Michael Hiland. In each case the measurements were made by estimating the brightness of the variable through a small magnification eyepiece from the size and density of the star image relative to a sequence of confirmed non-variable stars lying in close proximity. Such measurements are generally accurate to within ± 0.1 to ± 0.2 magnitude, possibly slightly larger at the faint limits where the accuracy of the known magnitudes for the reference stars is less certain. The natural sensitivity of the photographic plates in the Harvard collection corresponds roughly to that of the Jonson B filter, so the standard reference stars in each field were calibrated to B from available B V photometry for the stars in the literature or online surveys. The estimated accuracy of the individual photographic measures is therefore ± 0.1 to ± 0.2 in B. The AAVSO measures are less reliable. While the visual acuity of good ob­ servers in the AAVSO frequently reaches a precision of ± 0.1 to ± 0.2 in their visual V magnitude estimates, a variety of factors often degrade the quality of the collected data. Poor observers often estimate star brightness systematically different from their true values, either through inexperience, the deleterious influence of the Purkinje ef­ fect, or, more likely, from estimating the star's brightness in inappropriate fashion. The precision of the human eye as a light detector reaches optimum values when working near the limits of vision, so eye estimates of variable stars made within a magnitude or two of the detector limit generate the best results. Some observers make the mistake of making eye estimates of bright variables using large telescopes 8 with much fainter visual limits, and in such cases the magnitude estimates may be off by 0m.5 or more, a Orionis is a particular problem since it is so bright, and all refer­ ence stars lie well away from the star, making it difficult to compare the brightness of the variable and the reference star using closely adjacent portions of the observer's retina, where the sensitivity should be about the same. In the past, the AAVSO circumvented the problem of an intrinsic scatter of up to ± 0.5 in visual V estimates of brightness for cool variable stars by forming 10-day means, which display much smaller scatter. At present that practice has been discontinued, so the collections of eye estimates for variable stars often exhibit inordinate scatter, making it difficult to establish reliable times of light maximum or minimum. That must be kept in mind when deriving periods of variability for such stars.

1.5 Spectroscopy

Although most stars designated as Mira or semi-regular (SRA, SRB, SRC, and SRD) are believed to undergo radial pulsation, and such a possibility was demon­ strated for SRC variables by Stothers (1969), the mechanism of such pulsation has not yet been demonstrated definitively. Spectroscopic observations were available for a few bright SRC variables from the old prism photographic spectra in the collection of the David Dunlap Observatory. The spectra, at a dispersion of mostly 33 A/mm (in a few cases 66 A/mm) (at H7), were classified using a microscope by DGT by di­ rect superposition of the spectra, adjacent to one another on a glass plate. Normally stellar spectra are classified in such fashion through inter-comparison of the unknown spectrum with spectra for MK standards. That was not possible here, given that some of the stars (e.g. a Ori, fx Cep) were themselves designated as standards (M2 lab, etc.), and all such stars typically vary in temperature and luminosity during their cycles. The spectra were therefore inter-compared among themselves, and spectral

9 classifications were made on the basis of the criteria outlined by Keenan (see chap­ ter 3 for more detail on classification criteria and chapter 2 for a description of the data reduction process for the CCD spectra). As described by Keenan, the spectral subtypes for M supergiants (MO, Ml, M2, M3, etc.) can be established in fairly precise fashion from the visibility of the various molecular band heads of TiO in M supergiant spectra. See table 3.3. The precision of such temperature classification can sometimes be made to ±0.5 subtype (M3.5, M4.5, etc.) from good CCD spectra, which display the spectral flux variations extremely well. The precision of such temperature subtypes is lower with photographic spectra, but should be good to ±1 subtype. Luminosity ratios in stellar spectra are usually made from ratios of line strength for closely adjacent spectral lines affected in opposite fashion by differences in elec­ tron pressure, Pe, in stellar atmospheres, i.e. one line strengthens with decreasing Pe (lower gravity stars of higher luminosity) while the other weakens. Keenan provides a list of such possible pairs suitable for the identification of luminosity class in M supergiants, but some are more suitable than others for that purpose. We have used two specific features here for classification: the blend of Y II and Fe I at A4376 relative to Fe I at A4383, and the blend of V I and Fe I at A4389 relative to Fe I at 4383. See table 3.2. These line ratios appear to be valid over a range of effective temperatures, given that they apply in about the same fashion for both M2 and M4 stars (Keenan & McNeil 1976). Classifications for the DDO plates were made using such techniques, and in­ cluded are types for a few grating photographic spectra for southern hemisphere stars in the collection of R.F. Garrison. They are designated as "Garrison Collection" in this thesis. The same techniques were also used for grating spectra in the collec­ tion of the Dominion Astrophysical Observatory (DAO). A detailed observing log with technical specifications can be found in Appendix D. As noted, the temperature classifications provided here should be good to ±1 subtype (±0.5 subtype for the CCD spectra) and to ±1 subclass for the luminosity designations. Types such as 10 Ia-Iab designate an inherent uncertainty between luminosity classes la and lab in the designations tied to the line ratios. Spectral classifications from Wing are tied to spectrophotometry of the stars made using a system of narrow band filters centered at wavelengths corresponding to band heads of TiO in the near-IR, making them sensitive to spectral type (to ±0.1 subtype) and to luminosity class (to ±1 subclass).

1.6 Radial Velocities

Radial velocities were measured from all spectra by the same method, namely by measuring the wavelength shifts of individual line centers from their listed central wavelengths from the NIST database at

http://physics.nist.gov/PhysRefData/ASD/lines_form.html

We found that while the precision of such estimates is reasonably small, the accuracy of the measurements displays an alarming tendency for systematic effects tied to continuum placement for the CCD spectra. Spectral lines superposed on deep TiO bands, for instance, tend to display systematic effects in the velocities that are difficult to explain. But although the velocities for a given star may be systematically too positive or too negative as a result of systematic errors, the trend seen in the velocities is assumed to be real. Poor continuum placement is the reason why the IRAF package FXCOR (which involves correlating the object spectrum with a template spectrum) generates erroneous radial velocities when it is used for cool M supergiants. As a result of such problems, we were alert to the possibility of systematic effects in the radial velocities for some stars (e.g. spectral types cooler than about M2 or M3). That is noticeable, for example, in our velocities for VV Cep and SU Persei. Also available for two stars (a Ori and VV Cep) were radial velocities obtained by Roger Griffin using his radial velocity spectrometer at Cambridge University. Such

11 measures are typically good to ±0.5 km/s, but require a small offset (~1 km/s) to put them on the IAU system (see, for example, Griffin & Filiz Ak 2010).

1.7 Causes of Variability

There are three main mechanisms that are likely causes of the light variability seen in SRC variables: pulsation, convection, and dust ejections. Dust ejections are random short-term events that manifest themselves as brief, irregular decreases in mean brightness. They might look similar to eclipses in a light curve, but they do not occur at regular intervals and would not produce an obvious signal in a periodogram produced using Fourier analysis. The best way to find evidence of dust ejections is to simply examine the light curves and look for such events. Convection can best be observed by studying the shapes of spectral line bi­ sectors in unblended lines in high resolution spectra. Convective motion in stars' produces asymmetric bisector shapes because of the velocity gradient produced. The different parts of a spectral line are produced at different depths in the atmosphere, and if the velocity is changing because of convection, the line bisec­ tor will be asymmetric. Bisector shapes change as convective cells move across the star. Since dispersions on the order of mA/pixel are needed to study line bisectors, observations of convection in the stars is beyond the scope of this project. See Gray (2008) for an example of such a study in a Orionis. Stellar pulsation is caused by variable opacity in a layer of partially-ionized gas. In Cepheid-like stars, the instability occurs in a helium ionization zone, but in long-period stars, the instability is thought to occur in the hydrogen ionization zone (Christy 1962). When the star is at its smallest dimensions, the layer in question is at its highest ionization and opacity, and thus it is able to absorb energy and expand. This in turn lowers the opacity and ionization, and the star loses energy and contracts, and the pulsation continues. Cyclic variations in observable quantities such as brightness, temperature, and radial velocity are evidence of pulsation, and are the main focus of this study. We present evidence of cyclic changes in such quantities for 12 individual stars in chapter 4. Adherence to a period-luminosity relation by a group of stars is also evidence of pulsation, and we present a period-luminosity relation for SRC variables in chapter 5.

13 Chapter 2

Observations and Data Reduction

As this is an archival study, our observations come from a variety of sources, which we describe here, along with our data reduction procedures. Data analysis procedures are explained in the next chapter, and background information, including discussion of the uncertainties in various data sources, is given in the previous chapter.

2.1 AAVSO Observations

The American Association of Variable Star Observers (AAVSO) maintains an online database of visual and other magnitude measurements of variable stars made by amateur astronomers all over the world. We obtained visual magnitude estimates from the AAVSO for each star in the SRC list for which the AAVSO had data avail­ able. The data cover an interval of several decades. The reported data undergo a validation process described online at http://www.aavso.org/data/validation.shtml to insure quality control. The AAVSO collection is invaluable for an archival study of long-period variable stars, as it is the largest database of variable star observa­ tions and essentially the only source of data that covers a long enough baseline for a large enough number of the stars to undertake such a study. The Johnson V filter was designed to have the same peak wavelength as the human eye for normal (not dark-adapted) viewing, so visual magnitude estimates are analogous to Johnson V magnitudes (Turner & Forbes 1982). We obtained AAVSO magnitudes for 48 stars, the details of which are found in Chapter 4.

14 2.2 Data from the Harvard College Observatory Photographic Plate Col­ lection

The Harvard College Observatory Photographic Plate Collection contains plates dating from the 1890s to the mid 1990s. We obtained magnitude estimates from the Harvard plates for the 10 SRC variables in . We have approximately 150-300 observations for each star. Observations from the photographic plates are approxi­ mately equivalent to Johnson B band observations, as the plates are sensitive to the blue part of the spectrum and the magnitudes for the standard stars used for com­ parison were Johnson B magnitudes. Details can be found in the stars' individual sections in chapter 4.

2.3 Radial Velocity Measurements from Roger Griffin

We acquired 30 radial velocity measurements for a Orionis and approximately 280 radial velocity residuals (with the orbital solution removed) from Roger Griffin, obtained using his radial velocity spectrometer on the Cambridge 36-inch telescope. The measurements were taken between 2007 and 2010 and are included in our analysis of the star's radial velocity variation.

2.4 Radial Velocity and Spectral Type Measurements from Joy

Joy (1942) contains spectral type (not luminosity class) and radial velocity values for a number of M supergiant variables. We used Joy's observations as part of our analysis for the following stars: SS Andromedae, UX Aurigae, RS Cancri, T Ceti, BC Cygni, TV Geminorum, RS Persei, SU Persei, AD Persei, and W Triangulum.

2.5 Spectrophotometry Measurements from Bob Wing

We obtained spectrophotometric measurements from Bob Wing made for the paper discussed in section 1.3.3 for several stars for which White and Wing obtained multiple observations at different epochs. We include these in our analysis of the

15 cyclical changes in the stars' spectral types. White and Wing fit photometric obser­ vations made with eight reddening-free narrow-band filters (shown in table 2.1) to a blackbody curve to determine a spectral type. They obtained luminosity class values from a CN index calculated using filters 4 and 8. In Chapter 5, White and Wing's spectrophotometric measurements are plotted using a different color than the other spectral type values so that they can be easily identified.

Table 2.1: White and Wing Filters

Filter Ac AA Feature measured 1 7120 60 TiO band 2 7540 50 continuum 3 7810 40 TiO band 4 8120 50 CN band 5 10395 50 continuum 6 10540 60 VO 7 10810 60 continuum 8 10975 70 CN band

2.6 Photographic Spectra from the David Dunlap Observatory

David Turner traveled to the DDO in May 2008 and obtained spectral types for several of the stars in our list from photographic plates in the DDO collection. We include these measurements in our analysis of the changes in the stars' spectral types. Spectral classification was determined using the criteria described in section 3.2.

2.7 Photographic Spectra from the Dominion Astrophysical Observatory

We also obtained scans of high resolution photographic spectra from the DAO collection for a few of the brighter stars taken in the time period from the 1960s to the 1980s. Dave Balaam at the DAO scanned the plates and provided us with the

16 normalized, wavelength-calibrated 1-D spectra. Again, spectral classification was de­ termined using the criteria described in section 3.2. Technical details and an observing log can be found in Appendix A.

2.8 CCD Spectra from the Dominion Astrophysical Observatory

We obtained CCD spectra for several of the stars each from 2005-2010 at the Dominion Astrophysical observatory. These spectra cover the blue end of the visual wavelength range. The 2005 spectra have a dispersion of 120 A mm-1 and cover the wavelength range of 3500-6600 A, while the 2006 and later spectra have a dispersion of 60 A mm-1 and cover the wavelength range of 3800-5200 A. We obtained at least one spectrum for each star each year that the star was observed. The years for which a particular star was observed can be found in Chapter 4. A detailed observing log for each season can be found in Appendix A.

2.9 Data Reduction for CCD Spectra

The DAO CCD spectra were reduced using IRAF. All spectra were single- order. We first applied bias corrections, trimmed the spectra, and removed bad pixels using the CCDPROC package. We obtained 10-20 bias frames for each observ­ ing season and combined them using the ZEROCOMBINE package. Dark current corrections were not used, as the CCD was cooled to a sufficiently low tempera­ ture to make the dark current fluctuations over time negligible (in such cases, the bias correction also corrects for dark current). Iron-argon arc spectra were used for wavelength calibration. Flat fielding was done with the APFLATTEN package. We obtained 10-20 flat field frames for each observing season and combined them with the FLATCOMBINE package before using APFLATTEN. We used the DOSLIT pack­ age to extract 1-D spectra from the 2-D spectra, and to wavelength-calibrate and dispersion-correct the 1-D spectra. DOSLIT also removes cosmic ray hits and night sky line contamination. We then normalized the spectra using IRAF's CONTINUUM package, which fits a polynomial to the data to find the continuum and outputs the 17 ratio of the input spectra to the fitting function. The user is able to look at the fit to determine whether the program has identified proper continuum points. A very detailed description of the process of spectroscopic data reduction in IRAF can be found in Massey (1997) and Massey et al. (1992), and a guide to using DOSLIT can be found in Valdes (1993).

2.9.1 Continuum Calibration

Because normalization of M supergiant spectra is a non-trivial issue, we have included several screenshots of the process. The first image shows a wavelength- calibrated, dispersion-corrected, 1-D spectrum before continuum calibration. The second image shows IRAF's CONTINUUM package in use. The dashed line over- plotted on the spectrum is the fitting function. The open diamonds mark points that have been excluded by the program. The X's show points where the user has instructed the program to modify the function chosen. We found through trial and error that a 20th order Legendre polynomial seemed to provide the best balance be­ tween normalizing the spectra and not flattening out actual spectral features. As seen in the screenshot, the routine tends to miss some of the continuum points at the TiO band heads, but it is possible to manually force the fit to go through those points by manually rejecting points vertically below the tops of the band heads. Using a higher-order polynomial fits the band heads better, but it also flattens out the features within a band. Please note that the screenshots shown were created for illustration purposes only, and the polynomial fit shown is not necessarily one that would have been considered acceptable for research purposes.

18 Figure 2.1s Top: A wavelength-calibrated, dispersion-corrected, 1-D spectrum before nor­ malization. Middle: Running IRAF's CONTINUUM package. Bottom: The normalized 1-D jm.

19 Chapter 3

Data Analysis

3.1 Period Determination

We used the software package Peranso to determine the periods of the stars. Peranso was written by Tonny Vanmunster and is available at http://peranso.com. Peranso contains several period finding routines. We chose the CLEANest routine, which is a Fourier decomposition routine that is appropriate for data series that vary irregularly and may have gaps in them. The CLEANest method is described by Foster (1995). We compared the results obtained with the CLEANest routine to re­ sults obtained with the ANOVA routine, which uses periodic orthogonal polynomials and the analysis of variance statistic, and the results were essentially identical. The ANOVA routine is described in Schwarzenberg-Czerny (1996). To determine uncer­ tainties in the periods we found, we used the procedure described by Fernie (1989), which involves fitting a parabola to the Fourier peak. We used the program proFit to fit the parabolas. Uncertainties for the period values are indicated in chapter 4. Note that while this gives the uncertainty in the position of the power spectrum peak maximum, which corresponds to what could be described as an average period. In many cases the period of a star changes from cycle to cycle, and alternative method to determine an average period would be to simply take an average of the times be­ tween successive maxima. That is not possible at present because the datasets are not complete enough to determine precise times of maximum light for every cycle, but we note the alternative method here because it may be of use to future observers with better photometry. We determined periods and examined changes in period and average mag­ nitude by analyzing subsets of the data covering approximately 10-year intervals. 10-year intervals were chosen because they are long enough to contain several light 20 cycles, while still being relatively short compared to the overall data sets. It is very difficult and not always possible to study period changes in long-period semi-regular variables using O-C diagrams (see Turner et al. 2009). Figures 3.1 through 3.7 show screenshots that depict the process of using Peranso. In the figures, "Theta" is used by Peranso to represent the power in a given period value. Average magnitudes for photometry datasets and subsets were obtained by simply taking the average of the magnitude values. AV and AB amplitudes were determined by subtracting the minimum magnitude from the maximum magnitude in a given dataset after eliminating any obvious outliers (i.e. if magnitude values ordered from largest to smallest showed something like 14.7, 11.0, 11.0, 11.0, 11.0, 10.9, 10.9, etc., we would have eliminated the 14.7 value from the amplitude determination).

& ObsW^*5tsper) c_ BJ]E3

0 IW0 2000 MOD 4000

Figure 3.1: An example of the Peranso observations window for S Persei. The different colors in the top frame show different observation sets that can be analyzed separately or in groups. The bottom frame shows a close-up of one of the S Persei observation sets.

21 f Period Determination £3

Period - Method J~" Hours Auto C Lomb-Scargle r ANOVA r Start: |700" C Bloomfield C Jurkewich r End: |900 C DFT (Deeming) C Dworetsky

|~ Resolution: [5000" P DCDFT (Ferraz-Mello) C Renson ff CLEANest (Foster) r PDM

r FALC (Harris) C Lafler-Kinman

C Phase Binned AoV

C EEBLS P AoV Transit

C Spectral Window

OK Cancel iff CLEANest #2 for ObsWIn #1 Eur £3 ^lAluua

+2000

<0

-2000

Figure 3.2: Period determination using Peranso's CLEANest routine for S Persei. Top frame shows period determination window, bottom frame shows periodogram. 22 1 Period Determination £3

- Period Method I f*~ Hours | Auto r 1 ! C Lomb-Scargle C? ANOVA j r Start: [700" C Bloomfield C Jurkewich r End: 900 C DFT (Deeming) C Dworetsky

f Resolution: [5000 r DCDFT (Ferraz-MeOo) C Renson

C CLEANest (Foster) c PDM r Unit r FALC (Harris) C Lafler-Kinman C Freq <• Time C Phase Binned AoV

Number harmonics: R~ r EEBLS C AoV Transit

C Spectral Window

OK Cancel

$ ANOVA #1 for ObsW in #1 S3 JlKrlHlUl P| JL W B| AUAJ

+2000

-2000

Figure 3.3: Period determination using Peranso's ANOVA routine for S Persei. Top frame shows period determination window, bottom frame shows periodogram. Note that results match those for the CLEANest routine shown in the jprevious figure. ,1.1 • | ' • > i | > ' • ' | • • ' • | ' > i • I i • i ' | .

0.06 - -

fe0.04 - - i | .

0.02

1 -a O.OO 1 i > i i 1 i i i i 1 t i » i 1 t t i i 1 . i i i 1 i i . i 1 500 1000 1500 2300 2500 3000 Time (Days)

Figure 3.4: Spectral window for the Fourier analysis for S Persei shown in figure 3.2, used to check for aliasing by identifying patterns caused by the gaps in the data. Note that there are no peaks near the 806 day period value found for S Persei in the 2 preceding figures, but there are small peaks near values of 1 year, 1/2 year and 1/3 year.

24 Prominent Periods £3

ANOVA 81 for ObsWin 81

Frequency (c/d) Time (d) Theta ^ 0.00124 806.8648 3059.24 0.00119 840.4482 940.28 0.00135 741.3509 363.46 0.00130 767.9181 282.90 0.00113 886.3253 212.48

BfTlB E[4~H B[TlS

Show/Hide PhaseWin Copy to Clipboard Close

Figure 3.5: An example of Peranso's prominent periods window.

25 P CLEANest Workbench 13,

CLEANest 82 foi ObsWm 81 Delete Periods FreoLK J~ eT Thetal AmDl Add Fixed Period. r 0.00124 +1- 0.00000 808.8848 +/• 0.20G6 0.54 +A 0.01 000119 8404482 87977 CLEANest 000118 844 0514 464 90 000135 738 223S 438 63 SUCK 000131 7638215 38847 354 06 000135 7413509 r Show/Hide - 000130 7679181 27718 I Peaks 000113 8858268 23104 0 00113 886 3253 209 24 Residuals 0 00126 792 2535 72 74 A Model Function a[5~[E a[4~a H[Tl3 Properties. 7 Detailed Info

Export Residuals Copy to Clipboard Close

Figure 3.6: An example of Peranso's CLEANest workbench.

P ObsWm #1 (sper) B Si ±il3ll sMMUyj _Pj ^Jl_Lll.jill.!j|jjlfflll 4,|A|Dlakl

P Extremum for ObsWm #1 (sper) l_£3

- Extremumtype —| Interpolation

"~ Mnmum t Spire

(* Maximum C Linear j I 9 s •10 (I! ResuRs - — ^ txtiemumat |243144Z316720 JD •' |0691548

Calculate Cancel j 0 MTqmnn

Figure 3.7: An example of Peranso's extremum-nnding function, used to determine times of maximum light.

26 3.2 Spectral Classification

We used spectral atlases (Abt et al. 1968; Houk et al. 1974; Keenan & McNeil 1976; Houk & Newberry 1984) and Phillip Keenan's classification criteria for M stars published in Gray (2009) to identify lines that were temperature or luminosity indi­ cators. We then examined the observed spectra to see which of the lines identified were best for classification. Some were easier to use than others because of their location and proximity (or lack thereof) to other lines. For example, all of the molec­ ular band heads in the region are temperature indicators, but the effect is easiest to see in the TiO band head at 4954A. Keenan's criteria are reproduced in table 3.3. Table 3.1 summarizes the lines that we found most useful for classification. Table 3.2 lists approximate line ratios for different luminosity classes. Figure 3.8 shows the behavior of the 4953A TiO band head in different stars at different spectral types, and figure 3.9 shows the behavior of the 4389A line compared to the 4383A line in different luminosity classes. Shifts caused by differing radial velocities and problems with normalization are evident in the plots, but we were aware of and accounted for the shifts when determining spectral types. The newly-obtained CCD spectra and scanned photographic spectra were classified by overplotting spectra from the same star, as well as spectra from different stars with the same suspected spectral type, in order to see relative line depths. As a reality check, spectral type results were compared to published spectral types from the Simbad database. As program stars are not well-studied, it is not possible to find published values for what spectral type a star should have at a given phase, but we assumed published spectral types were roughly equivalent to average spectral types for the stars. Again we stress the fact that this study is the first of its kind, and our goal was to establish trends, not to produce precise measurements. The method of comparing the spectra of a given star to one another during classification should be sufficient to establish trends. Future studies involving long-baseline photometric observing campaigns could also make use of values obtained at the same as spectroscopic measurements as

27 T i , 1 1 1 1 . 1 1 1 1 1 , 1 f-

4940 4950 4960 4970 4980 Wavelength (A)

Figure 3.8: The behavior of the 4953A TiO band head as a function of spectral type.

a reality check for the spectral types. Unfortunately, such information does not cur­ rently exist. As stated in chapter 1, we estimate our uncertainties to be ±0.5 subtype for the spectral types and ±1 subclass for the luminosity classes.

28 Table 3.1: Especially useful lines for classification.

A (A) Species Behavior 4861 H/3 Appears to weaken with decreasing temperature when compared with nearby continuum, which is suppressed by the TiO band head. 4953 TiO Strengthens with decreasing band temperature. A4953 and other band head heads are the primary determinants of spectral type for M stars. The A4953 band head is easiest to use. 4389 V I Strengthens with increasing luminosity when compared with nearby Fe I line at A4383 A. (See luminosity classification table for more information.)

• ' i • ' ' i ' ' ' i ' ' ' i ' i ' i ' ' ' i • ' ' i ' I ' i ' • ' i ' ' ' i ' • 1.3 -

0.9 - la (S Per 2009) - lab (S Per 2007) lb (SS And 2006) 0.g ' ' ' • • ' ' ' ' ' ' ' ' ' * ' * ' * ' ' ' ' '—i r I l I i I i r l I i f i I ^ 4376 4378 4380 4362 4384 4386 4388 4390 4392 4394

Wavelength (A)

Figure 3.9: The behavior of the 4389A line as a function of luminosity class.

29 Table 3.2: Approximate luminosity classification ratios Luminosity Class A4376/A4383 A4389/A4383 la >1 ~ 1 lab ~ 1 ~ 0.5 lb <1 - 0.25 II ~ 0.5 ~ 0.1 III - 0.25 =0

30 Table 3.3: Keenan's classification criteria for M stars Type Blue Region Visual Region MO A4954 clearly seen. A6159 clearly seen The marginal appearance A5448, A5167 present of this band at scales of ~ 100 Amm"1 helps define type K5. Ml A4761 present. A5448 clearly seen. A5167 is now strong enough to form a distinct break in spite of the strong atomic lines nearby. M2 A4804 present. AA5448, 6159 stronger. Broadening of A4667 noticeable. M3 A4584 present; 4667, AA5597, 5847 present. 4804 clearly seen. M4 AA4626, 4667 distinct; AA 5759, 5810 distinct. A4848 present. M5 AA4352, 4462 distinct. VO 5736 present. M6 A4395 present and VO 5736 slightly weaker becomes distinct at than A5759. M6.5. A4422 distinct on plates of larger scale. M7 AA4082, 4310 present. VO 5736 = A5759 AA5591, 5615 fairly strong. M8 All of the spectrum VO 5736 = A5759 longward from A4100 A5591 comparable with A5597 presents banded appearance. AA4082, 4310 fairly strong.

31 3.3 The Effective Temperature Scale

The spectral type plots shown in later chapters use the effective temperatures given in table 3.4, from the effective temperature scale derived by Levesque & Massey (2005), which were calculated using MARCS model atmospheres. We show the cor­ responding Teff values on our plots of spectral type versus phase. The other notable temperature scale for M supergiants is from Lee (1970). Lee's temperature scale is based on broadband colors and observed interferometric diameters rather than stel­ lar atmosphere models, as models that accurately treated molecular opaciies in M supergiant atmospheres were unavailable at the time. In addition to being based on model atmospheres, the Levesque and Massey scale provides better agreement with evolutionary models, and so we have chosen to assign temperatures based on this new scale, which is about 400K hotter than Lee's. We emphasize, however, that the current study is an attempt to understand the variability of the stars, and not neces­ sarily an attempt to determine precise physical quantities. Our goal is simply to show that the temperatures of the stars change cyclically rather than to establish precise temperature values. As the effective temperatures were assigned solely based on our determined spectral types, uncertainties can be considered equivalent to ±0.5 spectral subtype (i.e. if a star was assigned a spectral type of M2 and thus temperature 3660 K, the uncertainty in the temperature would be +50/-45 K).

3.4 Radial Velocity Measurement

We used the IRAF package RVIDLINES to calculate radial velocities for the spectra. RVIDLINES is a routine that uses the differences between observed wave­ lengths in a spectrum and rest wavelengths of the same lines to calculate a radial velocity. The user creates a list of rest wavelengths, then marks several lines in the spectrum and enters the rest wavelengths of the marked lines. We used the database at http://physics.nist.gov to create a list of approximately 250 strong lines of H I,

32 Effective temperature scale for M supergiants, taken from Levesque & Massey

Spectral Type Temperature (K) MO 3790 Ml 3745 Ml.5 3710 M2 3660 M2.5 3615 M3 3605 M3.5 3550 M4-M4.5 3535 M5 3450

Fe I, Fe II, Ca I, Ca II, and Sr II in the wavelength region of our spectra. The soft­ ware then uses the list to identify as many more lines in the spectrum as possible, and computes a velocity using the average wavelength shift, along with an uncer­ tainty. When the software is run in heliocentric mode, it also uses the observatory location keyword in the header along with the date and time information to auto­ matically apply a heliocentric correction to the computed velocity. The CCD spectra have much lower resolution than the photographic spectra, which means they have higher uncertainties, but the general pattern of variation can still be seen. For stars with sufficient radial velocity data points, we fit sine waves to the radial velocity versus phase curves using the program proFit. Figures 3.10 shows a screenshot of the RVIDLINES process (the screenshot shown was created for demonstration purposes only, and the lines marked are not necessarily centered properly and have not been checked for accuracy, as was done when actual measurements were being made).

33 ffiffSMw-wKgaEBtain

Figure 3.10: RVIDLINES in use. The red marks indicate spectral lines. The user is able to zoom in and mark individual lines, tell the program to find lines automatically, and examine the lines that the program has marked and delete erroneous lines that the program may have found.

34 Chapter 4

Results for Individual Stars

We present here the results of our analysis of the available data for each of 49 stars. All but one of the stars have AAVSO visual magnitude estimates, and 13 of the stars have photographic magnitude estimates from the Harvard plate collection. We present values of the average magnitude and period at approximately 10 year intervals for each star with a sufficient number of magnitude estimates, as well as overall periods and average magnitudes. We show light curves for the stars and plots of average magnitude and period as a function of time, as well as plots of average magnitude versus log P, where P is the period. In plots of average magnitude and period versus time, horizontal lines indicate the average magnitude or period for the entire dataset. For each star for which we have spectra, we determined spectral types and radial velocities, VR, at various epochs. We present a montage of the CCD spectra for each star as well as plots showing changes in spectral type and VR as functions of phase. Individual spectra are plotted in Appendix A. For stars with sufficient phase coverage, we fitted a sine wave to the radial velocity data. Sine waves were fitted using a Monte Carlo fit in all 4 parameters with the program proFit. From the sine wave, we determined the phase at which it goes through mean radial velocity after it reaches maximum radial velocity. Maximum radial velocity indicates the star's greatest photospheric recession, so the star should reach its smallest dimensions a quarter cycle later when it passes through the systemic velocity for the system. There are several stars for which we have only been able to obtain one spectrum. Although we cannot examine their variations in VR and spectral type, we include our measurements of their radial velocities and spectral types, as they may be of use to future observers. Please note that throughout this chapter, dates listed in tables are 35 written as HJD - 2400000. A brief summary of the results and data available for each star can be found at the end of the chapter. Light curves for the stars can be found in Appendix B. Table 4.1 summarizes some basic information for the 49 stars discussed here (period, spectral types from SIMBAD, average Vmagnitude, available data, cluster/association membership, and binarity).

36 Table 4.1: Summary of Information for Individual Stars Star Coordinates (J2000) (V) Spectral Adopted GCVS AAVSO Harvard Spectral Type Radial Cluster Member (AAVSO) Type Period Period Observations Observations Measurements Velocities or Binary7 SS And 23 11 30 0698 9 79 M6-M7 lab 178 152 5 475 6 6 no +52 53 12 479 V An 02 15 00 0767 8 54 C5 II 58 7 58 7 124 no +12 14 23 610 UX Aur 05 15 57 8835 8 71 M4-5 Ia-II 357/90 90 87 4 4 no +49 32 47 266 V394 Aur 06 06 22 4463 6 21 M4 lb II 32 5 32 9 8 4 no +29 30 44 689 RS One 09 10 38 7990 6 19 M6 M7 lab lb 240/120 120 9540 10 6 no +30 57 47 300 UZ CMa 06 18 47 35 11 68 M6 II 86 8 82 5 2613 no 17 02 27 0 BZ Car 10 54 06 2521 8 18 M2-4 la-lb 130/97 97 881 4 no 62 02 32 817 CK Car 10 24 25 3580 8 05 M3 5 lab 533 525 876 Car OB1-D 60 11 29 039 (Levesque & Massey 2005) CL Car 10 53 59 8814 8 83 M5 lab 513 513 1111 769 61 05 31 339 BV Car 10 20 21 608 8 20 M4 5 la 347 347 692 no 60 27 15 55 IX Car 10 50 26 2988 7 6 M2 lab 350 400 400 1801 804 Car OBI E 59 58 56 563 (Levesque & Massey 2005) PZ Cas 23 44 03 2819 9 15 M2 4 la 253 925 1141 11 4 Cas OB5 +61 47 22 182 (Levesque & Massey 2005) W Cep 22 36 27 563 7 67 K0 1 la lb 2000/350 8005 7 5 Cep OBI +58 25 33 97 (') SW Cep 21 25 45 9174 8 62 M3 5 la lab 599/70 70 84 4 4 Cep OB2 B +62 34 26 569 (Stencel et al 1988) VV Cep 21 56 39 1437 5 18 M4 la Iabe 285 7430 6970 6 4 B type companion +63 37 32 006 + B8 Ve (eclipse) (Wawrukiewicz & Lee 1974) Cep OB 2 B (Humphreys 1978) MY Cep 22 54 31 71 M7 la 11 no +60 49 38 9 Table 4.2: Summary of Information for Individual Stars (continued) Star Coordinates (J2000) (V) Spectral Adopted GCVS AAVSO Harvard Spectral Type Radial Cluster Member (AAVSO) Type Period Period Observations Observations Measurements Velocities or Binary7 fi Cep 21 43 30 4609 4 15 M2 Iae 700-1000 730 47489 20 5 Trumpler 37 +58 46 48 166 (Alksms 1961) T Cet 00 21 46 2737 6 11 M5-6 He 160 158 9 6395 5 5 no -20 03 28 885 RW Cyg 20 28 50 590 8 82 M2-4 la-lab 520 550 1907 3 3 Cyg OB9 +39 58 54 43 (Humphreys 1978) AZ Cyg 20 57 59 4457 8 63 M2-4 la-lb 459 459 654 10 5 no +46 28 00 618 BC Cyg 20 21 38 5471 9 72 M2 4 la lb 693 700 937 866 (Harvard 16 7 Berkeley 87 +37 31 58 932 and Sternberg) (Turner & Forbes 1982) V En 04 04 18 802 8 92 M6 II 290/97 97 3633 no -15 43 30 53 TV Gem 06 11 51 4140 6 87 K5 5-M1 3 lab 425/70 9501 13 3 Gem OBI +21 52 05 643 (Levesque & Massey 2005) IS Gem 06 49 41 3110 5 82 K3 II 359/47 47 3332 no + 32 36 24 321 V959 Her 17 36 21 4199 6 46 M4 lb II 140 40 4 no +27 33 59 899 a Her 17 14 38 8584 3 3 M5 lb II 508 7 15632 8 5 Optical triple + 14 23 25 198 RV Hya 08 39 43 758 7 86 M5 II 243/116 116 410 no -09 35 13 01 W Ind 21 14 22 803 9 27 M4 5 lie 198 198 8 722 no 53 01 34 66 U Lac 22 47 43 4271 9 89 M4 Iabpe + B 395 345 9 5 B-type companion +55 09 30 309 (Wawrukiewicz 8z Lee 1974) Cep OBI (Humphreys 1978) Y Lyn 07 28 11 6109 7 39 M6 lb II 283/110 110 8989 2 2 no +45 59 26 207 Sz Lyr 18 54 30 2838 4« M4 II 627 2141 1 B-type companion, +36 53 55 007 Stephenson 1 (Stephenson 1969) Table 4.3: Summary of Information for Individual Stars (continued) Star Coordinates (J2000) (V) Spectral Adopted GCVS AAVSO Harvard Spectral Type Radial Cluster Member (AAVSO) Type Period Period Observations Observations Measurements Velocities or Binary7 Q On 05 55 10 3053 0 74 Ml 2 la lb 425/2335 2335 23349 21 35 no +07 24 25 426 S Per 02 22 51 7151 9 99 M3 M7 Iae 807 822 27313 586 11 5 Per OB1-D +58 35 11 423 (Levesque & Massey 2005) T Per 02 19 21 8795 8 89 M2 lab 2457 2430 9212 567 5 5 Per OBI-A +58 57 40 327 (Humphreys 1978) W Per 02 50 37 8911 9 79 M3 7 la-lab 531/485 485 17051 415 4 4 Per OB1-D +56 59 00 251 (Levesque & Massey 2005) RS Per 02 22 24 297 8 83 M4 lab 244 244 5 2310 194 7 7 Per OB1-D +57 06 34 36 (Levesque &: Massey 2005) SU Per 02 22 06 8939 8 11 M3 5 lab 468/533 533 3282 197 17 11 Per OB1-D +56 36 14 866 (Levesque & Massey 2005) XX Per 02 03 09 361 8 47 M4 lb + B 403 415 3412 263 4 4 B-type companion +55 13 56 60 (Wawrukiewicz & Lee 1974) Per OB1-D (Humphreys 1978) AD Per 02 20 29 0028 8 3 M2 5 lab 371 362 5 3338 196 8 8 Per OB1-D +56 59 35 226 (Humphreys 1978) BU Per 02 18 53 295 9 4 M3 5 lb 367/2960 367 1468 194 7 3 Per OB1-D +57 25 16 81 (Levesque & Massey 2005) FZ Per 02 20 59 676 8 33 M0 5-2 lab 371/184 184 2023 196 5 5 Per OB1-D +57 09 30 59 (Humphreys 1978) V411 Per 03 15 08 4471 9 62 M3 4 la 467 467 29 160 4 4 no +54 53 02 970 VX Sgr 18 08 04 0485 9 77 M4-10 Iae 756 65 732 6970 ASCC 093 -22 13 26 614 (Kharchenko et al 2005) KW Sgr 17 52 00 7257 9 67 MO 4 la 352/670 670 529 5 Sgr OB5 28 01 20 562 (Levesque & Massey 2005) AH Sco 17 11 17 0201 7 94 M4 5 la lab 766 713 6 1644 no 32 19 30 728 CB Tau 05 32 12 7511 4 81 M2 lab lb 174 165 3280 21 3 no + 18 35 39 243 W Tri 02 41 30 5714 8 20 M5 II 593 108 5719 5 5 no +34 30 57 967 CM Vel 10 07 32 8240 8 16 MO-5 II 762 780 238 no 53 15 36 534 FG Vul 20 34 33 0365 9 61 M5 II 352/86 86 29 2 2 NGC 6940 +28 16 51 355 (Mermilliod et al 2008) 4.1 Explanation of Table Columns for Individual Stars

The section for each star contains up to two tables, depending on what data are available for the star. The first table contains information about visual observations from the AAVSO database and period estimates. The columns are:

• Subset: The first row contains information about the entire data set. The second and subsequent rows contain information about subsets of the data in chronological order and divided into approximately 10-year intervals

• Dates: The beginning and ending HJD of the observations, written as HJD - 2400000

• V: The average visual magnitude for the observations

• % Diff.: The % difference in average visual magnitude compared to the preced­ ing subset (not available for subset 1 or for the entire data set)

• AV: The difference between the maximum and minimum visual magnitude for the subset

• P (days): The period found through Fourier analysis, with associated uncer­ tainty, following the methods described in Chapter 4

• N: Number of data points in the data set or subset

• % Diff.: The % difference in period compared to the preceding subset (again, not available for subset 1 or for the entire data set)

The second table contains information about any archival or newly obtained spectra for the star. The columns are:

• Year: The calendar year in which the observation was made

• HJD: The heliocentric Julian date of the observation 40 • Phase: The phase of the observation, where 0.0 is light maximum, calculated using the period and time of maximum light stated for the star

• VR. The radial velocity in km/s with associated uncertainty where available. Where the data source is "DAO CCD" or "DAO Photographic", radial velocities were determined using the technique described in Chapter 4. Where the source is another author, details about the radial velocity determination can be found in the associated reference.

• Spectral type: Spectral type and luminosity class (where available) for the obser­ vation. Where the data source is "DAO CCD", "DAO Photographic", "DDO", or "Garrison collection", the value was determined using the classification pro­ cedure described in Chapter 3. For other sources, classification information can be found in the associated reference.

• Source: One of the following options (more information on sources can be found in chapter 2):

— DAO CCD: Our own newly-obtained observations from the DAO

— DAO Pg: Digitized archival photographic spectra from the DAO collection

— DDO: Photographic spectra from the David Dunlap Observatory examined by David Turner

— Garrison: A photographic spectrum from Bob Garrison's collection exam­ ined by David Turner

— R. Griffin: Radial velocity measurements obtained from Roger Griffin

— Joy: Measurements reported in Joy (1942)

— Wing: Spectrophotometric measurements obtained from Bob Wing

41 4.2 SS Andromedae

Figure 4.1 shows SS And's variations in spectral type and radial velocity, as well as a montage of CCD spectra taken at different epochs. The observations were phased using a period of 178.35 days and a time of maximum light of JD2440519, determined from the AAVSO observations. There are not enough observations to determine at what phase SS And reaches its highest temperature. Its luminosity class did not vary according to our limited observations. Figure 4.2 shows SS And's changes in period and average visual magnitude taken at approximately 10-year intervals. The AAVSO observations do not indicate a regular pattern of variability in SS And, although some peaks in brightness are evident. Also, any evidence for period changes in the star is limited by the small number of observations, seasonal effects in the data, and the different eye sensitivities of AAVSO observers, so any evidence for temporal changes in period from Fourier analysis must be considered in that light. The light amplitude is small, AF~ lm.2. Consequently, tracing potential pulsation in the star is nearly impossible with the limited observations. Additional photometric data with a long baseline are needed to establish that the star is a true SRC variable and not an LC variable. The few spectroscopic observations would be more useful if they could be properly phased to the star's light variations.

42 Table 4.4: AAVSO Observations of SS Andromedae Subset Dates (V) % Diff. AV N P (days) % Diff. All 29544-55159 9.70 ... 3.0 475 178.35 ± 0.04 1 29544-32920 9.34 -3.71 1.6 25 180.93 ±1.25 1.45 2 33237-36842 9.76 0.62 1.7 87 174.69 ± 0.46 -2.05 3 36901-40486 9.89 1.96 2.8 124 177.59 ±0.33 -0.43 4 40514-44103 9.87 1.75 2.1 70 171.73 ±1.00 -3.71 5 44428-47793 9.55 -1.55 1.6 13 175.18 ±1.14 -1.78 6 47822-51107 9.52 -1.86 1.3 22 176.36 ±1.21 -1.11 7 52322-55159 9.51 -1.96 1.3 134 175.60 ±0.52 -1.54

Table 4.5: Spectroscopic observations of SS Andromedae

Year HJD Phase VR (km/s) Spectral Type Source 1939 2428852 0.8212 -23 M6 Joy 1939 2429562 0.7877 -32 M6 Joy 1940 2429854 0.4190 -25 M6 Joy 1940 2429894 0.6425 -22 M5 Joy 2006 2454027 0.4623 -0.8 ±7.8 M6Ib DAO CCD 2010 2455489 0.6303 -4.0 ±17.6 M7Ib DAO CCD

43 2.0 TH

1.5

gl.0|-

0.5 -

2006 - Phase 0.4623 2010-Phase 0.6303

_i L j i I i L 5200

!— -' i —i , p- ' 1 ' 10 T • •• i

5" 0 - . i r E J£ • • ! • • 2> • j • o „ — *- 0-10 — o > - • (0 • • •2 <$ -20 — — cc • • • • • • • :

-30 • i... • l ' -0.5 0.5 1.5 Phase

Figure 4.1: Spectral variation in SS Andromedae. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 178.35 day period. 44 1 1— i 1 1 <•••- i ,..-,,., j _,—— i i i . • • • 9.4 J IB XI • 3 •|=9.5 • • "

5 • • M9.6 - 3 in . 5

(0 • • 1 _ <9.8 • 9.9 I . . • , 1 f 1 . , 35000 40000 45000 50000 HJD (2400000+)

•^i- . -i—• | • « 182 • < ) - 180 "* - • S178 " Q i I • I iz Perio d * 5 s

172 - ^» -

. 1 , . , . i . . f i . ,,,[,,,," 35000 40000 45000 50000 HJD (2400000+) • "j • i i i —i 1 i 1 I T • 1 | !• 1 1 1. • • ; 9.4 ~ -

OJ 9.5 - - • • 32 • c S?9.6 - - 5 ' to ' 5 9.7 • i > ; • 9.8 _

• 9.9 I 1 I , ,•, i i j « 1 i i 7 2.235 2.24 2.245 2.25 2.255 iog(Period)

Figure 4.2: Period and average magnitude changes in SS Andromedae from AAVSO obser­ vations.

45 4.3 V Arietis

V Ari is a small-amplitude variable, A V ~ 0m.9, for which the available AAVSO observations are not particularly useful for finding a reliable period. The star may be an LC variable rather than an SRC variable. It is also the only carbon star in the sample. The "SRC" designation originated recently from Pojmanski (2005). Spectroscopic observations for the star would be useful for learning more about it.

Table 4.6: AAVSO Observations of V Arietis Subset Dates (V) % Diff. AV N P (days) % Diff. All 35065-54502 8.54 1.7 124 56.81 ± 0.03 1 35065-38681 8.46 -0.94 1.7 38 2 38766-41632 8.60 0.70 0.8 22 3 44226-45758 8.72 2.11 0.5 6 4 46026-46877 8.53 -0.12 0.9 9 5 46970-54502 8.56 0.23 1.1 49

46 4.4 UX Aurigae

Figure 4.3 shows UX Aur's variations in spectral type and radial velocity (phased using a period of 357 days and a time of maximum light of JD2454756.56 determined from the AAVSO observations), and a montage of CCD spectra taken at different epochs. We do not have enough observations to determine at what phase UX Aur reaches its highest temperature, although its greatest luminosity class (la) occurs for its hottest temperature class (M4). UX Aur exhibits changes in mean brightness, upon which there may be regular shorter period variability, although the dominant 357 day period found by Fourier analysis may be an alias caused by seasonal variations. The General Catalog of Variable Stars, hereafter referred to as GCVS (Samus et al. 2009) lists a period of 90.9 days for the star, but we found that the data actually phase better with the 357 day period. It is unclear what the original source of the 90.9 day period is, as the handful of papers that make reference to it simply refer to the GCVS as the source of the period (for example, Feast et al. 1972, the earliest mention of the star in the literature). Not much can be said about the star until we have a better idea of its true periodicity. Our spectroscopic observations indicate that both spectral and radial velocity changes occur, but accurately phasing the data is not yet possible, and more photometric observations with a longer baseline are needed.

47 Table 4.7: AAVSO Observations of UX Aurigae Subset Dates (V) % Diff. AV N P (days) % Diff. All 21632-54915 8.71 1.6 87 356.57 ±0.37 1 21632-21685 8.60 -1.26 0.9 4 2 33741-37048 8.46 -2.87 1.2 18 3 45024-47178 8.90 2.18 0.8 34 4 47199-50831 8.93 2.53 0.9 6 5 50837-50902 8.60 -1.26 0.4 4 6 54550-54915 8.58 -1.49 1.1 21

Table 4.8: Spectroscopic observations of UX Aurigae

Year HJD Phase VR (km/s) Spectral Type Source 1939 2425159 0.1217 34 M5 Joy 1939 2428910 0.6287 33 M5 Joy 2007 2454382 0.9797 38.5 ±16.5 M5Ib DAO CCD 2010 2455484 0.0655 29.5 ±17.3 M4Ia DAO CCD

48 •""FT- T ' <- 1.4 f m ii h 1.2 v , >)\ " r. '{ ' l! f r ' 1.0 x a LL ^/v 0,0.8 MMftW l > ''y ' I'll' h' 10 0.6 or

0.4 I;? y- 2007 - Phase 0.9797 0.2 2010-Phase 0 0655 . ' i L 00400 0 4200 4400 4600 4800 5000 Wavelength (A) MO i i i 3790

M1 3745 3710 M2 r 3660 3615 _j 8.M3E- 3605 g != I- 3550 "g 3535 S «M4 r t3 c W.9-M S r s

M6 r 3450-=£

M7 r 3353250

M8 -0.5 0.5 1.5 Phase I r1 pr 1 -i 50 -

• CO K -X40 — <• <> £•o o • • • • 0) • • >30 - <» <» - nJ T3 . . « cc 20 i''' -

i i i i -0 5 0.5 1.5 Phase

Figure 4.3: Spectral variation in UX Aurigae. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 357 day period. 49 4.5 V394 Aurigae

Figure 4.4 shows V394 Aur's variations in spectral type, phased using a period of 32.5 days and a time of maximum light of JD2448285, which we obtained from Snyder (1991), as there were not enough AAVSO observations to determine a period. The temperature is varying, but it is not clear at what phase it reaches maximum. Its luminosity class stayed fairly constant, but one observation may indicate that it reaches greatest luminosity class at latest spectral type. The spectral type variations are somewhat large for a cool M4 Ib-II SRC variable, and the period dervied by Snyder is also atypically small, so this object is strongly in need of additional observations, both photometric and spectroscopic. Snyder's study of the star is based on only 27 data points obtained over 102 days, and many more observations over a longer baseline are needed to confirm that the star is actually an SRC variable.

Table 4.9: Spectroscopic observations of V394 Aurigae

Year HJD Phase VR (km/s) Spectral Type Source 1942 2430628 0.1347 M4II DDO 1944 2431093 0.8628 M3.5 II DDO 1944 2431397 0.5972 M2.5 II DDO 1945 2431459 0.2986 M4Ib DDO

Table 4.10: AAVSO Observations of V394 Aurigae Subset Dates (V) % Diff. AV N P (days) % DiffT All 54751-54862 6.21 ... 0.3 8

50 1 1 MO h —*- i ' —™l "T 1 1 ••-•?•'•' " 1 1 ' 1 1 " ~=9•i 3790

M1 •{

M2 -. • • M3 • • _: M4 • • • • -.

M5 •j

M6 \

M7 ~

MS i- . , i • i i . . i ' ' • 4 -0.5 0.5 15 Phase

Figure 4.4: Spectral variation in V394 Aur, phased with 32.5 day period.

51 4.6 RS Cancri

Figure 4.5 shows RS Cnc's variations in spectral type and radial velocity, and a montage of photographic spectra taken at different epochs. We found a period of 240.32 days and a time of maximum light of JD2443255.71 from the AAVSO observations. The GCVS lists a period of 120 days for the star. We found both a 240 day and 120 day period with our Fourier analysis. Although there was more power in the longer period, the shorter period produced better phasing and was used to produce the plots of spectral type and VR variation. We fitted the radial velocity variations with a sine wave and found that the star's phase of smallest dimensions is approximately 0.93. The temperature is varying, but it is not clear at what phase the temperature reaches maximum. Its luminosity class stayed fairly constant but the observations suggest that it may reach greatest luminosity class at latest spectral type. Figure 4.6 shows RS Cnc's changes in period and average visual magnitude taken at approximately 10-year intervals. Additional photometric observations would help to better constrain the period. The light amplitude is about AF ~ 2m.5. More spectroscopic observations are needed to determine how the radial velocity and spectral type change during the star's cycle.

Table 4.11: AAVSO Observations of RS Cancri Subset Dates (V) % Diff. Al^ N P (days) % Diff. All 22721-55380 6.19 2.5 9540 240.32 ± 0.05 1 22721-25324 6.32 2.10 0.9 51 258.35 ± 1.38 7.50 2 28668-29891 6.28 1.45 1.1 81 269.65 ± 2.74 12.20 3 32266-33664 6.16 -0.48 1.3 220 227.20 ± 1.47 -5.46 4 33673-37321 6.19 0.00 1.7 726 225.80 ± 0.36 -6.04 5 37337-40948 6.07 -1.94 1.6 75 239.37 ±0.41 -0.40 6 40969-44619 5.99 -3.23 2.0 864 217.52 ±1.07 -9.49 7 44623-48272 6.17 -0.32 2.5 1931 233.26 ±0.18 -2.94 8 48272-51921 6.22 0.48 1.9 795 238.88 ±0.16 -0.60 9 51923-55380 6.25 0.97 2.1 397 242.62 ± 0.26 0.96

52 Table 4.12: Spectroscopic observations of RS Cancri

Year HJD Phase VR (km/s) Spectral Type Source 1939 2427137 0.6774 13 M6 Joy 1939 2429413 0.6441 15 M6 Joy 1939 2429440 0.8691 2 M5 Joy 1940 2429647 0.5941 12 M6 Joy 1943 2430786 0.0835 M6Iab DDO 1943 2430831 0.4573 M6Iab DDO 1944 2431192 0.4656 M6.5 lab DDO 1944 2431200 0.5323 M6Iab DDO 1978 2443640 0.2001 -27.4 ±0.7 M6Ib DAO Pg 1979 2439495 0.1584 -29.0 ±0.2 M7Ib DAOPg

53 1978-Phase 0.6000 1979-Phase 0.0792

0.0 3800 4000 4200 4400 4600 4800 Wavelength (A) MO -t 1 i i i i i i B 3790

M1 -i 3745 -i 3710 M2 F- -: 3660 -! 3615 O.M3 r -: 3605 „f -i 3550 3 JM4 r •i 3535 * O a> 2. o. M5 c 3450 3 M6 • • •- 3350

M7 r 3250

M8 -0.5 0.5 1.5 Phase r_ r 1 —i— - 1 1 T , r , , T~ •» 1 ' ! .**" \ 9**\ • 10 - / -

"ST - I ° j- u o JjJ-10 - I

• ^-20 '

-30 • • r i 1 i . ..j i 1 "i -0.5 0.5 1.5 Phase

Figure 4.5: Spectral variation in RS Cancri. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 120 day period. 54 1 1 ' -I- I 1 ~| r 1 i I -|— I r —i 1 1 7 1 1 1 •|—i 1 r —r ™] 1— T 1 I 6.00 # .

ffi 6.05 j -a =• • ' 0)6.10 03 — 5 ." <8 6.15 3 _ at • • • 2.6.20 _ oCO> • - ea 5 6.25 • ". • 6.30 \ • , , , . 1 . 1 I r < . i 1 . . , 25000 3O000 35000 40000 45000 50000 HJD (2400000+) I ' ' ' i ' > • ' i 1 i . •> • ' i • 270 . ' i " 260 - i - _. • " §.250

• • : •j2 240 • • - • 230 " " i •

220 • t 1 i i t i t i i > i i , , > i ! I , . , , I . 25000 30000 35000 40000 45000 50000 HJD (2400000+) r ' ' T" ~~• 1— I -. , , T ^ •—'—r 6.00 . • . : *m

6.05 - - • ffi . . "»e.io — ». •** c , . o> •• 03 6.15 _. . s : • • - 03 • • . 3 6.20 - > • ; 6.25 - • « • 6.30 \ « I _... .i i r 1 1 1 I ,..•., * > 2.34 256 2.38 2.4 2.42 log(Period)

Figure 4.6: Period and average magnitude changes in RS Cancri from AAVSO observations.

55 4.7 UZ Canis Majoris

Figure 4.7 shows UZ CMa's changes in period and average visual magnitude taken at approximately 10-year intervals. Changes in both quantities are evident. The star displays regular periodicity, but simply lacks spectroscopic observations. Its brightness increases as its period decreases, which suggests that its effective temper­ ature increases as its size decreases. Not much more can be learned without further observations, both spectroscopic and photometric.

Table 4.13: AAVSO Observations of UZ Canis Majoris abset Dates (V) % Diff. AV N P (days) % Diff. All 36317-55299 11.68 3.4 2613 86.25 ±0.01 1 36317-39962 11.82 1.20 3.0 409 85.95 ± 0.06 -0.35 2 39967-43615 11.70 0.17 2.2 430 86.51 ± 0.05 0.30 3 43629-47265 11.67 -0.09 2.9 767 84.75 ± 0.05 -1.74 4 47270-50909 11.68 0.00 1.9 726 84.65 ± 0.04 -1.86 5 50917-55299 11.50 -1.54 2.9 281 83.85 ± 0.05 -2.78

56 - 1 ' ' ' i • ' ' t > > ' ] i i i | i i i J i , « , i i • |'ii. 11.50 • -

'•_ j .. 11-55 0) •o 3 - - .12 c 11.60 4. — o> ca - - 5 * - 15 11.65 - _ 3 • • to 5 (D 11.70 • - o> ' 2 .

11.80

:,•,,, 1 , , , ! , • , 1 , , , I . , . I , , , I . , 38000 40000 42000 44000 46000 48000 50000 52000 HJD (2400000+) . | i r i i > • > • ' > i • • • i > • -< r 1 1 ' ' ' i 86.5 * • 86.0 "i -

^85.5 - cd D

S85.0 - ID 0. * • 84.5 "

84.0

• i . , . i i , i i i r i 1 . . 1 , , , , ,•; 38000 40000 42000 44000 46000 50000 52000 HJD (2400000+) I ... 1 i i i 11.50 ..'•'•

11.55 -_

• # • • - Visua l Magnitud e

11.75 -

11.80

- . I , . . 1 i . , i , . . i , , , i , i . 1.924 1.926 1.928 1.93 1.932 1.934 1.936 log(Period)

Figure 4.7: Period and average magnitude changes in UZ Canis Majoris from AAVSO obser­ vations.

57 4.8 BZ Carinae

Figure 4.8 shows BZ Car's variations in spectral type. The observations were phased using a period of 129.71 days and a time of maximum light of JD2447619.7, determined from the AAVSO observations. Note that this differs from the 97 day pe­ riod listed in the GCVS, but our period had the strongest Fourier signal and produced better phasing. The star appears to reach highest temperature perhaps a quarter cy­ cle before light maximum, but better photometry to determine the period is needed to confirm that conclusively. It reaches greatest luminosity class at highest temperature. Figure 4.9 shows BZ Car's changes in period and average visual magnitude. BZ Car's light amplitude is AV ~ 2m.O. It appeared to undergo a sudden drop in brightness around JD2410000, which could have been caused by a dust extinction event. Early observations show clear brightness variations, but more recent observations appear to be more irregular. Its period determined by Fourier analysis also appears to have increased suddenly by approximately 10 days in recent observations. BZ Car needs additional spectroscopic and VR data (only possible from a southern hemisphere site) to make more definitive conclusions about the nature of its variability.

Table 4.14: AAVSO Observations of BZ Carinae nbset Dates (V) % Diff. AV N P (days) % Diff. All 31669-55316 8.18 4.2 881 129.71 ±0.02 1 31669-32006 8.47 3.55 1.0 51 129.02 ±2.91 -0.53 2 39154-41539 9.08 11.00 2.3 208 129.04 ±0.22 -0.51 3 43604-46247 7.58 -7.33 2.3 72 123.36 ±5.17 -4.90 4 46271-49906 7.93 -3.06 2.8 239 128.26 ±0.14 -1.12 5 49930-53123 7.57 -7.46 1.4 147 136.31 ±0.36 5.09 6 53953-55316 8.12 -0.73 1.6 164 139.80 ± 0.50 7.78

58 MO c— q 3790

M1 I- 3745 3710 M2 r 3660 3615 _) Q.M3E- • 3605 | 3550 "g «M4 r 3535 JS. t3 L c 0) -i 3450 3 <5> 3 M6 -. 3350

• Spectrophotometric data M7 3250 • All other data

M8 -0.5 0.5 1.5 Phase

Figure 4.8: Spectral variation in BZ Carinae, phased with 129.71 day period.

Table 4.15: Spectroscopic observations of BZ Carinae

Year HJD Phase VR (km/s) Spectral Type Source 1970 2440787 0.2438 ~ M3.8 lab Wing 1971 2441111 0.6116 M2.4 lab Wing 1976 2442861 0.5980 M3.0 lb Wing 1986 2446580 0.7628 M2 la-lab Garrison collection

59 ; ' ' ' j • , i , •—,• , r- 1 ' 1 ' 1 >: 7.6 • ' V '

-7.8 •w CD 3 • - •«8.0 -

CS • : Se.2 ™ to „. |8=> 4 : • ~ 0) _ g>8.6 - a • <8.> 8 •

9.0

. i , 1 . '• 35000 40000 45000 50000 55000 HJD (2400000+)

140 i > r j i i i , | i i 1 ' ' ' jjCt-

• 135 -

• Q.130 • < • • 1 • 125 <• •

120

! . 1 1 * 1 I 1 ! I I 1 I 1 1 1 • l' 35000 40000 45000 50000 55000 HJD (2400000+) ;i • '•>' • ,,,,,,, 7.6 • i I .

7.8 r - • CD 8.0 XI - -• =J - • • : E8.2 CD _ • _ CO .- -• S8.4 _ - CO 3 • . CO >8.6 " 8.8 -

9.0 j i , , . . '* . . , i , . , . , , , : 2.09 2.1 2.11 2.12 2.13 2.14 log(Period)

Figure 4.9: Period and average magnitude changes in BZ Carinae from AAVSO observations.

60 4.9 CK Carinae

The GCVS lists CK Car's period as 525 days, similar to the 533.61 day period we found through Fourier analysis. Figure 4.10 shows CK Car's changes in period and average visual magnitude taken at approximately 10-year intervals. There is obvious irregularity in its brightness variations for no obvious reason. It is possible that the star may actually be an LC variable. More photometry as well as spectroscopic and VR observations are necessary to say more about the nature of CK Car.

Table 4.16: AAVSO Observations of CK Carinae Subset Datels (V) % Diff. AV N P (days) % Diff. All 39157-55330 8.05 3.4 876 533.61 ±0.33 1 39157-41683 8.15 1.24 2.8 567 522.23 ±1.80 -2.13 2 43258-46442 7.79 -3.23 1.5 30 488.22 ± 5.93 -8.51 3 46507-50082 8.00 -0.62 1.9 199 528.83 ± 7.27 -0.90 4 50112-55330 7.55 -6.21 1.8 80 529.19 ±3.52 -0.83

61 Visual Magniiude Period (Days) Average Visual Magnitude a 00 OJ ~J -J -^ -^ U o tO (S ^ o c O f I I 1I ( ' I 'I "1 I II I I I 1 I I 1 o f i i | r in II | i TT i | | i T ri ] i i t i ] ' ~ HH

m 5>-»' a. P a

CD >-j P cm p era 3. a 0) 05 o K2 tr p B era CD 5' o o I •" p 3' P 0)

>

CO o o cr

£ ... i,... i, i. i i i I * • •'" I " " * « » t i I i • . i I .iii I o 0 4.10 CL Carinae

The GCVS notes a 513 day period for CL Car, identical to that found with our Fourier analysis. Details of the AAVSO observations are found in the table. We also have blue light observations from the Harvard collection for the star, covering the dates JD2414979.80-2434507.27, with an average B magnitude of 10.63 and AB ~ 2m.l. We found a period of 692.21 ± 0.25 days for these observations. Figure 4.11 shows CL Car's changes in period and average visual magnitude. The period is well- established from the AAVSO observations and GCVS, but the star displays intriguing changes in mean brightness that could be dust episodes. Spectroscopic observations are needed to confirm the nature of its variability, although the regularity of its brightness variations suggests pulsation.

Table 4.17: AAVSO Observations of CL Carinae ubset Dates (V) % Diff. AV N P (days) % Diff. All 34747-55328 8.83 2.6 1111 512.86 ±0.26 1 34747-38358 8.85 0.23 1.5 227 505.22 ± 2.06 -1.49 2 38405-41907 8.61 -2.49 2.4 437 555.79 ± 3.49 8.37 3 42174-45690 8.80 -0.34 1.7 66 499.12 ±5.05 -2.68 4 45742-49206 9.08 2.83 1.6 63 515.58 ±5.30 0.53 5 49433-52988 9.17 3.85 1.4 122 492.80 ± 4.57 -3.91 6 52999-55328 9.02 2.15 2.5 196 495.65 ± 3.73 -3.36

63 r l I 1 r- -l 1 1 1- B.6 "I " i—z

a, a-7

"c <3>8.8 h s (0 g8.9|- §Vo fc-. m

9.1 h _l 1 1 I—I— 36000 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) I™ i i i i i i 550 -

540 -

« §"530 t" Q s 520 - Ik.

£ 510 - 500 { 490 '--'—>—>—L. jt i I i i [ t i i i I t i i i i i i_ _I_ •T, i , . , t .. 36000 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+)

8.6 • i 11.11,! II

8.7 -

Tg 8.8 • -_ • c • S" G$ 2 8.9 re 3 09 -_ >9.0 • • 9.1 : • i > i . , , . r . . , , 1 i i i i 1 i r i 2.7 2.71 Z.72 2.73 2.74 log(Period)

Figure 4.11: Period and average magnitude changes in CL Carinae from AAVSO observations.

64 4.11 EV Carinae

The GCVS lists a period for EV Car of 347 days, similar to the 374.97 day period found from our Fourier analysis. Figure 4.12 shows EV Car's changes in period and average visual magnitude. It exhibits non-variability at times along with changes in mean brightness. There is no evidence of regularity in its light curve. The derived period is too close to one year to be definitive, as seasonal effects are strong in the AAVSO observations. Future observations may show it to actually be an LC variable.

Table 4.18: AAVSO Observations of EV Carinae Subset Dates (V) % Diff. AV N P (days) % Diff. \11 39155-55240 8.20 4.5 692 374.97 ±0.20 1 39155-41683 8.22 0.24 1.6 569 384.35 ±1.22 2.50 2 43143-46442 8.17 -0.37 3.7 32 368.72 ± 2.87 -1.67 3 46508-50082 8.43 2.80 2.5 39 362.52 ±2.11 -3.32 4 50112-54240 7.90 -3.66 2.7 52 383.10 ±2.11 2.17

65 Visual Magnitude Period (Days) Average Visual Magnitude CD CO 09 CD 03 -si CO CO OB CO CO **. « ro 1* b b u u ik u ro '-* b rrj'T i i i | n r i pi i i i j i i t r | t i i i | T i i | i i i i | i i i i i i i i i i i I "I I ! I T I 'T • I 3I I I I I Si I ' • • ' I to T—r-

5' a a.

»-i Si

B. c i—•—i CL a> o tr <35 cm fl> CO 5' M <: o g i » i 3 &

O o cr

$ i • i i • • • • i ' ' i i i > i . • i . • . • i .i « • • • t » • « • i i • • • • .... i \ i i i . 1 • • • ' ' • ' » * I > i • » I • • * > l o 4.12 IX Carinae

The GCVS lists a 400 day period for IX Car. Our Fourier analysis found a dominant 369.10 day period. Turner et al. (2009) found a 357 day period for the star from 804 blue light observations from the Harvard collection. The blue light observations cover the dates JD2414979.80-2434507.27, with an average B magnitude of 9.71 and AB ~ lm.6. Figure 4.12 shows IX Car's changes in period and average visual magnitude. IX Car appears in some ways to be a clone of a Ori, one of the most well-studied SRC variables. It has a small amplitude which varies temporally in a curious manner — it increases as the star's brightness increases. Spectroscopic and VR data are essential for understanding its nature. Its brightness changes, unlike those in CL Car, do not appear to be caused by dust episodes.

Table 4.19: AAVSO Observations of IX Carinae ubset Dates (V) % Diff. AV N P (days) % Diff. All 39116-55316 7.60 2.4 1801 369.10 ±1.16 1 39166-41683 7.38 -2.89 1.3 316 411.02 ±1.74 11.36 2 43612-46434 7.07 -6.97 1.9 107 418.12 ±3.29 13.28 3 46471-50106 7.64 0.53 2.3 698 382.98 ±1.16 3.76 4 50116-53442 7.72 1.58 2.1 509 417.78 ±1.91 13.19 5 53953-55316 7.83 3.03 1.6 171 338.90 ± 3.24 -8.18

67 —I- •! | 1 1 1 1 ' ' ' 1 ' " ' ! ' . ' ' ' • ' 1 ' '.

0)7.2 » •o 3 " 'c CO 10 !• 2« 7.4 3 " (0 ffi - 8*7* © • • • * 7.8 i . , , i . . i i » . i i . . . i , , , , , 1 , , , , ,•" 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 1 420 L • ' ' i ' • • , • | - 1 • , 1 ' ~z * ,' ' ' • f

400 -

• • (Days ) 1 • £ . 360 **

340 I . . . I , . , I , , , I . ,.!.,. ,,,!., i 3: . 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) • * i ' • 1 ' ' ' 1 ' ' . • ' 1 ' '•;

7.2 - -

Xt a c • ' 7 4 - - as S to 3 • >7.6 • -

• • •

7.8 "• . , . I I I i 2.54 2.58 2.58 2.6 2.62 log(Period)

Figure 4.13: Period and average magnitude changes in IX Carinae from AAVSO observations.

68 4.13 PZ Casseopeiae

Figure 4.14 shows PZ Cas's variations in spectral type and radial velocity, and a montage of CCD spectra taken at different epochs. The observations were phased using a period of 925 days and a time of maximum light of JD2440483.95, determined from the AAVSO observations. The GCVS lists its spectral type as M2-4 la and lists a period of 925 days. We also found a prominent period of 253.97 days in the AAVSO observations (referred to in the table, as it is prominent in the 10-year subsets of the photometry), but the 925 day period is much more prominent in the overall dataset and produced better phasing. Using the two different periods did not change the plots of spectral type and VR variation significantly, so we used the period found from our Fourier analysis. We fitted the radial velocity variations with a sine wave and found that the star appears to reach mean radial velocity after passing through velocity maximum near a phase of 0.34, indicating the phase of smallest dimensions. The sine wave fit is restricted by the limited phase coverage, and needs additional observations for confirmation. The star appears to reach highest temperature near light minimum, and reaches greatest luminosity class at its highest temperature. Figure 4.15 shows PZ Cas's changes in period and average visual magnitude taken at approximately 10-year intervals. The star's light curve appears to be seasonably regular, and the observed marked decreases in brightness could indicate regular dust extinction episodes.

Table 4.20: AAVSO Observations of PZ Casseopeiae Dates <*0 % Diff. AV N P (days) % Diff. 34253-55397 9.15 3.6 1141 253.97 ±0.07 34253-43791 9.35 2.19 3.4 266 256.64 ±0.77 1.06 43832-47449 9.17 0.22 2.5 120 277.73 ± 0.98 9.36 47479-51085 9.03 -1.31 3.2 301 261.83 ±0.95 3.10 51105-54752 9.11 -0.44 2.8 357 247.93 ± 2.53 -2.38 54758-55397 9.08 -0.77 1.1 67 252.39 ±1.10 -0.62

69 Table 4.21: Spectroscopic observations of PZ Casseopeia

Year HJD Phase VR (km/s) Spectral Type Source 1970 2440850 0.3952 M2.0 la Wing 1970 2440871 0.4179 M2.2 la Wing 1970 2440905 0.4546 M2.3 la Wing 1970 2441906 0.4557 M2.3 la Wing 1973 2441931 0.5638 M3.7 lab Wing 1973 2441962 0.5974 M3.5 lab Wing 1973 2442015 0.6546 M3.7 lab Wing 2005 2453652 0.2356 2.6 ±20.6 M3Ia DAO CCD 2007 2454379 0.0214 25.65 ± 17.0 M3.5 lab DAO CCD 2007 2454382 0.0247 26.5 ±15.9 M3.5 lab DAO CCD 2010 2455489 0.2215 8.4 ±19.6 M3.5 lab DAO CCD

70 0.0 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO T <- l I" I "• IT •n 3790

M1 3745 3710 M2 E- 3660 3615 _| g.M3f- ST 3605 3 «M4 - 3550 "g T3 '- 3535 S c 3450^

M6 r 3350

Spectrophotometric data M7 All other data 3250

M8 ' • • 0.5 1.5 Phase

Figure 4.14: Spectral variation in PZ Casseopeiae. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 253.97 day period. 71 P •-• ?. OS O C P -! 1Averag e Visual Magnitude Period (Days) Average Visual Magnitude V (D to fO tn * j» ~i ~4 01 CI u* o ui 01 Si 5 01 O Ol 4^ 1 1 "j 1 r I i i r ( r i ri i IT i > I " " I ' I I 1 I 1 I I I I I I I I I I I I I I 1 I 1 I I •J | F 1 I I | F I I I j I I I t | I •••'••' •I

>-) 5' &. P 0 a 1 »-i c,m£ CD

P Cm B. r+ C HN| X : a D § O ; -J O eg to cr IB 13 p O TO N> cm 8.N

tS! w O P w a> o 2 p'

o H-*-l 3 >

CO O

o ll ,rt a" I * • • • * ' • • * ^ • • • • * • * ' * 1 ' ' * • * * * • ' * ' ^ • • • » i • ' I I I I I I 1 1 I I I '•''•••'I '' I « • • * I * ' » • 1 i i • t 1 i 1 1 1 I I I I I II, 1I I I I ,F1 I I I 4.14 W Cephei

Figure 4.17 shows W Cep's changes in period and average visual magnitude taken at approximately 10-year intervals. W Cep is the hottest star in the sample, and yet it does not appear to be a regular light variable. The spectral type and radial velocity variations appear counterintuitive relative to results for other, cooler stars in the sample. The GCVS lists a period of 350 days for the star as well as a long secondary period of 2000 days. The near-one-year periods are likely to be seasonal effects. It appears to be mislabeled in the GCVS as an SRC variable. Perhaps it is actually an LC variable? The most recent AAVSO observations show it to be almost light and spectral type constant, and it may not be exhibiting detectable variability, despite the large value of A V ~ 2m listed in the GCVS.

Table 4.22: AAVSO Observations of W Cephei Subset Dates (V) % Diff. AV N P (days) % Diff. All 25529-55416 7.67 2.7 8005 346.26 ± 0.03 1 25529-29144 7.92 3.26 1.1 70 2 29188-32817 7.58 -1.17 0.9 20 3 33435-36471 8.00 4.30 1.9 715 333.61 ± 1.01 -3.65 4 36483-40123 7.91 3.13 1.6 320 371.14 ±0.93 7.19 5 40130-43777 7.68 0.13 1.7 703 388.09 ± 0.86 12.08 6 43782-47425 7.70 0.39 2.4 1255 348.93 ± 0.55 0.77 7 47430-51077 7.85 2.35 2.4 1615 356.89 ± 0.41 3.07 8 51079-54729 7.46 -2.74 1.9 2977 334.46 ± 0.28 -3.41 9 54735-55406 7.63 -0.52 2.3 330 334.05 ± 0.97 -3.53

73 Table 4.23: Spectroscopic observations of W Cephei Year HJD Phase VR (km/s) Spectral Type Source 1947 2432491 0.0984 Kl la DDO 1947 2432533 0.2195 Kl la DDO 2005 2453652 0.2581 28.1 ±21.2 Kl lb DAO CCD 2007 2454377 0.3534 9.7 ±17.7 KOIb DAO CCD 2008 2454754 0.4429 23.6 ±17.4 Kl lb DAO CCD 2009 2455086 0.4030 8.5 ±21.4 KOIb DAO CCD 2010 2455489 0.5673 10.7 ±21.7 Kl lb DAO CCD

74 i i i • J i i i i 1.4 -

1.2

1.0

a>0.8 > H^k$0^ilii Q) 0.6 oz 2005 - Phase 0.2581 2007 - Phase 0.3534 0.4 2008 • Phase 0.4429 - 2009 - Phase 0.4030 0.2 2010-Phase 0 5673

0.0 J i , i 1_ _L ' • ' _L 4000 4200 4400 4600 4800 5000 5200 Wavelength (A)

• i • G5 (. : —•—• 1 •— ' 1 —i j— ! - • ——i

K0 • • • •

K1 'r • • •• • • • •• • -3 4100

<0 •: a. 4015-g £*K2 S c 0) K3 i D. 05 s K4 ~ K5 •: 3840

MO i- . i . J 3790 -0.5 0.5 1.5 Phase 50 n- I -r I I

40

10-1

-0 5 0.5 1.5 Phase

Figure 4.16: Spectral variation in W Cephei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 346.26 day period. 75 .j i i —1—' ' ' I l— -i— i i i —'" E 1 I , .,,,._|— • 7.5 -

CD • TJ • . 3 7.6 - c • : COD 5 - _7.7 • -•- to • 3 . CO •. 5«7. 8 - o> i— - CD • * • <7.> 9 f • m -

8.0 I , t , . . , i , , i . 1 " 30000 35000 40000 45000 50000 55000 HJD (24000004) 390 - i • r • i i | • i i i i i i - i • • i -

380 •j

^.370 • - 5-

• : Perio d ( I _ •

• 340 • > , • . . • « i i i i * < - • 35000 40000 45000 50000 55000 HJD (2400000+) 1 1 I T " -1 r < 1—] 1 1 1 1--J- I -1"—I 1 p • 7.5 ~

„7-6 •§ • 3 • • '_ &7.7 • CO S CO 37.8 ~ > • 7.9 • -

8.0 • , LX 1 1 > 1 t 1 i ,1.11.1 1 . , , . r 2.53 2.54 2.55 2.56 2.57 2.58 2.59 log(Period)

Figure 4.17: Period and average magnitude changes in W Cephei from AAVSO observations.

76 4.15 SW Cephei

Figure 4.18 shows SW Cep's variations in spectral type and radial velocity, phased using a period of 599.10 days and a time of maximum light of JD2455086.57 from the AAVSO observations, and a montage of CCD spectra taken at different epochs. It appears to reach smallest dimensions near phase 0.98, along with highest temperature and greatest luminosity class. The lack of photometric observations for the star limits drawing any conclusions about the nature of its variability, despite the availability of spectroscopic data. The GCVS lists a period for the star of 70 days and a spectral type of M3.5 la-lab. We found that the data phased better with the 599 period, but it is possible that the star is multiperiodic, or perhaps the 70-day period was found using a short baseline of observations. SW Cep is an excellent candidate for obtaining archival data from the Harvard plate stacks, since photometry is the star's greatest need.

Table 4.24: AAVSO Observations of SW Cephei Subset Dates (V) % Diff. AV N P (days) % Diff. All 27925-54845 8.62 ... 2.1 84 599.10 ±7.13 1 27925-29628 8.19 -4.99 0.4 9 2 42240-49216 8.30 -3.71 1.4 4 3 50657-51832 8.70 0.93 0.9 17 4 53938-54845 8.69 0.81 1.4 52 599.10 ±8.91

77 Table 4.25: Spectroscopic observations of SW Cephei Year HJD Phase VR (km/s) Spectral Type Source 2007 2454377 0.5614 2.3 ± 14.7 M3 lab DAO CCD 2008 2454749 0.1857 -11.0 ±21.3 M2 la DAO CCD 2009 2455086 0.7485 6.7 ±22.0 M4 lab DAO CCD 2010 2455489 0.4211 -0.1 ± 18.1 M4 lab DAO CCD

78 n 3790

M1 3745 3710 M2 r 3660 3615 _| 0} Q.M3 or 3605 3 £5 M4 3550 "g 3535 S o

M6 r 3350

M7 3250

M8 J i i_ -0.5 0.5 1.5 Phase I ' ' - .,.,.... I

20 - ^ . (0 1 - 1 1 - JFC ° .&• . a o o ( ( / <> - 0> f • > ' .2-10 - •o • (B cr ' '• -20

-30 i" . , , , i , J -0 5 0.5 1.5 Phase

Figure 4.18: Spectral variation in SW Cephei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 599.10 day period. 79 4.16 VV Cephei

The period of variability for VV Cep outside of eclipses is essentially unknown and cannot be estimated reliably from AAVSO observations. Figure 4.21 shows a plot of VR 0-C residuals from a new orbital solution obtained by Roger Griffin phased with the 285-day period determined from Fourier analysis of the measurements. Figure 4.19 shows VV Cep's variations in spectral type and radial velocity, phased using a period of 285 days determined from Roger Griffin's radial velocity residuals and a time of maximum light of JD2453392.76 from the AAVSO observations, as well as a montage of CCD spectra taken at different epochs. VV Cep shows strong emission in the cores of its hydrogen lines, presumably arising from material in the associated accretion disk in the system. From the Griffin radial velocity residuals, the star appears to reach smallest dimensions near phase 0.76, although we note that is not a conclusive result, as the AAVSO observations do not provide a reliable period and there is a lot of scatter in the Griffin radial velocity residuals. It is not clear at what phase the temperature reaches maximum. Its luminosity class has remained fairly constant, but the observations suggest that it may reach greatest luminosity class at earliest spectral type. Figure 4.20 shows VV Cep's period and average visual magnitude taken at approximately 10-year intervals from the AAVSO data. The 364-day period found is most likely an alias. Lack of proper phasing for the spectroscopic data means that they cannot be used at present to study pulsation in the star. The lack of any obvious periodicity in its light curve indicates that it may actually be an LC variable or some other type of variable. VV Cephei's eclipse period is 7430 days, which is approximately 20 years. Its most recent eclipse in 1997-1998 occurred approximately 68 days late (Leedjarv et al. 1999). Pulsation of the M supergiant component could explain the eclipse delay.

80 Table 4.26: AAVSO Observations of VV Cephei Subset Dates (V) % Diff. AV iV P (days) % Diff. All 24371-55396 5.18 1.4 6970 364.21 ±0.16 1 24371-27804 5.33 2.90 0.3 113 2 27828-27960 5.48 5.79 0.2 10 3 33052-33068 5.39 4.05 0.8 20 4 41172-42195 5.35 3.28 0.6 10 5 43301-49907 5.25 1.35 0.7 560 361.00 ± 0.84 -0.88 6 49922-53565 5.17 -0.19 1.4 1970 365.60 ± 0.46 0.38 7 53571-55396 5.11 -1.35 1.3 950 356.79 ±1.47 -2.04

Table 4.27: Spectroscopic observations of VV Cephei

Year HJD Phase VR (km/s) Spectral Type Source 1936 2428470 0.7936 Ml.5 la-lb DDO 1936 2438484 0.7955 M3Ib DDO 2005 2453655 0.1833 -15.0 ±25.1 M2Ib DAO CCD 2007 2454382 0.2812 14.3 ±14.8 M2Ib DAO CCD 2008 2454749 0.3306 4.1 ±17.9 M2Ib DAO CCD 2010 2455489 0.4302 25.2 ±16.5 M2Ib DAO CCD

81 i a i ••—r L 1 L 1.8

1.6

1.4

K1.2

a) 1.0 .> h^l^^

0.6 2005 - Phase 0.7792 2007 - Phase 0.3307 0.4 2008-Phase 0.6177 2010-Phase 0.2142 0.2

0.0 _i i I i i_ ' • n 4000 4200 4400 4600 4800 5000 5200 Wavelength (A)

MO -I 1 I 1 I I L I I 3790

M1 3745 3710 M2 E- • • • • • • • • 3660 3615 _i &M3f- ar 3605 g £?M4 r 3550 "g u 3535 S r Ji ' < E o > 2 | J- . <• > CC -20 - -

-40 • I • • -0 5 0.5 1.5 Phase

Figure 4.19: Spectral variation in W Cephei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 364.21 day period. 82 1 r T 5.1 ' i "' ' ' ' 1— • - ' ' 1 ' ' ' ' , , i i i 1 r 'T'" ' i V - CD • 3 5.2 _ ~E o> to • • 2 to _ ; • CD CD • CD CD • 5 5.4 -

• • , , , . , , I . , I . . , . i , , . i r 30000 35000 40000 45000 50000 5500C HJD (2400000+) i I i i i I ... I i i i I i 1 1 | 1 1 1 | I 1 • i 1 T"l ] . 366 • ^ •

364 ** ^^ • (0 t8"362 - Q • "-"•* <> - - =X 36 0

358

O 358 - - , I , . . r , , . i . , . I . 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) - • ' ••••'—r ' , ,_,—j_ , , ,,„ ,. y. i , i—|— i i 'i—i" i i • • • 5.12 -

5.14 -

CD • X3 3 5.16 — C • - s5-18 • - CO ; 3 5.20 — > 5.22 -

5.24 - • , . . , , , i i , , , i i i 2.554 2.556 2.558 2.56 2.562 log(Period)

Figure 4.20: Period and average magnitude changes in VV Cephei from AAVSO observations.

83 -i—i—i J 1 * I * i 1 1 I 1 l l I 4 r • • * * • • • * • «• * • • • • O 2 * • • • • # « • • * * • • » • * • * • #• * * »* • * • •* 6 V V # •• • • # »# • • - * * * * • • * * * § . \ • .* % • s< -. .. • 4g 0 # ^ • • « •, * •• ^- • * a • J ^> * "5 • • • • • * ~ • *>*• — • * • • m • XI • • • * • • «0 * • * * * * • %• .*• * »• * * • • \ • .•* • -2 • * • • * # • • • * * #* * • • • • • * • • * « i I ——l 1 1 1 L_ 1 » - -0.5 0.5 1.5 Phase

Figure 4.21: Phased VR O-C values for VV Cephei

84 4.17 MY Cephei

Figure 4.22 shows our spectrum of MY Cep, obtained in 2005. We could not determine the phase, as there are not enough photometric observations in the literature to find a solid period. Table 4.28 lists the details of our single observation. With a spectral type of M7, MY Cep is one of the coolest SRC variables in our sample. Because there are no published photometric observations of the star, it is not possible to infer a periodicity, although its M7 la spectral type is typical of long-period SRC variables. Thus, our single spectroscopic observation of the star cannot be used to infer anything about its variability, which has a small amplitude (AV ~ 0m.9) according to the GCVS.

Table 4.28: Spectroscopic observations of MY Cephei Year HJD Phase VR (km/s) Spectral Type Source 2005 2453655 -26.9 ±14.6 M7Ia DAO CCD

4500 5000 5500 6000 6500 Wavelength (A)

Figure 4.22: Spectrum of MY Cephei

85 4.18 n Cephei

Figure 4.23 shows /j, Cep's variations in spectral type and radial velocity, phased using a period of 843.65 days and a time of maximum light of JD2451656.51 from the AAVSO observations, and a montage of CCD spectra taken at different epochs. The star appears to reach smallest dimensions near phase 0.54. The tem­ perature is varying, but it is not clear at what phase it reaches maximum. Its lu­ minosity class did not vary much over the period of spectroscopic observation ex­ amined. Figure 4.24 shows \x Cep's changes in period and average visual magnitude taken at approximately 10-year intervals. The period and average magnitude undergo changes, some in consistent fashion. Its period is shorter when its average magnitude is brighter. The GCVS lists its period as 730 days. The light amplitude of [i Cep is small and variable, possibly masked by long-time-scale variations in mean brightness. Periodicity is not obvious. The spectroscopic observations are compromised by the lack of a firm phasing for the star. Is it indeed stable? Or is // Cep actually an LC variable? Ongoing monitoring of the star is needed to determine its true nature.

86 Table 4.29: AAVSO Observations of fi Cephei Subset Dates (V) % Diff. AV N P (days) % Diff. All -4771-55442 4.15 2.5 47489 843.65 ±0.12 1 -4771- -1150 4.17 0.48 1.0 45 899.96 ± 14.45 6.67 2 -959-1989 4.04 -2.65 1.4 113 749.10 ±7.95 -11.21 3 2924-6157 4.33 4.34 2.0 173 747.23 ± 8.01 -11.43 4 6187 -9820 4.28 3.13 1.1 139 837.03 ± 7.50 -0.78 5 9855 -13466 4.16 0.24 0.9 132 810.98 ± 7.06 -3.87 6 13487-17127 4.10 -1.20 1.1 327 853.37 ±4.98 1.15 7 17133-20774 4.16 0.24 1.8 509 999.62 ± 16.45 18.49 8 20786-24428 4.18 0.72 1.3 336 697.69 ± 4.95 -17.30 9 24445-20876 4.01 -3.37 1.0 472 797.72 ± 4.51 -5.44 10 28086-31730 3.98 -4.10 0.8 388 753.24 ±3.30 -10.72 11 31730-35380 4.23 1.93 1.8 2405 886.56 ±2.16 5.09 12 35381-39029 4.25 2.41 2.2 1830 1116.24 ±4.33 32.31 13 39029-42680 4.28 3.13 2.4 5809 977.21 ± 2.78 15.83 14 42680-46229 4.23 1.93 2.3 6215 863.31 ± 1.92 2.33 15 46231-49980 4.19 0.96 2.1 9634 859.99 ±1.29 1.94 16 49980-53629 4.05 -2.41 2.3 13290 870.46 ± 0.94 3.18 17 53630-55442 4.00 -3.61 1.8 5672 853.57 ±2.66 1.18

87 Table 4.30: Spectroscopic observations of /i Cephei Year HJD Phase VR (km/s) Spectral Type Source 1920 2422633 0.4845 Ml la DAOPg 1921 2423015 0.9372 M1.5 Ia+ DAOPg 1922 2423295 0.2689 M2Ia DAO Pg 1945 2431688 0.2129 Ml la-lab DDO 1949 2433192 0.9952 Ml la-lab DAOPg 1951 2433960 0.9057 MO.5-1 la DDO 1967 2394794 0.8170 M2Ia DDO 1968 2394864 0.9010 M2Ia DDO 1970 2440848 0.0657 M2.8 la Wing 1970 2440875 0.0977 M2.7 la Wing 1970 2440900 0.1273 M2.5 la Wing 1970 2440904 0.1321 M2.4 la Wing 1973 2441962 0.3856 M0.6 la Wing 1974 2442291 0.7754 M1.3 la Wing 1975 2442591 0.1309 M2.5 la Wing 2005 2453655 0.2403 30.4 ± 19.9 M2 la DAO CCD 2007 2454375 0.0934 24.2 ± 16.9 Ml la DAO CCD 2008 2454749 0.5364 16.8 ± 16.5 Ml la DAO CCD 2009 2455086 0.9359 -3.0 ± 19.6 Ml la DAO CCD 2010 2455489 0.4132 21.8 ±19.2 Ml la DAO CCD

88 I . I I I L 1.4

1.2

1.0 x j3 U- 0) 0.8 JS 0> 0.6 rz 2005 - Phase 0.2403 0.4 2007 - Phase 0.0934 2008 - Phase 0.5364 2009 - Phase 0.9359 0.2 2010-Phase 0.4132

0.0 J i i i l_ 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) 1 3790 ! " 1 m M1 • • • • • • • • • • 3745 9 • m • 3710 M2 L • • «• • • •• - 3660 I 3615 H Q.M3 -• • 3605 g 3550 "g 5M4 3535 gj. •s c &M5 s

M6 r r 3450^

M7 9 Spectrophotometric data -J| 3350 • All other data J i • I i . , . •• 3250 -0.5 0.5 1.5 Phase

Figure 4.23: Spectral variation in /x Cephei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 843.65 day period. 89 OQ

1 Visual Magnitude Period (Days) Average visual Magnitude CD 4k fx ^ f. i» f. A 4k 4k 4k .ft 4k 4k CD (O

11 I I I I It I I I I I I I II I I I I I I I t I I J t I I I I J I I I I I 8 8 1 to it—r r v I I •|'**>|" ii|i •I "M ' 4^

CO o

1CO p> OQ CD 3 g. a CO CO o s- (D M 3. (D CO W

a

CO

CO

>

O o cr CO < »*'* • •>••'• i.... i •»*. i.. i. i *... i. k_L. • • » * • i • * • > • • I i i i . I • • ' i • • < • l < • • • I « • o 4.19 T Ceti

Figure 4.25 show's T Cet's changes in spectral type and radial velocity, phased with a period of of 160.84 days and a time of maximum light of JD2422499.4 from the AAVSO observations. Although Joy found the spectral type to be constant, the radial velocity variation hints at pulsation. The radial velocity plot indicates that T Cet reaches smallest dimensions near phase 0.46. Figure 4.26 shows T Cet's changes in period and average visual magnitude taken at approximately 10-year intervals. The GCVS lists a period of 158.9 days, nearly identical to that found through our Fourier analysis. The periodicity is well-established, but lack of spectroscopic data impedes progress in learning more about the nature of its variability. Variations in mean magnitude may imply dust extinction episodes. It is odd that Joy's spectra of the star show no variation, but it is possible that they were underexposed or taken at a high airmass (T Cet would have been low on the horizon when Joy was observing it at Mount Wilson, as it has a of —20°), making them difficult to classify.

Table 4.31: AAVSO Observations of T Ceti Subset Dates (V) % Diff. AV N P (days) % Diff. All 20178-55237 6.11 3.0 6395 160.84 ± 0.01 1 20178-23824 5.99 -1.96 1.8 194 158.13 ±0.28 -1.69 2 23987-27475 6.24 2.13 1.5 397 160.23 ±0.19 -0.38 3 27632-29883 6.18 1.15 1.9 231 161.93 ±0.39 0.68 4 31388-34775 5.99 -1.96 2.7 389 162.26 ±0.20 0.88 5 34781-38427 6.20 1.47 2.2 786 159.69 ±0.17 -0.72 6 38428-42072 6.19 1.31 2.2 825 164.85 ±0.16 2.49 7 42078-45722 6.07 -0.65 2.3 1049 161.59 ±0.11 0.46 8 45728-49374 5.99 -1.96 2.3 916 164.92 ± 0.79 2.53 9 49381-53026 6.03 -1.31 2.1 1177 157.65 ±0.17 -1.99 10 53030-55237 6.29 2.95 2.8 431 163.14 ±0.31 1.43

91 Table 4.32: Spectroscopic observations of T Ceti

Year HJD Phase VR (km/s) Spectral Type Source 1939 2424012 0.4044 29 M5 Joy 1939 2424037 0.5598 28 M5 Joy 1939 2424073 0.7836 17 M5 Joy 1939 2424333 0.4001 37 M5 Joy 1939 2424365 0.5991 26 M5 Joy 1939 2424393 0.7732 26 M5 Joy 1939 2424404 0.8416 28 M5 Joy 1939 2424432 0.0157 35 M5 Joy 1939 2424450 0.1276 40 M5 Joy

92 IVIU j , , , , | , , , , ,,,,,, 3790

M1 -f 3745 3710 M2 -j 3660 3615 _J SM3 „,; 3605 g ,>. • fr- —355 0 "g «M4 3535$ - c H 3 ,g-M1 5 3450 ~ M6 -i 3350 M7 -i 3250 U<1 , . I,.,.! -0.5 0.5 1.5 Phase 1 . 1 I I 1 I ' I ' 1 ' . 1 40 f^~^ : \» \ • - M35 1 . JC . If 30 v- • • \- 8 • / \« • / ^ >Ct> \» • ' !2 25 • / •• •D • a . - 20

• • 1 1 j -0.5 0.5 1.5 Phase

Figure 4.25: Spectral variation in T Ceti. Top: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 160.84 day period.

93 c—r-'t 1 1 ' ' 1 ' i 1 r- -i "r 1 i • 1 ' i i ' • 1 ' t - • • • 6.00 • • .§6.05 - 3 • - c • §"6.10 - 5 . 75 * 5 6.15 _ 5 * • ™ JO 6.20 • a> > < • . 6.25

• ; , t , T , . 6.30 - , , , 1 . . • ! i i i i . , i , , 4 25000 30000 35000 40000 45000 50000 5500 HJD (2400000+) >•• i ' ' ' ' 1 >• i • • • i i i i . i |

i o • - 164 - • i-

a 162 - i - i • £ 160 -- i - i

-$ , 1 , . . , 1 i , . . • i i i , . i ,»..." 25000 30000 35000 40000 45000 50000 55QC HJD (2400000+)

1 1 r J 1 ' 1 1 1 J •''' ' - 1 1 - • • • • 6.00 I • 6.05 "" ™ • CD "O -m. - 3 6.10 _ c • D) CO 5 6.15 - - „ ce . 3 . # , CO - • - >6.20 •

• 6.25

• • It — 6.30 > 1 1 t . . 1 i t t { 2.2 2.205 2.21 2.215 log(Period)

Figure 4.26: Period and average magnitude changes in T Ceti from AAVSO observations.

94 4.20 RW Cygni

Figure 4.27 shows RW Cyg's variations in spectral type and radial velocity phased with a period of 520.52 days and a time of maximum light of JD2444834.79 from the AAVSO observations, as well as a montage of CCD spectra taken at different epochs. The star appears to reach smallest dimensions near phase 0.63. It also appears to reach highest temperature near light minimum. Its luminosity class did not vary over the course of the observations we obtained. Figure 4.28 shows RW Cyg's changes in period and average visual magnitude taken at approximately 10- year intervals. The star's mean brightness appears to change, but its periodicity needs to be better established with more reliable photometry. The GSVS lists a period of 550 days, 30 days longer than our 520 day period. Once better photometry is available, the spectroscopic data will be more useful for interpreting the nature of the star's variability. The star appears to have undergone a dramatic change in light amplitude recently, as it was larger in the past (A V ^ 3m) compared with at present (AV ~ lm.5).

Table 4.33: AAVSO Observations of RW Cygni Subset Dates (V) % Diff. AV N P (days) % Diff. All 16429-55244 8.82 3.4 1907 520.52 ± 0.06 1 16429-20077 8.29 -6.01 2.0 90 516.86 ±3.44 -0.70 2 20079-23624 8.74 -0.91 3.4 534 550.39 ± 3.96 5.74 3 23892-26660 9.02 2.27 2.1 66 571.95 ±14.59 9.88 4 28503-29264 8.83 0.11 2.4 7 5 33485-33578 8.47 -3.97 1.2 3 6 34954-38323 8.95 1.47 2.4 91 653.70 ± 8.81 25.59 7 38331-41974 9.03 2.38 1.0 194 634.31 ± 5.90 21.86 8 41983-45624 9.02 2.27 1.5 226 554.16 ±9.65 6.46 9 45638-49275 8.84 0.23 1.9 234 524.22 ± 4.05 0.71 10 49303-52686 8.67 -1.70 1.6 315 525.51 ±2.28 0.96 11 52997-55244 9.06 2.72 1.6 102 478.36 ± 6.43 -8.10

95 Table 4.34: Spectroscopic observations of RW Cygni Year HJD Phase VR (km/s) Spectral Type Source 2007 2454382 0.3240 -0.1 ± 16.6 M3.5 lab DAO CCD 2008 2454749 0.0286 -25.5 ± 22.2 M4 lab DAO CCD 2009 2455086 0.6758 -27.8 ± 19.6 M3 lb DAO CCD

96 r—r—y

2007 - Phase 0.3240 2008 - Phase 0.0266 2009 - Phase 0.6758

o.o w. I I I L J_ _l_ 4200 4400 4600 4800 5000 5200 Wavelength (A)

-O.S

r ' 1

10 " - . : "m 0 •~ A " E -10 - 'o o . SB . > -20 - <0 / T1J0 t „„ • • CC -30 ' ' _ -40 -

i , i , i i. i -0.5 0.5 1.5 Phase

Figure 4.27: Spectral variation in RW Cygni. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 520.52 day period. 97 8.4 -

"E

CO S6.6 ra

s Z m _ = CD

CO I 9.0 -

20000 25000 30000 35000 40000 45000 50000 5500 HJD (2400000+) 660 .ii>i 1 i v I 1 4 | | r • T™• 1 4 J

640 i

620 -

~_

(Days ) <» i

Perio d ^ ~_ f •

• * • 500 ~

480 , , , , i , i. 4 1 1 i , . ,*r 20000 25000 30000 35000 40000 45000 50000 5500 HJD (2400000+) 1 ' 1 I ' 1 1 1 > r 1 | . , , ,- 4 1,11 ' 1 ' •

8.4 - "

ffl . . 3 •1=8.6

• • CO • s • -S9 8.8 > •• - • * 9.0 • • • . 1 , . , I . , 1 t , . ! , 1 I 1 1 4 , I i r ' * 2.68 2.7 2.72 2.74 2.76 2.78 2.8 log(Period)

Figure 4.28: Period and average magnitude changes in RW Cygni from AAVSO observations.

98 4.21 AZ Cygni

Figure 4.29 shows AZ Cyg's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The spectroscopic observations were phased using a period of 459.17 days, determined from the AAVSO observations. We used a time of maximum light of JD2440074.4 for the older spectrophotometric observations and JD2451418.62 for the recent CCD observations. The GCVS lists an identical period of 459 days and a light amplitude of AB ~ lm.8. From the data we have at present, we fitted the radial velocity variations with a sine wave and found that the star appears to reach mean radial velocity after passing through velocity maximum near phase 0.75, indicating its phase of smallest dimensions. AZ Cyg appears to reach smallest dimensions near phase 0.75. It appears to reach highest temperature and greatest luminosity near light maximum. Figure 4.30 shows AZ Cyg's changes in period and average visual magnitude taken at approximately 10-year intervals. The star has a small amplitude and exhibits possible extinction dips, but phasing of recent spectroscopic data is difficult because of the lack of recent photometric data. Further study awaits additional photometry to support the results described here.

Table 4.35: AAVSO Observations of AZ Cygni ubset Dates (V) % Diff. AV N P (days) % Diff. All 29451-55156 8.63 3.1 654 459.17 ±0.11 1 29541-40426 8.56 -0.81 2.4 126 449.58 ± 5.56 -2.09 2 40426-44048 8.57 -0.70 1.9 169 417.99 ±3.31 -8.97 3 44137-47737 8.29 -3.94 2.3 112 489.36 ± 4.07 6.57 4 47745-51282 8.63 0.00 2.5 78 474.18 ±3.66 3.27 5 51385-55156 8.96 3.82 3.0 170 417.16 ±2.13 -9.15

99 Table 4.36: Spectroscopic observations of AZ Cygni Year HJD Phase VR (km/s) Spectral Type Source 1970 2440869 0.7301 M3.3 lab Wing 1970 2440872 0.7366 M3.2 lab Wing 1970 2440875 0.7431 M3.4 lab Wing 1970 2440904 0.8063 M2.9 lab Wing 1973 2441962 0.1113 M2.8 la Wing 2005 2453652 0.8654 -11.6 ±21.8 M3Iab DAO CCD 2007 2454377 0.4449 2.01 ± 16.9 M2Ia DAO CCD 2008 2454749 0.2552 -7.4 ±20.3 M2Ia DAO CCD 2009 2455090 0.0006 -12.4 ±20.1 M3Ib DAO CCD 2010 2455489 0.8674 -12.2 ±15.7 M3Iab DAO CCD

100 1 T I T !' ' r • ' t •

•n ">

2005 - Phase 0 5804 04 - 2007-Phase 01600 2008 - Phase 0 9702 02 2009-Phase 0 7157 2010 - Phase 0 5825

00 ' " • • • I i ._ 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO I L I 3790

M1 3745 H 3710 M2 • • -. 3660 - 3615 _) S.M3 •• • _ ® -i 3605 | -i 3550 "§ «M4 -. 3535 S c "G T 0) 3 _ 3450 •=£

M6 3350 • Spectrophotometric data M7 • An other data 3250

MB -0 5 05 15 Phase | -, 1 r • . -| >•- - i r- • , ,,.,,,, , " \

T T • 10 -i - "in . 1 I o A~~\ 1 u o > N. - \^ - .g-10 k^J K 4 •__^/ 75 TJ 5-20

-30 J _

1 1 1 1 1 X . 1 -0 5 05 1 5 Phase

Figure 4.29: Spectral variation in AZ Cygni. Top: Spectra from different epochs. Middle: Spectral type as a function of phase Bottom: Radial velocity as a function of phase. Data phased with 459.17 day period. 101 3 era' Visual Magnitude Period (Days) Average Visual Magnitude PS 03 CD 03 Q3 CD Q3 CO CO 09 CD >s ct> to CO ^ bs a> *• I I I I I I I ! I I I I I I I I I T I I I I V I I I I I I 1 1 I I I I I I I I I I II I I I I I I I I I w T" rp-i o

o' (^ P a- >-* C,Em a>

Cm 5. c a CD o O to tr •v cDm 3. CD

tsi O cm

o 3 > CO CO O o

$ 1' • ' • I ' > • ' * • < • • I » I ll. I • . < ! 1 • • 1 • I • . • . I • o 0 4.22 BC Cygni

Figure 4.31 shows BC Cyg's variations in spectral type and radial velocity, as well as a montage of CCD spectra taken at different epochs. The spectroscopic observations were phased using a period of 692.7863 days, found by plotting succes­ sive times of maximum light versus cycle number and performing a linear regression. That period gave better results than the period found through Fourier analysis. We fitted the radial velocity variations with a sine wave and found that the star appears to reach mean radial velocity after passing through velocity maximum near phase 0.44, indicating the phase of smallest dimensions. BC Cyg appear to reach smallest dimensions near phase 0.44. It appears to reach highest temperature near light max­ imum. It reaches greatest luminosity class at highest temperature, but is apparently near largest size then. Figure 4.32 shows BC Cyg's changes in period and average visual magnitude taken at approximately 10-year intervals. We also have 866 blue light observations from the Harvard and Sternberg collections. They cover the dates JD2411584.7-2540284.44, with an average B magnitude of 12.76 and AB ~ lm.8. We found a period of 692.21 ± 0.25 days for the photographic observations. The period is well-established from both sets of photometry and appears to be increasing, and the light amplitude from the AAVSO observations is AV ~ 2m.O. There is good spectroscopic coverage for the star. Occasional decreases in mean magnitude may indicate episodes of dust extinction.

Table 4.37: AAVSO Observations of BC Cygni Subset Dates (V) % Diff. AV N P (days) % Diff. All 33207-53422 9.72 .. 2.8 937 699.35 ±0.52 1 33207-44155 10.17 4.63 2.8 177 746.37 ±1.97 6.72 2 44164-47803 9.82 1.03 1.7 129 693.83 ± 7.99 -0.79 3 47810-51442 9.56 -1.65 1.8 210 690.43 ± 4.79 -1.28 4 51460-55422 9.58 -1.44 2.0 421 745.05 ± 3.83 6.53

103 Table 4.38: Spectroscopic observations of BC Cygni

Year HJD Phase VR (km/s) Spectral Type Source 1940 2429855 0.9498 -6 M4 Joy 1940 2429893 0.0046 1 M3 Joy 1970 2440768 0.7021 M3.1 la Wing 1970 2440799 0.7469 M2.9 la Wing 1970 2440848 0.8176 M2.9 la Wing 1970 2440868 0.8464 M2.7 lab Wing 1970 2440869 0.8479 M2.7 lab Wing 1970 2440894 0.8840 M3.0 lab Wing 1973 2441930 0.3794 M4.8 lb Wing 1973 2441931 0.3808 M4.7 lab Wing 1973 2441962 0.4256 M4.7 lb Wing 2005 2454652 0.2992 1.34 ±15.8 M4Iab DAO CCD 2007 2454378 0.3469 -2.3 ±13.7 M3Iab DAO CCD 2008 2454749 0.8825 -21.9 ±19.8 M3Ia DAO CCD 2009 2455086 0.3690 2.2 ±20.7 M3Ib DAO CCD 2010 2455487 0.9478 -25.8 ±16.5 M3 la DAO CCD

104 T >- T—'—'—'—r

2005 - Phase 0 2992 2007 - Phase 0 3469 2008 - Phase 0.8625 2009 - Phase 0.3690 2010-Phase 0.9478

4200 4400 4600 4800 5000 5200 Wavelength (A)

•F- . —, T 3790 MO F ' ' ! M1 r -. 3745 3710 M2 3660 3615 _i as S.M3 » 10 3605 3 P 3550 "g gM4 • • • • 3535 S t3 c CD %® " M5 W 3450-5 M6 -i r 3350 M7 * Spectrophotometry data J • Ail other data ^ 3250 MB r- r , 1 1 , • i

Figure 4.31: Spectral variation in BC Cygni. Top: Spectra from different epochs. Mid­ dle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Observations phased using 692.7863 day period. 105 09 Visual Magnitude Period (Days) Average Visual Magnitude o o a to to to to -J s -i s ro ^* b to bs *J b> W i i i > | i i i i | i i i r | r i i i | i i) i' | i 'i i i | i i r 6 S ( I I I I I I t I to HH

o a- g

•-) p cm

TO 3. c a CD © o tCl 0) 05 p TJ oi 13 a td O O cm 0 I • I

CO O o cr 01 < p 1 el­ l«i..lll»|l»iitl«'.|t.|.iil ••'•»• • • • I I «... I .... I 1 • ' ' ' ' ' • • • '••'•' f ' 1 • • ' I 1 t t « i 1 s' 0 4.23 V Eridani

Figure 4.33 shows V Eri's changes in period and average visual magnitude taken at approximately 10-year intervals. The GCVS lists a period for the star of 97 days, quite different from the 290 day period we found through Fourier analysis, and a spectral type of M6 II. The period is not well established, and the star under­ goes variations in mean brightness, possibly from dust extinction episodes. Its small amplitude is in agreement with an expected low pulsation amplitude for a luminos­ ity class II M supergiant, where convection and larger gravity are more efficient at damping radial pulsation.

Table 4.39: AAVSO Observations of V Eridani ubset Dates (V) % Diff. AV N P (days) % Diff. All 19484-55266 8.92 4.6 3633 289.77 ±0.21 1 19484-22967 8.85 -0.78 2.6 93 278.39 ± 2.44 -3.93 2 25253-25328 8.96 0.45 0.5 5 3 32626-37703 9.06 1.57 2.1 28 292.05 ± 1.74 0.79 4 37973-41384 9.03 1.23 1.9 78 278.18 ±1.66 -4.00 5 41654-44465 8.74 -2.02 1.7 25 276.51 ± 1.89 -4.57 6 45048-48683 8.78 -1.57 3.4 29 286.45 ± 2.39 -1.14 7 49038-52314 8.64 -3.14 1.9 74 288.05 ± 2.31 -0.59 8 52340-55266 9.52 6.73 1.3 27 296.46 ± 3.40 2.31

107 8.6 "—i 1 1 1 1 1 1 1 1 j 1 1 t ! I i" i 1 i i 1 1 1 1 j 1 i r- i.r-.. ... m ... .v. M , •

ffi 8.8 -a 3 a> 2 9.0

(0 a>9.2 a> 5 <5 3 9.4 -

:...... •: 25000 30000 35000 40000 45000 50000 HJD (2400000+)

i i -T 1 ! 1 1—1 1 1 ' V ' ! " -J "•'••'•— I i I 1 |' ' ' ' •^— 300 -

o : 295 -

• &290 {

§285 i—•— i £ 280 : < I 275 I ]

25000 30000 35000 40000 45000 50000 HJD (2400000+) B.b . i | . , - • . 8.8 • • • • 9.0 • • • S

9.2 _

9.4

il_ , 1 . , , , 1 ....!.., • 1 » t 1 , 1 , , , , , . • : 2.445 2.45 2.455 2.46 2.465 2.47 log(Period)

Figure 4.33: Period and average magnitude changes in VEridanus from AAVSO observations.

108 4.24 TV Geminorum

Figure 4.34 shows TV Gem's variations in spectral type and radial velocity, phased using a period of 425.14 days and a time of maximum light of JD2437219.03 from the AAVSO observations, and the one CCD spectrum we obtained. The star appears to reach its lowest temperature near light maximum. Its luminosity class does not vary much over the course of observation. The radial velocity results are inconclusive, being separated by 68 years temporally. Figure 4.35 shows TV Gem's changes in period and average visual magnitude taken at approximately 10-year in­ tervals. The period is well established in older archival observations, but not from the most recent AAVSO data. The light curve also suggests a possible 2000-day long cycle from starspot activity. TV Gem has a roughly constant mean brightness, but the pulsation is less marked with recent data. The star needs more radial velocities and precise photometry to establish a reliable period, which would likely reduce the scatter in figure 4.34 through improved phasing.

Table 4.40: AAVSO Observations of TV Geminorum nbset Dates (V) % Diff. AV N P (days) % Diff. All 27750-55329 6.87 2.6 9501 425.14 ±0.07 1 27750-29881 6.78 -1.31 0.7 22 425.78 ±10.12 0.15 2 32176-35049 7.13 3.78 1.2 262 432.06 ± 2.59 1.63 3 35053-38670 6.85 -0.29 2.3 767 457.32 ±1.61 7.57 4 38701-42348 6.88 0.15 1.8 1512 507.74 ±1.11 19.43 5 42357-45984 6.89 0.29 2.3 1841 431.92 ±0.87 1.60 6 46001-49640 6.86 -0.15 2.3 2154 443.55 ± 0.59 4.33 7 49654-53132 6.81 -0.87 2.5 2434 419.86 ±0.72 -1.24 8 53963-55329 6.90 0.44 1.7 838 485.66 ± 2.78 14.24

109 Table 4.41: Spectroscopic observations of TV Geminorum Year HJD Phase VR (km/s) Spectral Type Source 1940 2430416 0.9981 16 M2 Joy 1940 2430423 0.0146 18 M2 Joy 1969 2440562 0.8620 M0.6 lab Wing 1970 2440592 0.9326 M1.0 lab Wing 1970 2440630 0.0220 Ml.2 lab Wing 1970 2440633 0.0290 Ml.l lab Wing 1970 2440869 0.5842 M0.3 lab Wing 1970 2440899 0.6547 M0.3 lab Wing 1970 2440903 0.6641 MO.O la Wing 1970 2440951 0.7770 M0.6 lab Wing 1971 2441015 0.9276 Ml.3 lab Wing 1973 2442015 0.2797 K5.5 lab Wing 2010 2455490 0.9762 24.4 db21. 0 Ml lab DAO CCD

110 K5 r- i i i i T ' ' ' ' 1— I I 1

MO i- -: 3790 • • M1 j- -. 3745 *•• -i 3710 0,M2 j- -. 3660 51 -i 3615 3 t M3 r •I 3605 JD S E- -I 3550 ES. -. 3535 5

M6 r 3350 • Spectrophotometric data M7 I- • All other data 3250

M8 * -0.5 0.5 1.5 Phase

—, , 1 1 1 T» —i 26 - . • • .

-.24 _ 01 E J£ 22 - 5U o " 5? >20 - T«3 - (0 tt - 18 • • ~

16 • • i 1 , . 1 i -0.5 0.5 1.5 Phase 1.4

j L 4000 4200 4400 4600 4800 5000 5200 Wavlenglh (A)

Figure 4.34: Top: Spectral variation in TV Geminorum. Middle: Radial velocity variation. Bottom: CCD spectrum of TV Geminorum. Data phased with 425.14 day period.

Ill 1 r , | 1 i " ' ] • | i ! 1 5 1 ' ' 1 1 • ;• ' ' 6.80 •

-§6.85 • • " as • • S>6.90 (8 • "

§6.95 7 - (0 "5

7.10

, I , . ,•, 1 . 1 . . . . 1 . 1 . , 1 • 30000 35000 40000 45000 50000 55000 HJD (2400000+) > 1 i ,II ' i —' ' >- 6.80 '•_ m •

6.8S • • • • • ; "§6.90 7 •

«6.95

ta s3 7.00 - - V) > 7.05 7 -

7.10

• , i i • . - 2.64 2.66 2.68 2.7 log(Period)

i | i i ; • I ' 1 ' ' ' 1 ' . 6.8 •

6.85 • • • -8 • • ': ^ 6.9 • as c CO W6.95 Ta 3 7 •j 0) > 7.05 -

7.1

f , I i 2.64 2.66 2.68 2.7 log(Period)

Figure 4.35: Period and average magnitude changes in TV Geminorum from AAVSO obser­ vations.

112 4.25 IS Geminorum

Figure 4.36 shows IS Gem's changes in period and average visual magnitude taken at approximately 10-year intervals. The 359-day period found by Fourier anal­ ysis is likely a result of the seasonal gaps in the observations. Wroblewski (1961) obtained P = 47 days from unpublished observations. In any event, the star's early spectral type of K3 II (from the GCVS) implies it is not a true SRC variable. The light amplitude listed in the GCVS of AB = lm.7 is confirmed by the AAVSO visual observations, but it is difficult to say anything more.

Table 4.42: AAVSO Observations of IS Geminorum ubset Dates (V) % Diff. AV N P (days) % Diff. All 40313-55348 5.82 3.0 3332 359.25 ± 0.33 1 40313-39460 5.89 1.20 1.7 711 351.82 ±0.50 -2.07 2 39467-47610 5.88 1.03 1.2 562 366.85 ± 0.46 2.12 3 47613-51261 5.85 0.52 1.3 632 364.85 ±0.71 1.56 4 51265-54913 5.75 -1.20 1.7 1315 376.56 ± 0.30 4.82 5 54915-55348 5.79 -0.52 2.3 112 319.44 ±9.09 -11.08

113 . [ i 1 1— •~l 1 ! 1 1 — |' 1 1 1 • • 5.76 - "

IP " . -U5.78 — as3 c ^ ' §"5.80 - 5 ; §5.82 - 10 • "> * £,5.84 _ 2o> • . o%5.8 6 —- < . 5.88 •

' 1 11 I 1 i t i 1 i i 1 I 1 , 1 1 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+)

- i ' • ' i i . i | i i | i i i t

370 - - • • ran M _

_• - (Days )

• Perio d J

320 o-

310 -i , , , 1 i • i 1 i i i i i i i i i i , i , , . i 3 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 1 1 J 1 r 1 . 1 1 1 1 1—r —i—i—i—: • - 5.76 -

5.78 - U> - • - "O -_ 3 5.8 — c . S" . s5-82 • - CO «5.84 - > • ' 5.86 "

5.88 •

• liir-tilr^ril 4 1 t I 14 11 2.51 2.52 2.53 2.54 2.! 2.56 257 log(Period)

Figure 4.36: Period and average magnitude changes in IS Geminorum from AAVSO obser­ vations.

114 4.26 V959 Herculis

Figure 4.37 shows V959 Her's spectral type, phased with a period of 140.37 days and a time of maximum light of JD2454838, determined from the very few AAVSO observations (the only available photometry). The spectral type did not change over the course of the observations that we obtained. Figure B.53 shows V959 Her's light curve. Very little can be concluded about the star given the lack of photometric data and the non-variability in spectral type. Is it an SRC variable or an LC variable?

Table 4.43: AAVSO Observations of V959 Herculis Subset Dates (V) %Diff. AV N P (days) % Diff. All 51274-55059 6.46 0.4 40 140.37 ±0.73

Table 4.44: Spectroscopic observations of V959 Herculis

Year HJD Phase VR (km/s) Spectral Type Source 1947 2432317 0.1347 M4Ib DDO 1948 2432699 0.8628 M4II DDO 1950 2432317 0.5972 M4Ib DDO 1952 2432317 0.2986 M4II DDO

115 MO F- 1 ' ' ' ' 1 ' ' 1 ' ' V-5^| 3790 M1 -1 3745 3710 M2 -i 3660 3615 H S.M3 —360 5 § ,5* t- ~- 3550 *§ «M4 • • • • • • • • -• 3535 j3 1 c 1 M5 3 w ~ 3450-5 "«••••» MS •j 3350

M7 i 3250

MB ]• • • 1 > < , , 1 . -i -0.5 0.5 1.5 Phase

Figure 4.37: Spectral type versus phase for V959 Herculis, phased with 140.37 day period.

116 4.27 a Herculis

Figure 4.38 shows a Her's variations in spectral type and radial velocity, phased with a period of 508.07 days and a time of maximum light of 2451153.34 from the AAVSO observations, and a montage of CCD spectra taken at different epochs. It appears to reach smallest dimensions near phase 0.12. The temperature is varying, but it is not clear at what phase it reaches maximum. Greatest luminosity class appears to occur at highest temperature. Figure 4.39 shows a Her's changes in period and average visual magnitude taken at approximately 10-year intervals. The light variations do not appear strikingly marked in the AAVSO data and are more irregular. Even the light amplitude is difficult to define. The brightness is roughly constant but not particularly periodic. The phasing with P = 508 days appears to give reasonable results, however.

Table 4.45: AAVSO Observations of a Herculis ubset Dates (V) % Diff. AV N P (days) % Diff. All 28182-55423 3.30 2.2 15632 508.07 ±3.90 1 28182-30316 3.31 0.30 1.0 211 499.78 ±1.14 -1.63 2 31585-35139 3.31 0.30 1.5 1345 539.60 ±1.06 6.21 3 35142-38774 3.36 1.82 2.1 964 560.59 ±17.14 10.34 4 38855-42429 3.26 -1.21 1.6 2393 542.35 ±1.00 6.75 5 42452-46083 3.33 0.91 1.9 2206 553.43 ±1.22 8.93 6 46097-49689 3.31 0.30 1.4 2661 526.62 ±1.00 3.65 7 49746-53388 3.30 0.00 1.8 3856 487.41 ± 3.08 -4.07 8 53391-55424 3.25 -1.52 1.8 1996 477.09 ± 2.03 -6.10

117 Table 4.46: Spectroscopic observations of a Herculis

Year HJD Phase VR (km/s) Spectral Type Source 1935 2427978 0.3787 M5 la-lb DDO 1935 2437984 0.3905 M5 la-lb DDO 1966 2394293 0.3476 -65.9 ±0.7 M4Ia DAO Pg 1968 2440033 0.1089 M5Ib DDO 1971 2441047 0.8806 -58.7 ±0.4 M4Ia DAO Pg 1975 2442513 0.0087 -20.5 ±0.3 M4Ia DAO Pg 2006 2454027 0.6562 -37.1 ±8.1 M5 lab DAO CCD 2009 2455086 0.7407 -55.2 ±19.8 M6Ib DAO CCD

118 2.0 [T 1966-Phase 0.6529 1971 -Phase 0.1056 1975-Phase 0.9915 1.5 2006 - Phase 0.6568 - 2009 -Pha^e 0.7415 X u. Q) UJe .5 1.0

0.5 -

L 0.0 U —' ' L. • • 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO I 1- 3790

M1 - 3745 3710 M2 3660 3615 _| S.M3|- 3605 g 3550 "g 3535 S »M4 - • • c

CO M5 s

M6 h 3450-

M7 - 3353250

M8 r i l -0.5 0.5 1.5 Phase l_ —• ' '1 ' -20 '' ' J

<> In -40 - E - }/) .1 / * » V ( 1

o -

Velocit y /• Radia l d o o -

-100 1- , 1 1 -1 -0.5 0.5 1.5 Phase

Figure 4.38: Spectral variation in a Herculis. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 508.07 day period. 119 1 Visual Magnitude Period (Days) Average Visual Magnitude CD OS o> u u u 09 to o> u> id u CO id K> ha £t CO IO O CO CO to U 1 *. CD * CO 1 ' 1 -i—i—i—I—i—r I 50 • ' *0 09 0) >-j o a- p 0 INJ • . a b> "" "" ?, - 01 H< P aq - a> M • " 3 si p "* " Oq 1=1 . c • • a CD W o M — ~ to p <8 o 1 - CO &-* • 0 Nl P • • a> >-o ) C . . ^t CO M • tr CO "" O • - 3 • • > . - ' % N> CO O *^» .— — o • T w at->i KJ '• c-t- ^1 "I , . 1 , , I I ... I ... I I » » • I—U-LI o" , " 13 4.28 RV Hydrae

Figure 4.40 shows RV Hya's changes in period and average visual magnitude taken at approximately 10-year intervals. A poor distribution in the AAVSO obser­ vations makes a reliable period determination difficult. A lack of spectroscopic data makes understanding the nature of the star's variability an insurmountable challenge. More observations of both types are needed. The GCVS lists a period of 116 days for the star, but we found that the 243 day period had a stronger signal in the Fourier analysis. Its spectral type is listed as M5 II in the GCVS. Note the discrepancy between the period listed in the GCVS and that derived here, the later of which is more consistent with a small amplitude cool SRC variable, if indeed it is a member of the class.

Table 4.47: AAVSO Observations of RV Hydrae ubset Dates (V) % Diff. AV N P (days) % Diff. All 21663-55245 7.86 1.7 410 243.27 ±0.10 1 21663-26851 8.09 2.93 1.4 28 247.83 ±1.10 1.88 2 34744-36255 7.81 -0.64 1.2 86 252.04 ± 2.27 3.61 3 36271-39911 7.83 -0.38 1.6 195 241.54 ±1.52 -0.71 4 39940-43513 7.87 0.13 0.5 44 238.07 ±1.15 -2.14 5 43599-47098 7.89 0.38 1.3 38 247.54 ±1.67 1.76 6 47214-55245 8.01 1.91 1.0 19 233.53 ± 0.89 -4.00

121 7.80 1 , | I ; ' 1 ' ' ' ' •

• it. ) 7.85 - •a • • '1,7.90 - s §7.95 - 01

« ; Averag e \ C D O H b

8.10 - * 1 t i i i 1 1 , , f 1 I ... I » I 1 , . , l 1 i . i . i . -i 25000 30000 35000 40000 45000 50000 HJD (2400000+) ' 1 ' ' ' ' 1 ' ' ' ' 1

O : 250 - - •i i - (Days ) Perio d 1 { - . i 235

t 1 . i i i I i i i i 1 rill 1 i i i l I l i i . 1 i . 25000 30000 35000 40000 45000 50000 HJD (2400000+) 7.80 —*••'• 1 1 | 1 •! 1 1 1 ' ' ' ' 1 i i : r—-,,,,!,,, • • ' • v- 09 • T> • • §,7.90 - CO s §7.95 - (S 5 CD PJ8.00 T CD • k. 0) j 8.05

8.10 ~. . I , . . . f . . , . 1 , , . , i , . . , E 1 1 1 1 1 1 L 1 1 1 1 ,- 2.37 2.375 2.38 2.385 239 2.395 2.4 log(Period)

Figure 4.40: Period and average magnitude changes in RV Hydrae from AAVS) observations.

122 4.29 W Indus

We found a period for W Ind of 198.57 days through Fourier analysis of the AAVSO observations. The GCVS confirms a period of 198 days for the star. Fig­ ure 4.41 shows W Ind's changes in period and average visual magnitude taken at approximately 10-year intervals. Variations are well-marked in the light curve de­ spite the small light amplitude. The mean magnitude is relatively unchanging. The star is in need of spectroscopic observations to study the nature of its variability.

Table 4.48: AAVSO Observations of W Indus Subset Dates (V) % Diff. AV AT P (days) % Diff. All 26454-55392 9.27 3.3 722 198.57 ±0.09 1 40507-44157 9.35 0.86 2.4 162 200.59 ± 0.41 1.02 2 44170-47767 9.37 1.08 3.1 183 199.88 ± 0.46 0.66 3 47808-55392 9.20 -0.76 2.8 376 197.55 ±0.46 -0.52

123 1 ' ' ' 1 1 "I ' 1 '— ' < I ' " < . 9.20 • -

9.22 -

d> • "§ 9.24 - c • S'9.26 - 5 "3 9.28 _ 3 • CO S>9.30 - - CD CD , {0 9.32 - CD > <9.34 - • • 9.36 I ... I , , , t 42000 44O00 46000 48000 50000 HJD (2400000+)

, , •••.,

1 , 1 201 i i 1 i • -i- ' ' I '

t

• 200 O "

I • • 8 199 -

• •

198 r - o

• .1 ' ' 1 1 , . , 1 1 42000 44000 46000 48000 50000 HJD (2400000+) -T--7- | , I r i > • i • i • • i i i i > i i , i • i . i i i i i | i i. 9.20 -•

9.22 ~ •:

9.24 - CD XI . 3 9.26 «• c - • - c?9.28 « s - CO 9.30 - =3 (0 * >9.32 *•

9.34 •: 9.36 - • 1 i * « i 1 i < < i 1 i , , i i i_ and L.i... i i i I i i J . . 1 i i 2.296 2.297 2.298 2.299 2.3 2.301 2.302 log(Period)

Figure 4.41: Period and average magnitude changes in W Indus from AAVSO observations.

124 4.30 U Lacertae

Figure 4.42 shows U Lac's variations in spectral type and radial velocity, phased with a period of 395.00 days and a time of maximum light of JD2452387.37 from the AAVSO observations, as well as a montage of CCD spectra taken at dif­ ferent epochs. The star appears to reach smallest dimensions near phase 0.56. The temperature is varying, but it is not clear at what phase it reaches maximum. The luminosity class was fairly constant, so we are unable to determine at what spectral type it reaches its greatest value. Changes in mean brightness suggest extinction events from dust production. The period is consistent with obvious maxima in the light curve.

125 Table 4.49: AAVSO Observations of U Lacertae Subset Dates (V) % Diff. AV N P (days) % Diff. All 25215-55420 9.89 ... 3.4 345 395.00 ±0.67 1 25215-25298 8.43 -14.76 0.7 6 2 34639-43130 10.30 4.15 2.2 2 3 48605-52253 9.49 -4.04 2.1 40 4 52264-55420 9.97 0.81 1.7 297

Table 4.50: Spectroscopic observations of U Lacertae Year HJD Phase VR (km/s) Spectral Type Source 1970 2440850 0.7902 M2.8 la Wing 1970 2440875 0.8535 M2.6 lab Wing 1970 2440906 0.9320 M2.3 la Wing 1970 2440909 0.9396 M2.2 la Wing 2005 2453648 0.1912 11.6 ±16.4 M3Ia+ DAO CCD 2007 2454373 0.0263 -13.1 ±14.1 M4Iab DAO CCD 2008 2454755 0.9933 -36.5 ±19.8 M4Ia DAO CCD 2009 2455092 0.8468 -42.0 ± 22.0 M4Ia DAO CCD 2010 2455489 0.8518 -48.8 ±19.5 M4Ia DAO CCD

126 L I 1 J I I

u ,1 flfliVi I » Www fjM ; 't

0.0 _l_ _1_ _: l L. 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO L I I 3790

M1 3745 3710 M2 3660 t A 3615 _i S.M3 a? -. 3605 g -I 3550 "g «M4: -: 3535 S. ts ~- c (5 •3 3450 ~

M6 -i 3350

• Spectrophotometry data 3250 M7 r • All other data

M8

Figure 4.42: Spectral variation in U Lacertae. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 395.00 day period. 127 4.31 Y Lyncis

Figure 4.43 shows Y Lyn's variations in spectral type and radial velocity, phased with a period of 282.56 days and a time of maximum light of JD2437973.93 from the AAVSO observations, along with a montage of CCD spectra taken at dif­ ferent epochs. The star's spectral type and luminosity class were the same for the two observations, and the observations were also obtained at similar phases. Fig­ ure 4.44 shows Y Lyn's changes in period and average visual magnitude taken at approximately 10-year intervals. Over the course of the observations, the period has decreased along with the brightness, but only by small amounts. Because of the small light amplitude and the lack of spectral data, it is difficult to categorize the pulsa­ tion in Y Lyn. Additional photometry and spectroscopy would help. The small light amplitude of A V ~ 2m is consistent with the spectral type of M6 II, but also makes it a challenging object for AAVSO observers.

Table 4.51: AAVSO Observations of Y Lyncis nbset Dates (V) % Diff. AV N P (days) % Diff. All 34784-55387 7.39 2.9 8989 282.56 ± 0.04 1 34784-38432 7.29 -1.35 2.0 515 282.02 ± 0.75 -0.19 2 38394-42081 7.29 -1.35 1.7 1737 300.64 ± 0.38 6.40 3 42084-45732 7.41 0.27 2.3 1527 274.82 ± 0.29 -2.74 4 45734-49382 7.44 0.68 2.3 2342 278.64 ± 0.29 -1.39 5 49384-53030 7.46 0.95 2.8 1762 278.08 ± 0.29 -1.59 6 53034-53387 7.36 -0.41 2.2 1106 282.49 ±0.51 -0.03

128 Table 4.52: Spectroscopic observations of Y Lyncis Year HJD Phase VR (km/s) Spectral Type Source 2006 2454029 0.7317 19.5 ±8.6 M6 II DAO CCD 2010 2455484 0.8730 14.4 ± 22.3 M6 II DAO CCD

129 2.0

2006-Phase 0.7317 2010-Phase 0.8370 1.5

§1-0

0)

0.5

0.0 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO r , 1 T~ 7 3790 F ^ —'— i —•— -i M1 r 3745 ] 3710 M2 r - 3660 3615 _i CD Q.M3 _ cF -= 3605 3 P 3550 "g «M4 - 3535 81 c u ^ ^• 0> CD M5 ~ ™ W :. 3450-^ M6 "- • • • • - 3350

M7 - 3250

M8 i- i " . , i -0.5 0.5 1.5 Phase 1 r ' ' ' — I

30 -

^0^) f- . £-20 • • - 2-o ~ o - 1» • -' 10 I - (0 ' •o CO | cr 0 -

L I i ' > i i i -0 5 0.5 1.5 Phase

Figure 4.43: Spectral variation in Y Lyncis. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Note that the apparent differences in the two spectra (although classified as the same type) are caused by problems with normalization at the red end. J^a phased with 282.56 day period. . • ! I I | 1 . 1 j- i i • t . . . 1 ' ' ' 1 ' ' '•"J ' ' ' 1 —' ! * , 7.30

®7.40 CD • §7.42 :

7.44 • ™

7.46 r i i i 1 . , , 1 , , . 1 i I r 1 i i f I . , , I . , , 1 , .•• 1 3S0O0 40000 42000 44000 46000 48000 50000 52000 HJD (2400000+)

. 1.. 1 , ' ' ' '•' ' ' '-il l T-r-i i- 1 ' • ' 1 ' ' 1 ' ' ' 1 300 -

295

C0 290 Q •8 §285 - : 1 s . 280 : • • :

275 - • . i i i • i > i . . . i i . i l i i » 1 1 1 1 1 J 1 1 i i t 1 t I • 38000 40OO0 42000 44000 46000 48000 50000 52000 HJD (2400000+) I | 1 | 1- 1 1 I" | 1 1 • • • 7.30 ~

7.32 - "

«B7.34 J X> 3 " C 7.36 • - a> en _ 5 7.38 CS • - §7.40 - > • • 7.42 -

7.44 - • ~_

7.46 • E_ 1 . . . 1 . , , . 1 1 .... " 2.44 2.45 2.46 2.47 log(Period)

Figure 4.44: Period and average magnitude changes in Y Lyncis from AAVSO observations.

131 4.32 S2 Lyrae

Figure 4.45 shows 52 Lyr's changes in period and average visual magnitude taken at approximately 10-year intervals, and figures B.64 and B.65 show S2 Lyr's light curve. Light variability is not obvious from the AAVSO measurements, and the implied amplitude of A V ~ lm.l — 2m.O is significantly larger than the value listed in the GCVS (AF~ Om.ll), which may be based on photovisual photographic data. The derived period of P = 627 days may not be properly representative of what is happening in the star. The implied Mv from cluster membership is My ~ —2.5, consistent with an M3 lb star, but only low-amplitude variability is expected. More precise photometry is needed to determine the nature of the star's light variations.

Table 4.53: AAVSO Observations of S2 Lyrae Subset Dates (V) % Diff. AV N P (days) % Diff. All 35036-55424 4.46 ... 2.0 2141 627.10 ±0.37 1 35036-38661 4.58 2.69 1.1 429 628.43 ± 2.42 0.21 2 38671-42339 4.43 -0.67 2.0 586 662.68 ± 2.93 5.67 3 42342-45973 4.39 -1.57 1.3 455 626.33 ± 2.83 -0.12 4 45993-49634 4.55 2.02 1.3 343 687.23 ± 4.68 9.59 5 50667-53006 4.45 -0.22 1.1 210 609.19 ±10.77 -2.86 6 53922-55424 4.26 -4.48 1.4 118 620.12 ±15.17 -1.11

Table 4.54: Spectroscopic observations of 52 Lyrae Year HJD Phase VR (km/s) Spectral Type Source 1944 2431369 0.3262 M3Ib DDO

132 4.25 mi 1 ' ' ' 1 ' ' ' 1 1 I 7 1 1 ! 1 | 1 . . | 1 1 1 | i i . | i i ' ' '•': 4.30 - CD XI _. 3 ~ 4.35 * C . at cs .* S4.40 • - ca 3 - co • - i>4.45 • *

CD *m CoO> CD 4.50 . <> " 4.55 •

, , 1 . 1 1 1 4 1 f I 1 ( ! 1 t ( 1 1 1 t 1 1 F i , 1 . ,' 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 1 1 , > 1 ' 1 ' ' ' 1 i i i i i i i i • < i- • i . i i i > i i i 1 1 1 1 • i 680 -

i - (Days ) Ee4o - if . ft i - 620 t o- o -

600 _L . , 1 . , . i , , . i i , , i i , , i t , i 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 4.25 —• • < 1 U i i i • i_ • • • 4.30 ~ -

0)4.35 J XI 3 am • '§,4.40 - CO 5 • • "5 4.45 3 -• _• ca • \ 4.50 -

4.55 • - • , * i , , I i ( • i • 2.79 2.8 2.81 2.82 2.83 log(Period)

Figure 4.45: Period and average magnitude changes in S2 Lyrae from AAVSO observations.

133 4.33 a Orionis

Figure 4.46 shows a Ori's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased us­ ing a period of 425.59 days and a time of maximum light of JD2454816.9, determined from the AAVSO observations. The GCVS lists a period of 2335 days, and although we found a similar long period in our Fourier analysis, the data phased better using the shorter period. We fitted primarily the Griffin radial velocity variations with a sine wave and found that the star appears to reach smallest dimensions near phase 0.27. The star appears to reach highest temperature and greatest luminosity class near light maximum, although there is some scatter in the observations for the latter. As a Orionis is a large and relatively nearby star, some interferometric measurements of its angular diameter have been made. Townes et al. (2009) used angular diameter measurements from a variety of sources to show that the angular size of a Ori de­ creased between 1993 and 2009. We took the measurements compiled in that paper and elsewhere (table 4.58) and phased them with both a short period of 425.59 days and a long period of 2335 days. Results are shown in 4.47. The trend is actually clearer when the data are phased with the long period, but it is apparent that a Ori reaches smallest dimensions shortly after light maximum, consistent with the result of the radial velocity measurements. Figure 4.48 shows a Ori's changes in period and average visual magnitude taken at approximately 10-year intervals. The AAVSO observations for a Ori provide no clear picture of its variability. No obvious series of maxima stand out in the general noise, although the radius of the star is measured to change (Townes et al. 2009). Preliminary results with our derived period are reasonably consistent, and suggest that the star reaches maximum radial velocity around phase 0.0 and is smallest near phase 0.25 (largest near phase 0.75). It also appears to be hottest when it is largest, although that result requires verification.

134 Table 4.55: Spectroscopic observations of a Orionis

Year HJD Phase VR (km/s) Spectral Type Source 1951 2433937 0.8704 Ml.5-2 lab DDO 1962 2437957 0.3295 M2Iab DDO 1968 2394921 0.9498 Ml.5-2 lab DDO 1969 2440577 0.4932 Ml.2 lb Wing 1970 2440593 0.5308 Ml.2 lab Wing 1970 2440635 0.6296 M1.4 lb Wing 1970 2440882 0.2155 Ml.5 la Wing 1971 2441006 0.5026 M2.7 lb Wing 1971 2441009 0.5086 M2.7 lb Wing 1971 2441020 0.5355 M2.6 lb Wing 1971 2441043 0.5908 19.9 ±0.4 Ml la DAO Pg 1971 2441132 0.8002 -12.7 ±0.1 Ml la DAOPg 1971 2441233 0.0379 10.3 ±0.2 M2Iab DAO Pg 1972 2441360 0.3355 M1.9 lab Wing 1972 2441362 0.3402 M2.0 lab Wing 1972 2441364 0.3449 M1.9 lab Wing 1972 2441683 0.0955 M2.5 lb Wing 1973 2442015 0.8767 M2.4 lab Wing 1974 2442087 0.0461 M2.7 lb Wing 1975 2442458 0.9202 -21.9 ±0.8 M3Ib DAOPg 1976 2442819 0.7696 -22.6 ±0.1 M3Ib DAOPg 2006 2450401 0.1736 23.5 R. Griffin 2006 2454057 0.2112 23.8 R. Griffin 2006 2454079 0.2629 23.3 R. Griffin 2007 2454124 0.3685 22.6 R. Griffin 2007 2454186 0.5164 18.5 R. Griffin 2007 2454360 0.9242 18.7 R. Griffin 2007 2453941 0.9984 22.3 R. Griffin 2007 2454414 0.0511 24.7 R. Griffin 2007 2454421 0.0676 24.9 R. Griffin 2007 2454429 0.0884 24.7 R. Griffin 2007 2454443 0.1193 24.7 R. Griffin continued on next page

135 Table 4.56: Spectroscopic observations of a Orionis (continued) Year HJD Phase VR (km/s) Spectral Type Source continued from previous page 2008 2454472 0.1874 22.2 R. Griffin 2008 2454490 0.2319 21.8 R. Griffin 2008 2454508 0.2742 21.4 R. Griffin 2008 2454523 0.3094 21.0 R. Griffin 2008 2454757 0.8585 22.8 R. Griffin 2008 2454779 0.9100 25.1 R. Griffin 2008 2454804 0.9686 25.5 R. Griffin 2009 2454845 0.0672 26.6 R. Griffin 2009 2454876 0.1402 26.9 R. Griffin 2009 2454897 0.1893 26.3 R. Griffin 2009 2454929 0.2645 25.4 R. Griffin 2009 2455114 0.6984 25.1 R. Griffin 2009 2455128 0.7313 25.2 R. Griffin 2009 2455167 0.8228 23.9 R. Griffin 2009 2455187 0.8697 23.4 R. Griffin 2010 2455214 0.9354 23.2 R. Griffin 2010 2455227 0.9638 23.3 R. Griffin 2010 2455258 0.0388 25.2 R. Griffin 2010 2455295 0.1257 24.6 R. Griffin

Table 4.57: AAVSO Observations of a Orionis Subset Dates (V) % Diff. AV N P (days) %Diff All 19790-55417 0.74 2.9 23349 425.29 ± 0.03 1 19790-23394 0.87 17.57 1.2 79 350.25 ± 2.31 -17.64 2 23446-27081 0.62 -16.22 1.4 262 392.73 ±1.81 -7.65 3 27092-30738 0.79 6.76 1.6 507 392.85 ±1.44 -7.63 4 30759-34389 0.73 -1.35 2.1 2139 414.30 ±0.88 -2.58 5 33940-38038 0.85 14.86 1.6 2054 451.47 ±0.61 6.16 6 38040-41689 0.71 -4.05 1.8 3346 397.19 ±0.50 -6.61 7 41690-45339 0.76 2.70 1.8 3827 448.71 ± 0.58 5.51 8 45340-48989 0.80 8.11 2.1 2996 402.04 ± 0.46 -5.47 9 48989-52640 0.71 -4.05 1.6 4164 385.62 ±0.45 -9.33 10 52640-55417 0.68 -8.11 1.7 3981 436.22 ±1.47 2.57

136 Table 4.58: Angular Diameter of a Orionis Date HJD Phase Phase Diameter Source (P=425 d) (P=2335 d) (mas) Nov 1978 2443821.5 0.1643 0.2910 55.0 Balega et al. (1982) Feb 1979 2443926.5 0.4111 0.3360 59.0 Balega et al. (1982) Feb 1989 2447572.5 0.9780 0.8975 54.0 Balega et al. (1982) Oct 1993 2449290.5 0.0147 0.6332 56.0 Bester et al. (1996) Aug 1994 2449572.5 0.6773 0.7540 56.0 Bester et al. (1996) Oct 1995 2450016.6 0.7206 0.9442 50.5 Bester et al. (1996) Nov 1999 2451497.5 0.2005 0.5784 54.9 Weiner et al. (2003) Nov 2000 2451853.5 0.3070 0.7309 53.4 Weiner et al. (2003) Nov 2000 2451876.5 0.0910 0.7407 55.8 Weiner et al. (2003) Dec 2000 2451899.5 0.1450 0.7506 54.8 Weiner et al. (2003) Aug 2001 2452141.5 0.7137 0.8542 53.4 Weiner et al. (2003) Sep 2001 2452182.5 0.8100 0.8718 52.9 Weiner et al. (2003) Oct 2001 2452211.5 0.8781 0.8842 53.5 Weiner et al. (2003) Dec 2001 2452262.5 0.9980 0.9060 52.7 Weiner et al. (2003) Nov 2006 2454068.5 0.2415 0.6795 48.4 Tatebe et al. (2007) Dec 2007 2454440.5 0.1156 0.8388 50.0 Townes et al. (2009) Feb 2008 2454499.5 0.2542 0.8641 49.0 Townes et al. (2009) Oct 2008 2454768.5 0.8863 0.9793 47.0 Townes et al. (2009) Dec 2008 2454805.5 0.9732 0.9951 47.0 Townes et al. (2009) Jan 2009 2454848.5 0.0742 0.0135 48.0 Townes et al. (2009) Feb 2009 2454864.5 0.1118 0.0204 48.0 Townes et al. (2009)

137 j i i •• 1 1 J 1.4 -

April 1971 -Phase0.590 i June 1971 - Phase 0.8002 Oct 1971 -Phase 0.0379 1975-Phase 0.9202 1976-Phase 0.7606 0.2 -

0.0 U 3800 4000 4200 4400 4600 4800 Wavelength (A) 3790 MO i ' ^ M1 8 8 « 3745 • • •: 3710 M2 • 9 • • • • # • 3660 • • %• • •• • 3615 _i O.M3 3605 g • • • • -i 3550 "g «M4 3535 3 t3 . c o> 3 O-MS 3450-^ M6 •i

M7 • Spectrophotometry data : 3350 * All other data : M8 h , • , , i i 3250 -0.5 0.5 1.5 Phase 28 U I I I I I I I I I I I I I I U I I I I I I —

• • • • : 26 en E *24 'o o /• \• /• \ • : _22 a / • • \ / • • \ _ '•& CO —-^ • ^ • ^- rr 20 • • - • • • • 18 i=—. I I I n I 1.1 i I I I 1 g _ I 5 I ' I I 1 I ™ -0.5 0.5 1.5 Phase

Figure 4.46: Spectral variation in a Orionis. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 425.59 day period. 138 65 I i • • ' 1 i i ' ' 1 i

60 -- to • • - to • • <5 55 - - % E • • • • • • « •• 5 • • »w5 0 • • •• 9 • • • < • • - 45

J— i r 40 i —i— i i , , i i -0.5 0 0.5 1 1.5 Phase 65 n- I \ ' I ' I > I

80 - - CO • • • 0 • # {5 55 - • • • • - • > • > • I * • 4 5 — • # • • ™ -50 • • to • • • • g3> < • • 45

40 i 1 i i -0.5 0 0.5 1 1.5 Phase

Figure 4.47: Angular diameter of a Orionis as a function of phase. Top plot is phased with 425.59 day period, bottom with 2335 day period

139 —[——j— I i -r 1 1 ' . • ' i ' I • • 1 ' i 1 ' ' ' I

0.65 - • : • • •

Q O - • Visua l Magnitud e

• S? • Eo.80 • "

0.85 • • . i , , . i , , i . , , , i i , , , . i 25000 30000 35000 40000 45000 50000 550C HJD (2400000+) v 1 1 i ' i -I- , r T * •• i- ' . i ' > • • i —V 1 T 1 ' ' ' 1 - • 440

• • "

420 - to • • I40 0 • - * • • 380 "

360 i . , i i , . • . » i i i , , , . i 25000 30000 35000 40000 45000 50000 550C HJD (2400000+) • < ' 1 i i 1 i • ' I 1 . 0.65 " • 0.80 • -

0.85 •

• , . , .ili I > > I ' ' I i 1 > 2.56 2.58 2.6 2.62 2.64 log(Period)

Figure 4.48: Period and average magnitude changes in a Orionis from AAVSO observations.

140 4.34 S Persei

Figure 4.49 shows S Per's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased us­ ing a period of 806.64 days, determined from the AAVSO observations. We used a time of maximum light of JD2454707.17 for the recent CCD observations and JD247363.8 for the older spectrophotometric observations. The radial velocity varia­ tions indicate that the star reaches minimum dimensions near phase 0.17. It appears to reach highest temperature and greatest luminosity class near light maximum. We also obtained 586 photographic (blue light) observations of S Per from the Harvard plate collection. The observations covered the dates JD2412463-2434283. We found a period of 828.55 ± 2.94 days for the star from the Harvard observations, a difference of 2.72% from the period found using the AAVSO observations. The star's average magnitude during the observations was 11.83 with a magnitude range of 3m.l. Figure 4.50 shows S Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The star's average brightness is increasing, while the period is increasing slightly. The periodicity is well-expressed in the light curve for S Per, and the spectroscopic observations are consistent with pulsation. Chipps & Stencel (2004) completed a Fourier analysis of the AAVSO data and found that the light curve is likely a combination of sinusoids with different periods. They found prominent periods of 745, 797 (closest to the period of 806 days found in this study), 952, and 2857 days. The star undergoes changes in mean brightness that may reflect episodes of dust ejection. The amplitude is large, AF~4m- 5m.

141 Table 4.59: AAVSO Observations of S Persei Subset Dates (V) % Diff. AV N P (days) %Diff All 11063-55423 9.99 6.1 27313 806.64 ± 0.07 1 11063-14415 8.96 -10.31 2.6 55 808.99 ± 14.58 0.29 2 15472-18352 8.86 -11.31 1.8 31 797.53 ±15.56 -1.13 3 18368-21986 9.65 -3.40 4.5 415 1051.0315.33 30.30 4 22167-25562 9.59 -4.00 3.9 441 859.25 ±8.27 6.52 5 25563-29311 9.40 -5.91 3.0 2448 864.71 ±3.06 7.20 6 29313-32958 9.66 -3.30 4.4 2161 856.38 ± 2.37 6.17 7 32966-36612 9.61 -3.80 4.0 1563 793.02 ± 2.27 -1.69 8 36613-40262 9.70 -2.90 3.9 3036 848.94 ± 2.69 5.24 9 40263-39411 9.83 -1.60 4.1 3892 883.26 ± 2.83 9.50 10 39415-47560 9.60 -3.90 3.8 4613 777.93 ±1.89 -3.56 11 47563-51209 10.81 8.21 4.8 4487 795.41 ± 1.50 -1.39 12 51214-54862 10.64 6.51 3.7 3801 881.45 ±1.89 9.27 13 54862-55423 10.66 6.71 1.9 370 470.45 ± 18.33 -41.68

Table 4.60: Spectroscopic observations of S Persei Year HJD Phase VR (km/s) Spectral Type Source 1970 2440899 0.9885 M4.3 la Wing 1970 2440902 0.9922 M4.4 la Wing 1970 2440903 0.9934 M4.4 la Wing 1970 2440906 0.9971 M4.4 lab Wing 1973 2441962 0.3057 M5.8 lab Wing 1973 2442015 0.3714 M5.7 lab Wing 2005 2453648 0.6875 33.5 ±14.8 M4Ia DAO CCD 2007 2454379 0.5933 23.7 ±13.5 M5Iab DAO CCD 2008 2454749 0.0518 12.4 ±15.9 M3Ia+ DAO CCD 2009 2455087 0.4707 20.7 ±19.7 M4.5 la DAO CCD 2010 2455484 0.9625 24.6 ±11.4 M4Ia DAO CCD

142 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO ! ' ' i I i i 1 -T- ! ' 1 ' ' ' ' I 3790

M1 - -i 3745 3710 M2 3660 3615 _i

S.M3 - • • 3605 3 3550 "g

5M4 • • • • 3535 S o • • c (D e Q. MS r • • CO -1 3450-^ M6 -i 3350 '•_ M7 Spectrophotometric data - 3250 . • All other data J i I . i .... i M6 • ,

Figure 4.49: Spectral variation in S Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 806.64 day period. 143 9.0 _•

g, 9.5 co • • • • # • * I> io.o CD CO

10.5 • •:

-J 1 1 1 E I 1 1 1 1 1 1 * ' 1 1 t 1 I I I B U 21X100 30000 40000 50000 HJD (2400000+) 1 ' ' i ' 1 ' ' , 1000 -

- - • • • • • • % . _ ] 800 - B 5 • • *8w • S 700 -

i i i *' 20000 30000 40000 50000 HJD (2400000+)

1.0 -

-g 9.5

cs s ra 10.0 » >

10.5

_» rilll *rtl

Figure 4.50: Period and average magnitude changes in S Persei from AAVSO observations.

144 4.35 T Persei

Figure 4.51 shows T Per's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased using a period of 2457 days and a time of maximum light of JD2441127.04, determined from the AAVSO observations. Note that while the 2457 day period first appears to be a long secondary period, compared to the shorter 300-400 day period, the spectroscopic data phase much better with the longer period than with a shorter period. The GCVS lists a period of 2430 days and a spectral type of M2 lab. The radial velocity variations indicate that the star reaches minimum dimensions near phase 0.45. T Per appears to reach highest temperature and greatest luminosity class following light maximum. We also obtained 567 blue light observations of T Per from the Harvard plate collection. The observations covered the dates JD2412462-2433999. We found a period of 358.86 ±46.98 days for the star from the Harvard observations, noting that a period so close to one year may be heavily biased by seasonal effects. The star's average B magnitude with the photographic observations was 11.33, with a range of lm.3. Figure 4.52 shows T Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The period and average magnitude both undergo changes. Surprisingly enough, given the scatter in the photometry, the long period of 2457 days appears to be more closely linked to the spectral changes, and it generates results consistent with pulsation. There are problems with such a long period, however, given that pulsation would imply an extremely large size. This star needs more data, both spectroscopic and photometric.

145 Table 4.61: AAVSO Observations of T Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 16161-55423 8.89 2.5 9212 2457.00 ±1.19 1 16161-19808 9.00 1.24 1.1 71 377.33 ± 3.35 2 19824-23400 9.00 1.24 1.9 57 352.40 ± 2.36 3 23485-27109 8.69 -2.25 1.5 610 353.30 ± 0.64 4 27117-30735 8.88 -0.11 1.7 1479 394.88 ± 6.69 5 30765-34401 8.90 0.11 1.7 270 373.43 ± 0.88 6 34412-38057 8.92 0.34 1.3 481 377.73 ± 1.02 7 38079-40115 8.94 0.56 1.8 632 309.34 ±1.04 8 40121-45336 8.95 0.67 2.0 1394 353.01 ± 0.28 9 45357-49009 8.88 -0.11 1.8 1522 360.23 ± 0.48 10 49010-52659 8.87 -0.22 1.7 1826 346.07 ± 0.47 11 52664-55423 8.90 0.11 2.1 870 344.55 ± 1.03

Table 4.62: Spectroscopic observations of T Persei Year HJD Phase VR (km/s) Spectral Type Source 2005 2453648 0.0960 2.3 ±14.7 Ml Ia+ DAO CCD 2007 2454379 0.3935 24.8 ±15.6 M2 lab DAO CCD 2008 2454749 0.5441 -3.4 ±14.2 M2 lab DAO CCD 2009 2455087 0.6817 -9.3 ±22.9 M2Ia DAO CCD 2010 2455483 0.8428 -7.1 ±23.2 M2 la DAO CCD

146 i i i i i i -> 1 r- 1.4

1.2

1.0

0)0.8 .> 0> 0.6 2005 - Phase 0.0960 V 2007 - Phase 0.3935 0.4 2008 - Phase 0.5441 2009-Phase 0.6817 2010-Phase 0.8428 0.2

0.0 • ' -I ' 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) r 3790 MO F ' • i ' i — •

M1 • • - 3745 3710 M2 -• • • • • • • • -i 3660 3615 _| 0) Q.M3 3605 g 3550 "g *M4 3535 S t3 j c 0) O-MS s [ ~ M6 3450-=i -: M7 3353250

M8 i- • i • i .1 -0.5 0.5 1.5 Phase

Figure 4.51: Spectral variation in T Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 2457 day period. 147 l J i 1 i i i 1 i ' i i , -i—E—i—r 1 i i— 1 ' i r——r—i—[— i i i i ' ' 1 ' \ • 8.70 "

««Wf Q* / O - =1 „ c . }?8.80 - s - CO . 3 8.85 — 5 • -• • • g>8.90 • • -

9.00 -• i ,#. , , i , , . , i i . , , , i i > i i « « i i , , . , 7 20000 25000 30000 35000 40000 45000 50000 5500 HJD (2400000+)

1 400 i. . i 1 i • •I i • ' > i i • i > ' i <>

380 • - :* •

— • i • • • m • PerkK i (Days )

320

, i , . , , i t , . , f, i i < i i > i 20000 25000 30000 35000 40000 45000 50000 5500 HJD (2400000+) , | 1 1 • 1 . I ' 8.70 -j

8.75 -

- C B 0 3 « C O i n o Magnitud e cd • : 3 • • ^8.90 • • *~ • 8.95 • • -

9.00 #

• . 1 1 , , , 1 ' , . , 2.5 2.52 2.54 2.56 2.58 2.C log(Period)

Figure 4.52: Period and average magnitude changes in T Persei from AAVSO observations.

148 4.36 W Persei

Figure 4.53 shows W Per's variations in spectral type and radial velocity, phased using a period of 531.47 days and a time of maximum light of JD2421890.61 from the AAVSO observations, along with a montage of CCD spectra taken at differ­ ent epochs. The GCVS lists a period for the star of 485 days and a spectral type of M3-7 la-lab. The star appears to reach minimum dimensions near phase 0.88. The star appears to reach its highest temperature and greatest luminosity class near light minimum. We also obtained 415 blue light observations of W Per from the Harvard plate collection. The observations covered the dates JD2413252-2433999. We found a period of 541.93 ±0.53 days for the star from the Harvard observations, a difference of 1.97% from the period found using the AAVSO observations. The star's aver­ age B magnitude for the photographic observations was 12.14 with a range of 2m.3. Figure 4.54 shows W Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The mean brightness of the star is reasonably constant, and the variability is well-expressed. The phased spectroscopic data are consistent with pulsation, although the period of variability needs confirmation.

Table 4.63: AAVSO Observations of W Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 19070-55423 9.79 3.6 17051 531.47 ±4.05 1 19070-22717 9.63 -1.63 3.5 873 475.58 ±1.55 -10.52 2 22728-26369 9.57 -2.25 3.1 939 542.12 ±1.10 2.00 3 26378-30019 9.62 -1.74 3.2 3206 523.80 ±0.77 -1.44 4 30022-33668 9.67 -1.23 3.1 1653 567.73 ±1.14 6.82 5 33672-37319 10.04 2.55 3.0 1182 527.21 ±1.18 -0.80 6 37320-40970 9.94 1.53 3.2 1637 460.11 ±1.17 -13.43 7 40970-44618 9.98 1.94 3.3 2278 466.43 ± 0.98 -12.24 8 44621-48269 9.91 1.23 3.1 2180 534.92 ± 0.90 0.65 9 48275-51915 9.87 0.82 3.4 1897 486.61 ± 1.09 -8.44 10 51920-55423 9.59 -2.04 3.0 1206 477.47 ±1.61 -10.16

149 Table 4.64: Spectroscopic observations of W Persei

Year HJD Phase VR (km/s) Spectral Type Source 2005 2453654 0.8068 44.1 ±20.3 M3.5 la DAO CCD 2008 2454749 0.8801 23.5 ±11.1 M5 lb DAO CCD 2009 2455092 0.5223 18.7 ±21.4 M4 la DAO CCD 2010 2455484 0.2643 20.1 ± 19.5 M5 lab DAO CCD

150 i i i

fi» tfrHiiVk'i - f 0.4 2005 - Phase 0.8068 2008 - Phase 0.8801 0.2 2009 - Phase 0.5223 2010-Phase 0.2643

0.0 J i , i L_ • ' • 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO r iii) ,IIII) ! 3790

M1 H 3745 3710 M2 -. 3660 3615 _i 03 or Q.M3 • • -. • • 3605 3 «M4 • • • • 3550 "g "5 -. 3535 S O c OTM5 3 M6 -. 3450-5

M7 -.-i 3250 -. 3350

M8 1- 1 i , , . i , i -0.5 0.5 1.5 Phase 1 ' : , 1 1 r 1 : , 1 I 1 -" ' 1 60 - -

50 1 J *^, -S2 . i • <> - E „ • JZ 40 - p — y 2? v T o y' O30 / — u > - < > N. ^ < »\ is 20 3 • ^ t • \ to oz 1 . 10 "

0 - ' 1 _, : 1 >_ l 1 -0.5 0.5 1.5 Phase

Figure 4.53: Spectral variation in W Perseii. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 531.47 day period. 151 i i i i , , , i i i i > ' i IIII i ' ' ' 1 1 ' " • 9.6 • • • .12 9.7 C w _ § 9.8 to • • t o t o • • • Averag e • 10.0

i , i , i i i , , . , ,• , i , . . I , 20000 25000 30000 35000 40000 45000 50000 HJD (2400000+) 1 1 i i i i i i , i , . ' i,.. • ' i i ' '••••' 1 ' T T 1 " 560 *"

540 • - • • • - - (Days )

- - Perio d • 480 "• • ~ • 460 , , i , , i , , i i i ! , . . , 1 , r , , . i i , f. 20000 25000 30000 35000 40000 45000 50000 HJD (2400000+) L ' 1 i —i r--- | i . i | i i . ' 9.6 • • • • a> 9.7 XI : -«3~ c S> • « 9.8 •

Visua l 1 t o t o • - • • 10.0

1 . . . ,•. . • ' 1 2.68 2.7 2.72 2.74 log(Period)

Figure 4.54: Period and average magnitude changes in W Persei from AAVSO observations.

152 4.37 RS Persei

Figure 4.55 shows RS Per's variations in spectral type and radial velocity, phased with a period of 244.21 days and a time of maximum light of JD2442087.12 from the AAVSO observations, as well as a montage of CCD spectra taken at different epochs. The GOVS confirms a period of 244.5 days for the star and lists a spectral type of M4 lab. We also obtained 194 blue light observations of RS Per from the Harvard plate collection. The observations covered the dates JD2415405-2433999. We found a period of 245.13 ± 20.05 days for the star from the Harvard observations, a difference of 0.38% from the period found using the AAVSO observations. The star's average photographic magnitude during the observations was 11.08 with a magnitude range of lm.8. The radial velocity variations (except the values from Joy's work) indicate that the star reaches smallest dimensions near phase 0.64. The two sets of radial velocities do not fit together nicely, and we have not been able to resolve the discrepancy, although we do note that there is a large temporal separation between the two sets of measurements. There are problems with the red end calibration for the spectra of this star that could bias our velocities. RS Per appears to reach highest temperature and greatest luminosity class near light minimum. Figure 4.56 shows RS Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The periodicity is not well expressed in the star's light curve, and there appears to be a long-term brightness fluctuation that may be caused by dust extinction episodes. Our inferred period of 244 days is consistent with GOVS results, and the phased spectroscopic observations hint at pulsation. The definition of light maximum needs to be confirmed with better photometry.

153 Table 4.65: AAVSO Observations of RS Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 33490-55394 8.83 2.9 2310 244.21 ± 0.02 1 33490-36896 9.02 2.15 2.4 56 248.73 ± 1.61 1.85 2 37208-40785 9.06 2.60 2.5 253 260.35 ± 0.59 6.61 3 40802-44436 8.83 0.00 2.1 237 265.31 ± 0.68 8.64 4 44445-48087 8.65 -2.04 2.5 541 250.11 ±0.28 2.42 5 48094-51737 8.76 -0.79 2.2 565 247.25 ±0.29 1.25 6 51748-55394 8.93 1.13 2.5 658 266.04 ± 0.37 8.94

Table 4.66: Spectroscopic observations of RS Persei

Year HJD Phase VR (km/s) Spectral Type Source 1939 2423742 0.1220 -36 M4 Joy 1939 2423803 0.3709 -39 M4 Joy 1939 2423829 0.4771 -41 M4 Joy 2005 2453648 0.1873 45.6 ±19.3 M4Ia DAO CCD 2008 2454754 0.7011 16.7 ±20.6 M3Iab DAO CCD 2009 2455091 0.0770 0.7 ±20.1 M5 Ia+ DAO CCD 2010 2455484 0.6808 19.9 ±13.1 M3.5 la DAO CCD

154 wmmrf. \ i) *JU 2005-Phase 0.1873 f' > w •a- 2008-Phase 0.7011 2009 - Phase 0.0770 2010 - Phase 0.6808 I

4000 4200 4400 4600 4800 5000 5200 Wavelength (A)

I ' -T , 1 • | 1 . —i 60

v. • i » , 40 - CO \ T E _* / A *•» ~ o o • £> > 0 ^ */ < > ^—/ < > - (0 •*- T3 CO oc -2„„0

• • -40 • • • " 1 1 , . , , 1 ., .J -0 5 0.5 1.5 Phase

Figure 4.55: Spectral variation in RS Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 244.21 day period. 155 -i—i—i—r- i • • • i -i—I—i—i—I—i—r-

8.7 ® 32 c 4SB.8 (8 3 0) 8.9 1 9.0 -

I • • • ' j i__i ' • • _i_i l1 i 36000 38000 40000 42000 44000 46000 48000 50000 52000 540O HJD |2400000+)

' , 1 • ' i ' • • t • II,..:, ! I I | I I I | 265 ' ' ' V

260 i ~ I 255 ' ~

250 • - \i • 245 -

36000 38000 40000 42000 44000 46000 48000 50000 52000 5400i HJD (2400000+)

8.7

le.8 : • • 18 3 U] 8.9 - a • ;

i 9.0 -

2.39 2.3S5 2.4 2.405 2.41 2.415 2.42 2.425 tog(Periocl)

Figure 4.56: Period and average magnitude changes in RS Persei from AAVSO observations.

156 4.38 SU Persei

Figure 4.57 shows SU Per's variations in spectral type and radial velocity, phased with a period of 468.91 days and a time of maximum light of JD2434920.21 from the AAVSO observations, along with a montage of CCD spectra taken at dif­ ferent epochs. The GCVS lists a period of 533 days and a spectral type of M3.5 lab. We also obtained 197 blue light observations of SU Per from the Harvard plate collection. The observations covered the dates JD2415405-2433999. We found a pe­ riod of 461.56 ± 7.45 days for the star from the Harvard observations, a difference of -1.57% from the period found using the AAVSO observations. The star's average magnitude during the observations was 9.89 with a range of lm.4. We fitted the radial velocity variations (except for Joy's values) with a sine wave and found that the star appears to reach smallest dimensions near phase 0.12. Again, as in the case of RS Persei, the two sets of radial velocities (with a large temporal separation) do not fit together well and we have not been able to resolve the discrepancy. The star appears to reach its lowest temperature at light minimum, although there is a lot of scatter in the observations. There is too much scatter in the luminosity class measurements to determine at which phase it reaches greatest luminosity class. Figure 4.58 shows SU Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The period has decreased, and the average magnitude undergoes changes. The light variations in this star are not well-expressed, but the periodicity appears to be centered around 469 ± 60 days, so phasing is difficult. There are also superposed long-term trends that may represent dust ejection episodes. The results are other­ wise consistent with pulsation. Additional photometry would help to establish a firm period of variability.

157 Table 4.67: AAVSO Observations of SU Persei Subset Dates (V) % Diff. AV N P (days) %Diff All 21396-55423 8.11 2.8 3282 468.91 ±0.13 1 21396-21597 8.10 -0.12 0.2 14 2 27724-27924 8.05 -0.74 0.3 11 3 29546-29880 7.95 -1.97 0.2 12 4 33572-35959 8.18 0.86 1.8 198 525.11 ±5.01 11.99 5 36020-39593 8.24 1.60 2.0 200 496.88 ± 2.66 5.96 6 39680-43287 8.14 0.37 2.5 340 472.25 ± 1.63 0.71 7 43335-46937 8.13 0.25 2.4 508 460.95 ±1.24 -1.70 8 46947-50555 8.04 -0.86 2.3 964 468.86 ± 1.09 -0.01 9 50627-54231 8.12 0.12 2.6 784 447.38 ± 2.07 -4.59 10 54252-55423 8.19 0.99 1.9 251 410.25 ±5.61 -12.51

Table 4.68: Spectroscopic observations of SU Persei

Year HJD Phase VR (km/s) Spectral Type Source 1938 2423742 0.1659 -39 M4 Wing 1938 2423803 0.2949 -39 M4 Wing 1939 2423829 0.3514 -39 M4 Wing 1939 2426621 0.4516 -36 M4 Wing 1939 2426373 0.7757 -43 M4 Wing 1939 2426646 0.3578 -34 M4 Wing 1969 2440562 0.0283 M3.2 lb Wing 1970 2440868 0.6808 M3.2 lab Wing 1970 2440905 0.7597 M3.1 lb Wing 1971 2441018 0.0006 M3.0 lab Wing 1971 2441019 0.0028 M3.1 lab Wing 1973 2442015 0.1264 M4.2 lb Wing 2005 2453648 0.9314 23.1 ±22.1 M4Ia DAO CCD 2007 2454379 0.4900 19.4 ±16.8 M4Iab DAO CCD 2008 2454754 0.2894 13.6 ±20.0 M3 lab DAO CCD 2009 2455091 0.0080 26.7 ±22.8 M3Iab DAO CCD 2010 2455483 0.8438 29.1 ±18.7 M4Ia DAO CCD

158 ! I I mm wkw 't1 J! Vw rW 2005 -Phase 0 9314 2007 - Phase 0.4900 (l v - 2008 • Phase 0.2B94 2009 - Phase 0.0080 2010-Phase 0.8438

o.o ••—'—'—<• • 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO 1 i 3790 ! i 1 ! r -. M1 3745 r ^ 3710 M2 3660 ^ 3615 H Q.M3 • • % • a « % • -. 3605 3 3550 "g • gM4 • • • •• • • •• • • • «• • • 3535 3 "G 'r c §M5 3

M6 r -i 3450g

• Spectrophotometnc C L 1 M7 -.-3 3253350 • All other data i i -0 5 0.5 1.5 Phase r • ,..,,, , 1 1 • 40 -

• • "55" _« < —-^^^ F*U . o S 0 • 5! - (0 •o • *-20

• • • • -40 • • • • • • • • > i i i i -0 5 0.5 1.5 Phase

Figure 4.57: Spectral variation in SU Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 468.91 day period. 159 7~! 1 1 1— •— ,,r, .t ,. 1, 1 j 1 1 i I—p i 1 i I'" 1 • ' ' 1 | -T- 1 1 1 J" 1 1 1 -I J . 7.95 • •

0) 8.00 _ 3 ' * c • . 3>8.Q5 • - 5 - (0 . J*8-10 -• - 5 • . • • '• -, jilt r i •> | i i , | I 1 520 "f '

500 i - " g-480 Q • " I! 460 • - * 440 — -

420 " 1 1 1 ,1- 35000 40000 45000 50000 55000 HJD (2400000+)

i . | i . i | i i . v 1 | -i- 1 i ' • ' ' ' ' i 8.05 •

® 8.10 - 3 • "e • • S1 • CO • O l

• • Visua l A - • 8.20 "

! . i . , i I i , . i i , ,• 1 , 1 1 1 1 2.62 2.64 2.66 2.f 2.7 2.72 log(Period)

Figure 4.58: Period and average magnitude changes in SU Persei from AAVSO observations.

160 4.39 XX Persei

Figure 4.59 shows XX Per's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased with a period of 403.00 days and a time of maximum light of JD2446063.19, determined from the AAVSO observations. We used that period rather than the period of 421 days found using the most recent data, as it has a longer baseline and the phasing is about the same with both values. The GCVS lists a period of 415 days and a spectral type of M4 lb + B. The star appears to reach smallest dimensions near phase 0.17. The star appears to reach highest temperature and greatest luminosity class near light maximum. We also obtained 263 blue light observations of XX Per from the Harvard plate collection. The observations covered the dates JD2415405-33999. We found a period of 399.68 ± 3.91 days for the star from the Harvard observations, a difference of -0.82% from the period found using the AAVSO observations. The star's average B magnitude for the photographic observations was 10.24 with a range of lm.6. Figure 4.60 shows XX Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The period is reasonably well-expressed, although there are superposed variations in mean brightness. The phased spectroscopic data are consistent with pulsation, despite a low amplitude of AV ~ lm.6.

161 Table 4.69: AAVSO Observations of XX Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 23469-55406 8.47 2.5 3412 403.00 ±0.15 1 23469-27095 8.15 -3.78 1.2 95 386.78 ± 2.39 -4.03 2 27125-30669 8.36 -1.30 1.0 160 400.38 ± 1.75 -0.65 3 30779-34414 8.37 -1.18 1.4 94 406.26 ±2.19 0.81 4 34420-38028 8.43 -0.47 1.4 207 402.92 ±1.77 -0.02 5 38104-41720 8.56 1.06 1.4 283 393.54 ±1.54 -2.35 6 41738-45358 8.42 -0.59 1.6 288 395.41 ±1.17 -1.88 7 45375-49016 8.31 -1.89 1.6 726 356.79 ± 2.41 -11.47 8 49028-52668 8.47 0.00 1.6 862 402.61 ± 0.83 -0.10 9 52670-55406 8.71 2.83 2.1 697 421.85 ± 0.57 4.68

Table 4.70: Spectroscopic observations of XX Persei Year HJD Phase VR (km/s) Spectral Type Source 2005 2453654 0.8355 49.5 ±18.1 M4 la DAO CCD 2007 2454382 0.6445 22.2 ±18.1 M5 lab DAO CCD 2009 2455092 0.4039 -1.0 ±23.2 M4Ia DAO CCD 2010 2455483 0.3739 14.8 ±12.1 M4Ia DAO CCD

162 1.4

1.2

1.0

0)0.8 W| > Q) 0.6 OC 2005 - Phase 0.6355 0.4 2007 - Phase 0.6445 2009 - Phase 0.4039 0.2 2010-Phase 0.3739

0.0 I i . i I 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) 3790 MO r 1 l 1 . i i I i i i . , i . j

M1 3745 L «; 3710 M2 r -i 3660 3615 _l Q> I • 3605 g Q.M3 P -^ 3550 "g «M4 • •• • •• - 3535 82. tj c V ^• WM5 • • ™ 3450-s

M6 j- -j• 3350

M7 -•ij 3250

M8 b i , . . . i

Figure 4.59: Spectral variation in XX Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 403.00 day period. 163 8.2 -

3 8.3 - 9 : • • ~8.4 (0 (0 : » : 0)8.5 a> CD a> ^8.6

8.7

25000 30000 35000 40000 45000 50000 550< HJD (24000)0+)

1 i i i i l • 1 ' ' ' i i • • ' I ' 1 ' • _ 420

410 - i z i 9 • i • - ;* Perio d (Days )

370 -_

360

-iii . . i i , , , i , , , . i . ^ * 1 . . 25000 30000 35000 40000 45000 50000 5501 HJD (2400000+)

-1 T—1 1- 1 "'I- —1- 1 i | i . i .••!—!—! 1 r i . i | i i i i ' ' ' ' ' ' ' • ' 8.2 -

-.8.3 - 0) • X> . 3 • • " 0)8.4 - IS • • . 2 • ' 3 8.5 10 - > • • 8.6 "

B.7 t 1 1 t I t 1 1 1 . , . , 1 . , , , 1 1 i a—i— , 1 , . , . 1 , , , 2.55 2.56 2.57 2.58 2.59 2.6 2.61 2.62 Jog(Period)

Figure 4.60: Period and average magnitude changes in XX Persei from AAVSO observations.

164 4.40 AD Persei

Figure 4.61 shows AD Per's variations in spectral type and radial velocity, phased with a period of 371.34 days and a time of maximum light of JD2433597.42 from the AAVSO observations, as well as a montage of CCD spectra taken at different epochs. We fitted the radial velocity variations (except for Joy's measurements) with a sine wave and found that the star appears to reach smallest dimensions near phase 0.49, although the data are too close together in phase to state that as a definitive conclusion. Again, as in the cases of RS Per and SU Per, the two data sets do not show much agreement. We do note that, in this case, the two sets of measurements appear to follow the same general trend despite their offset. AD Per appears to reach highest temperature and greatest luminosity class at light maximum. We also obtained 196 observations of AD Per from the Harvard plate collection. The observations in blue light covered the dates JD2415405-2433999. We found a period of 369.58 ± 19.30 days for the star from the Harvard observations, a difference of -0.47% from the period found using the AAVSO observations. The star's average blue magnitude for the observations was 10.56, with a magnitude range of lm.5. Figure 4.62 shows AD Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The evidence for repeatable variability for the star is weak, although the phased spectroscopic observations are reasonably consistent with pulsation. Better photometric data would help to confirm the periodicity found here, which is too close to a year to rule out seasonal bias. AD Per is a promising case that needs more data. Irregular brightness variations may indicate possible dust extinction episodes.

165 Table 4.71: AAVSO Observations of AD Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 28182-55423 8.30 ... 2.3 3338 371.24 ±0.08 1 28182-29545 8.38 0.96 0.8 12 353.38 ± 9.74 -4.81 2 33491-35480 8.36 0.72 1.5 188 414.15 ±4.53 11.56 3 35490-39131 8.51 2.53 1.2 215 372.98 ±1.66 0.47 4 39134-42769 8.42 1.45 2.2 302 350.36 ± 7.20 -5.62 5 42783-46418 8.15 -1.81 2.0 480 407.07 ±1.90 9.65 6 46433-50081 8.23 -0.84 2.0 933 370.91 ± 0.68 -0.87 7 50089-53775 8.34 0.48 1.8 824 365.41 ±1.11 -1.57 8 53785-55423 8.37 0.84 1.9 384 381.80 ±3.31 2.85

Table 4.72: Spectroscopic observations of AD Persei Year HJD Phase VR (km/s) Spectral Type Source 1938 2423358 0.4005 -34 M2 Joy 1938 2423475 0.7158 -45 M3 Joy 1939 2426373 0.5272 -51 M3 Joy 2005 2453648 0.0447 27.7 ±20.2 M2Ia DAO CCD 2007 2454384 0.0286 15.4 ±16.8 M3 lab DAO CCD 2008 2454755 0.0281 15.4 ±20.3 M3 lab DAO CCD 2009 2455091 0.9368 -4.4 ±23.4 M4Ib DAO CCD 2010 2455483 0.9906 2.3 ±15.7 M4Ib DAO CCD

166 2005 - Phase 0.0447 0.4 - 2007 - Phase 0.0286 2008 - Phase 0 0281 0.2 2009 - Phase 0.9368 2010-Phase 0.9906 0.0 _l i i i L -i • • 1 4000 4200 4400 4600 4800 5000 5200 Wavelength (A)

MO L i 1 V L 1 ^ 3790

M1 3745 3710 M2 • • 3660 3615 _| §LM3 3605 3 3550 "g 3535 S 3c 34505.

•• 3250

Figure 4.61: Spectral variation in AD Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 371.34 day period. 167 (KJ s Visual Magnitude Period (Days) Average Visual Magnitude O30303O3CDO3OJ03 CD 00 CO 0 1 A la K i i T i i i | i i i i | mr'| ft i i| T 'i""i -i—i 1—i—i—r i—|—i 1—i—|—i 1 r

Si 1X3 I • 1 "0 01 00

m

• * • • * • * * • • • *' •' • * * • * • * • •' • i • • • • *' •'' * O 4.41 BU Persei

Figure 4.63 shows BU Per's variations in spectral type and radial velocity, phased with a period of 363.00 days and a time of maximum light of JD2445741.77 from the AAVSO observations, as well as a montage of CCD spectra taken at different epochs. The GCVS lists a period for the star of 367 days, and a long secondary period of 2960 days. Its spectral type is listed as M3.5 lb. The observations were all obtained at similar phases because of seasonal restrictions, so we cannot comment on when the star reaches maximum temperature. The luminosity class did not appear to vary over the course of our observations. We also obtained 194 photographic (blue) observations of BU Per from the Harvard plate collection. The observations covered the dates JD2415405-2433999. We found a period of 353.73 ± 44.63 days for the star from the Harvard observations, a difference of -2.55% from the period found using the AAVSO observations. The star's average photographic magnitude for the observations was 11.62 with a range of lm.2. Figure 4.64 shows BU Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The periodicity in the star is poorly expressed and is compounded by irregular changes in mean brightness. Is the period of variability actually a year, or is that a seasonal bias? Because the spectroscopic observations were made yearly around the same time, there is no phase spread to test the pulsation hypothesis. A more concerted observational program is needed to clarify the nature of the star's variability and to confirm the pulsation hypothesis.

169 Table 4.73: AAVSO Observations of BU Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 33572-55394 9.40 3.3 1468 363.00 ± 10.32 1 33572-40688 9.46 0.64 2.3 58 353.59 ±24.11 -2.86 2 41658-44515 9.73 3.51 2.8 80 322.21 ± 2.74 -11.48 3 44522-48169 9.46 0.64 2.2 367 355.16 ±1.17 -2.43 4 48175-51815 9.32 -0.85 3.1 482 321.16 ±0.73 -11.77 5 51822-55394 9.42 0.21 2.2 481 364.67 ±1.09 -.19

Table 4.74: Spectroscopic observations of BU Persei Year HJD Phase (km/s) Spectral Type Source vR 1969 2440562 0.7293 M3.7 lb Wing 1970 2440903 0.6687 M4.0 lb Wing 1970 2440951 0.8009 M3.9 lb Wing 1973 2442015 0.7320 M3.2 lb Wing 2006 2454027 0.8240 29.1 ±8.1 M4Ib DAO CCD 2008 2454755 0.8290 14.7 ±19.3 M4Ib DAO CCD 2010 2455483 0.8350 32.5 ± 14.9 M4Ib DAO CCD

170 I I II

*M .M*..

0fwm2006 - Phase 0.8240 I m 2008 - Phase 0.8290 2010-Phase 0.8350

0.0 -i • J_ 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO T T L I I L 3790

M1 -i 3745 -i 3710 M2 r -. 3660 -i 3615 _i r m or - 3605 g • «M4 • 3550 "g Vi 3535 S. «M5 c 3 M6 34503 • Spectrophotometry data M7 3250 • Al other data 3350

M8 -0.5 0.5 1.5 Phase . 1 i 1 1 1- • j 50 r—• ''-'" '.

:

'•_ 40 "to 1 b i ^30 : . ~ o §20 _ 75 t . ft DC 10 . i :

I 0 1 i , , . i . , .1 i , , . , i -0.5 0.5 1.5 Phase

Figure 4.63: Spectral variation in BU Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 363.00 day period. 171 i i | . i i | a.3 ' ' 1 ' ' • 1 ' ' ' i ' ' ' I i i . T

• *9.4 3 • - "E §> • • _9.5 - ato (O 5 g'se - 1 9.7

, , 1 , , , 1 . , 1 . , , 1 !,.,!- 38000 40000 42000 44000 46000 48000 50000 52000 5400 HJD (2400000+) ' ' 1 ' ' ' 1 ' " '

370 9 '

; < » 1 (Days ) I 0.340 -

330 "

320 i • 38000 40000 42000 44000 • 4600i 1 0 i i i4800 I 0t i >8000 I 0 i i i5200 i 0i i .540 T0 HJD (2400000+)

- •

9.4 - • - • - CD Xt 3 1,9.5 s a !9.6h

9.7 -

2.51 2.52 2.53 2.54 2.55 2.56 log(Period)

Figure 4.64: Period and average magnitude changes in BU Persei from AAVSO observations.

172 4.42 FZ Persei

Figure 4.65 shows FZ Per's variations in spectral type and radial velocity, phased with a period of 371.00 days and a time of maximum light of JD2443173.28 from the AAVSO observations, along with a montage of CCD spectra taken at dif­ ferent epochs. The GCVS lists a period for the star of 184 days and a spectral type of MO.5-2.0 lab. Using either period gives approximately the same results in the plots of spectral type and VR. The radial velocity variations indicate that the star reaches minimum dimensions near phase 0.89, although the period and phasing are poorly established, so that is not a conclusive result. The temperature is varying, but it is not clear at what phase it reaches maximum. We also obtained 196 blue light observations of FZ Per from the Harvard plate collection. The observations covered the dates JD2415405-2433999. We found a period of 371.91 ± 9.57 days for the star from the Harvard observations, a difference of 0.25% from the period found using the AAVSO observations, with a large uncertainty. The star's average pho­ tographic magnitude during the observations was 10.33, with a magnitude range of lm.5. Figure 4.66 shows FZ Per's changes in period and average visual magnitude taken at approximately 10-year intervals. The period and average magnitude undergo changes, but we cannot establish an unambiguous period. The variability is poorly expressed by the observations, but a period near 1/2 year seems to be indicated, as given in the GCVS. The mean brightness of the star varies by only a small amount.

173 Table 4.75: AAVSO Observations of FZ Persei Subset Dates (V) % Diff. AV N P (days) % Diff. All 33898-55423 8.33 2.3 2023 371.00 ±0.11 1 33898-37526 8.49 1.92 1.4 1773 360.42 ± 0.30 -2.85 2 37631-41186 8.30 -0.36 0.9 32 352.21 ±3.01 -5.06 3 41214-44819 8.34 0.12 1.3 127 378.10 ±2.31 1.91 4 44853-48495 8.16 -2.04 1.7 465 369.20 ± 1.03 -0.49 5 48500-52140 8.31 -0.24 1.8 699 367.10 ±0.81 -1.05 6 52151-55423 8.44 1.32 2.1 527 368.13 ±1.51 -0.77

Table 4.76: Spectroscopic observations of FZ Persei Year HJD Phase VR (km/s) Spectral Type Source 2005 2453648 0.2338 45.8 ±17.8 M0 1a+ DAO CCD 2007 2454382 0.2122 26.4 ±15.3 M0 Ia+ DAO CCD 2008 2454755 0.2172 -1.2 ±20.0 Ml la DAO CCD 2009 2455092 0.1259 -6.0 ±23.2 Ml la DAO CCD 2010 2455483 0.1796 45.6 ±18.0 Ml la DAO CCD

174 iJttWM

2005 - Phase 0.2338 2007-Phase 0.2122 2008-Phase 0.2172 2009-Phase 0.1259 2010-Phase 0.1764 -1 " ' * ' 4000 4200 4400 4600 4B00 5000 5200 Wavelength (A) K5 j. 1 r— i • • i 1 , r •• -i . , • i -"• ' <— 1 -' ' <— i "••-, 3840

MO -i 3790 • • J 3745 M1 [ • •• • •• ^ 3710 OjM2 r - 3660 ^ Q. ^ « 3615 3 H,> »M 3 ; -: 3605 ro IS ^ 3550 S. tJM4 3535 5 (D ^ (D Q. W — M5 I -i 3450 3 M6 r •i-. 3350

M7 -. 3250

M8 k . 1 .. i -0.5 0.5 1.5 Phase

i i i _J _ I L | 60

o <>

-20 -

-0.5 0.5 1.5 Phase

Figure 4.65: Spectral variation in FZ Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 371.00 day period. 175 8.15 " l , r ' ' ' i ' ' .(ill,. ' ' ' '•' ' ' ..,.,., '"

8.20 -

\ J • • •

0 3 C D u » r o - Visua l Magnitud e ffi S> 5 8.40 • '_ 8.45

8.50 -: . . [,.,!., , 1 . . . 1 . , 1 1 I I I 1 . . , .- 36000 380DO 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) . ' 1 • • ' 1 ' ' ' I > ' ' I ' ' • | ' i ' i "7 ' ' ' I i—i—i—!—!--r i • • • i. 380 I "• 375 I -_

-5-370 $ i i~- TT365 *"

0. 360 _• -

355 - <> * 350 _ 1 I 1 1 1 1 1 1 , , i , , , i . , , i - 36000 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 8.15 1 i • i I i II9|U1IU| : K j i i i I i 1 | . I 1 • i ' " •; • 8.20 :

ffl8.25 : X) 3 * C8.30 -• sCO> • 5 • • - «8.35 3 • « - >8.40 - • 8.45 - • 8.50 T « . , 1 , , , , 1 , , , , 1 f 1 1 . 1 r , 1 1 , , , , i , . , • 2.55 2.555 2.56 2.565 2.57 2.575 log(Period)

Figure 4.66: Period and average magnitude changes in FZ Persei from AAVSO observations.

176 4.43 V411 Persei

Figure 4.67 shows V411 Per's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased using a period of 394.55 days and a time of maximum light of JD2453520.19, determined from the few AAVSO observations. The GCVS lists a period of 467 days and a spectral type of M3.4 la. The radial velocity variations appear to indicate that the star reaches minimum dimensions near phase 0,72. The star appears to reach highest temperature near light maximum. We do note, however, that these results are not conclusive because of the lack of photometry and firm phasing. Its luminosity class did not appear to vary over the course of the observations we obtained. We also obtained 160 blue light observations of V411 Per from the Harvard plate collec­ tion. The observations covered the dates JD2415405-2433999. We found a period of 391.99 ± 1.03 days for the star from the Harvard observations, a difference of -0.65% from the period found using the AAVSO observations. The star's average photo­ graphic magnitude during the observations was 12.68, with a range of 2m.O. There are insufficient photometric observations available for this star to obtain a reliable period or to study its light variations. Although the spectroscopic results are consis­ tent with pulsation for P — 395 days, the results need confirmation. The star also exhibits changes in mean brightness, consistent with dust ejection episodes.

Table 4.77: AAVSO Observations of V411 Persei Subset Dates (V) %Diff. AV N P (days) % Diff. All 52623-54906 9.62 1.1 29 394.55 ±6.05

177 Table 4.78: Spectroscopic observations of V411 Persei Year HJD Phase VR (km/s) Spectral Type Source 2005 2453648 0.3237 27.9 ±17.4 M2 lab DAO CCD 2007 2454382 0.1818 14.3 ± 14.8 M2 lab DAO CCD 2008 2454755 0.1258 4.4 ± 19.6 Ml lab DAO CCD 2010 2455484 0.9714 4.4 ± 16.3 M2 lab DAO CCD

178 1.4

1.2

1.0 J>

0)0.8 > 0> 0.6 EC

0.4 - 2005 - Phase 0.3237 2007-Phase 01818 0.2 2008-Phase 0.1258 2010 - Phase 0.9714

0.0 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) 3790

40 -

-Z?30

3? 20 - 'o o > 10 3 0 - EC

-10

-0 5 0.5 1.5 Phase

Figure 4.67: Spectral variation in V411 Persei. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 394.55 day period. 179 4.44 VX Sagittarii

The GCVS lists a period of 732 days for VX Sgr and an incredible spectral type range of M4-10 Iae. Our Fourier analysis found a similar period of 756.65 days. Figure 4.68 shows VX Sgr's changes in period and average visual magnitude taken at approximately 10-year intervals. The average brightness has decreased, and the period is undergoing changes. The variability is well-established, despite changes in mean brightness that likely reflect dust ejection events. Unfortunately, there are few spectroscopic observations available and none that we found with associated obser­ vation dates to study the pulsation. Spectroscopic data are essential to study the pulsation in this fascinating star, but would need to be obtained from a site further south than the DAO. The star's periodicity is obvious in the light curve, as is the extremely large amplitude of at least 5m — 6m.

Table 4.79: AAVSO Observations of VX Sagittarii ubset Dates (V) % Diff. AV N P (days) % Diff. All 27949-55416 9.77 7.6 6970 756.65 ±0.16 1 27549-31591 9.55 -2.25 5.0 834 777.58 ± 2.59 2.77 2 31603-35248 9.25 -5.32 6.2 1137 823.65 ± 3.29 8.86 3 35251-38899 9.11 -6.76 4.5 1270 751.08 ±5.39 -0.74 4 38901-42544 9.56 -2.15 7.2 753 754.49 ± 2.45 -0.29 5 42568-46194 10.03 2.66 5.7 730 797.25 ± 3.54 5.36 6 46201-49848 10.26 5.02 5.2 1103 745.27 ±2.57 -1.51 7 49861-53479 10.24 4.81 4.9 871 769.79 ±2.12 1.74 8 53522-55416 10.18 4.20 4.0 272 769.30 ± 18.08 1.67

180 I i 1 1 . I • ' 1 ' ' 1 '.

• m,' 9.2 —- " • •

l i i l > i i i l i i > i • i i. 820 •*• ' •

800 - w i S* 1378Q 780 -n - i o 760 -

i * L;

t , , , i , . , . i , , . , i , . § . i « i i i i" 30000 35000 40000 45000 50000 55001 HJD (2400000+) 1 1 • 1 ' , j i i , , ' ' ' . 9.2

• •

9.4 _ CD - xs . 3 • • 32 • fe>9-6 ~ IS 5 * « 9.8 • - CO > 10.0 • "~

10.2 • ' • • i i i , , , - 2.88 2.89 2.9 2.91 log(Period)

Figure 4.68: Period and average magnitude changes in VX Sagittarii from AAVSO observa­ tions.

181 4.45 KW Sagittarii

Figure 4.69 shows KW Sgr's variations in spectral type. We found a period of 352.47 days and a time of maximum light of JD2449437.57 from the AAVSO observa­ tions. The GCVS lists a period of 670 days, and we used the longer period to phase the spectral type plot as it gave a better result. The star appears to reach highest temperature near light maximum. Its luminosity class did not change over the course of the observations. Figure 4.70 shows KW Sgr's changes in period and average visual magnitude taken at approximately 10-year intervals. The slight variations are poorly expressed, although a period of 670 days is evident in Swope's early photographic estimates (Swope 1940). The AAVSO observations are less useful. Radial velocity measurements are also needed.

Table 4.80: AAVSO Observations of KW Sagittarii Subset Dates (V) % Diff. AV N P (days) % Diff. All 47088-55304 9.67 2.5 529 352.47 ±0.50 1 47088-50733 9.46 -2.17 1.6 249 334.67 ±1.30 -5.05 2 50739-55304 9.86 1.96 2.1 280 341.33 ±1.44 -3.16

Table 4.81: Spectroscopic observations of KW Sagitarii

Year HJD Phase VR (km/s) Spectral Type Source 1970 2440766 0.0566 M1.6 la Wing 1970 2440768 0.0596 Ml.7 la Wing 1970 2440769 0.0611 M1.5 la Wing 1970 2440790 0.0924 Ml.7 la Wing 1971 2441118 0.5820 M3.3 la Wing

182 2 ere' c Spectral Type i a OS-J-*O P Fi i|iu|li i|iii|Ui|iii|ni|i n|tii|n j|Mi|ui|fii|i uju i |iu. 05

0>

o

£

o

* 00 CO co p> TO

CD a

-Oai o a s» << "a I I ft o> O O Ol CD (») ajruBjedujei 5' a | 1 1 < 1 | 1 1 1 1 |

••' '

9.5 " IS ' •a3 as e 0>9.6 -" s ' (0 3 a> . i53.7 - (D o> « - « - <> 9.8 .

1 . . . , 1 49000 50000 51000 52000 53000 HJD (2400000+) 355 I | ! 1 I i i i i i i i i i i i i i i i 1 1

350 - -

«5" . : <>B. . . Q345 _ "" - •g T J - affi. • A 340 T1 -

335 ". J- i 49000 50000 51000 52000 53000 HJD (2400000+) ...... 1 " ' ' " 1 • ' ' ' 1

9.5 -

• 01 ^9.6 acs

CO 5 • ; §9.7 09 > - •

9.8 -

) 1 4 I 1 * 1 2.525 2.53 2.535 2.54 2.545 log(Peiiod)

Figure 4.70: Period and average magnitude changes in KW Sagittarii from AAVSO observa­ tions.

184 4.46 AH Scorpii

The GCVS lists a spectral type of M4.5 la-lab for AH Sco, and a period of 713.6 days for AH Sco, similar to the 766 day period found from our Fourier analysis, and a spectral type of M4-5 la-lab. Figure 4.71 shows AH Sco's changes in period and average visual magnitude taken at approximately 10-year intervals. The brightness has decreased and the period is undergoing changes. The periodicity is well-established from photometry and the period is well-determined. However, spectroscopic data are needed to study the pulsation in the star.

Table 4.82: AAVSO Observations of AH Scorpii ubset Dates (V) % Diff. AV N P (days) % Diff. All 38995-55423 7.94 4.3 1644 766.12 ±1.16 1 38995-42601 7.79 -1.89 2.2 57 826.98 ± 9.96 7.94 2 42628-46293 7.91 -0.38 3.6 163 783.80 ±8.73 2.31 3 46296-49943 7.75 -2.39 3.4 926 873.01 ± 6.09 13.95 4 49945-53593 8.31 4.66 3.3 406 709.74 ± 3.55 -7.36 5 53607-55247 8.48 6.80 2.0 90 706.41 ± 26.41 -7.79

185 ill,. iijiii, J 1 1 1 1 1 1— , i • , . r . , • 1 '

7.8 _• -

• • .•••* g>8.0 - s • (0 u »8.2 -

-• . , I . , . I . , . 1 , . , I , . , 1 , i . 1 i i . , • • 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) l ...,,. 1 , 1 1 I . 1 ...£... 1 1 1 I 1 . I ' -1 ' 850 •i • - - * o d (Days )

a 750 -

• • .,1, 7 * 700

, , 1 , , , 1 1 1 1 1 1 1 1 1 -t - 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+)

2.86 2.88 2.9 2.92 2.94 log(Period)

Figure 4.71: Period and average magnitude changes in AH Scorpii from AAVSO observations.

186 4.47 CE Tauri

Figure 4.72 shows CE Tau's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The observations were phased using a period of 174.39 days and a time of maximum light of JD2447099.77, determined from the AAVSO observations. The GCVS lists a period of 165 days and a spectral type of M2 lab-lb. The radial velocity variations appear to indicate that the star reaches minimum dimensions near phase 0.26. The temperature is varying, but it is not clear at what phase it reaches maximum. It reaches greatest luminosity class at highest temperature. Figure 4.73 shows CE Tau's changes in period and average visual magnitude taken at approximately 10-year intervals. The period of variability appears to be reasonably well-established from previous observations (GCVS) and the AAVSO data, despite a small amplitude: Al/~ 0m.31 (GCVS), AV ~ lm - 2m (our analysis). Additional photometry is needed to confirm the pulsation period.

Table 4.83: AAVSO Observations of CE Tauri ubset Dates (V) % Diff. AV N P (days) % Diff. All 35054-55323 4.81 4.3 3280 174.39 ±0.14 1 35054-38701 4.94 2.70 1.6 299 175.45 ± 0.23 -0.61 2 38768-42345 4.88 1.46 1.0 227 173.63 ± 0.38 -0.44 3 42354-45995 4.87 1.25 1.9 804 178.94 ± 0.24 2.61 4 46008-49653 4.86 1.04 2.0 627 178.12 ±0.17 2.14 5 49654-53293 4.67 -2.91 1.9 892 171.23 ±0.23 -1.81 6 53306-55323 4.84 0.62 1.8 429 175.17 ±0.44 0.45

187 Table 4.84: Spectroscopic observations of CE Tauri

Year HJD Phase VR (km/s) Spectral Type Source 1951 2433937 0.3508 Ml.5-2 lab DDO 1956 2435576 0.7688 M2Ib DDO 1957 2435898 0.6202 M2Ib DDO 1967 2394766 0.8515 M2Ib DDO 1968 2394924 0.7575 M2Ib DDO 1968 2394935 0.8208 M1.5 lab DDO 1970 2440621 0.7628 M1.8 lab Wing 1970 2440633 0.8318 M2.0 lab Wing 1970 2440635 0.8433 M1.8 lab Wing 1970 2440635 0.8433 M2.0 lab Wing 1970 2440899 0.3605 M2.0 lab Wing 1970 2440903 0.3835 M2.0 lab Wing 1970 2440951 0.6594 M2.6 lab Wing 1971 2441009 0.9927 M2.3 lab Wing 1971 2441015 0.0272 M2.5 lab Wing 1972 2441363 0.0329 M2.1 lab Wing 1973 2442015 0.7743 M2.4 lb Wing 1975 2442763 0.0743 M2Ib DDO 2005 2454655 0.6742 28.3 ± 19.8 Ml lab DAO CCD 2007 2454382 0.8517 52.1 ± 16.5 M2 lb DAO CCD 2010 2455484 0.1851 50.7 ±13.7 M2 lb DAO CCD

188 1.4

1.2

1.0 x I LL 0)0.8 "r M/y .> JE iS a> 0.6 OC 2005 - Phase 0.6742 0.4 2007-Phase 0.8517 2010-Phase 0.1851 0.2

0.0 4000 4200 4400 4600 4800 5000 5200 Wavelength (A)

MO n— i | i i i i f i i •n3790

M1 r -. 3745 -I 3710 M2 r ft 4 •• • 6 A «• -i 3660 •i 3615 _i S.M3 -: 3605 g •^so"! * M4 r 3535 3 o i. c a> s (g-Msf- ,J 3450^ -. 3350 • Spectrophotometnc data • All other data -i 3250

Figure 4.72: Spectral variation in CE Tauri. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 174.39 day period. 189 1—!—r—r—!——r- -T—r i i i r 4.65 T-T:

4.70 0) T3 3 C 4.7S 2to 3 4.80

OD4.85 |-

^1 4.90U h

4.95 - 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+)

i i i . > . , • i ' | • • ' | . r i | i 1 ^ .

178 i -

Q ;i j; ^17i" 4 i ;

172

, , i , , . i ,.,!,,, . . .1 , . . i 38000 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+) 4.5 _ • i • > > • i • ' ' 1 '

4.6 - -a • 3££ : • &4.7

Ed • 5 IS " 3 £4.8 — • • • • : 4.9 • i t • ' 1 1 1 1 ! i i ! ( 2.235 2.24 2.24S 2.25 log(Period)

Figure 4.73: Period and average magnitude changes in CE Tauri from AAVSO observations.

190 4.48 W Trianguli

Figure 4.74 shows W Tri's variations in spectral type and radial velocity and a montage of CCD spectra taken at different epochs. The spectroscopic observa­ tions were phased using a period of 592.86 days and a time of maximum light of JD2438933.62, determined from the AAVSO observations. The GOVS lists a period of 108 days and a spectral type of M5 II. The spectral type and luminosity class did not appear to change over the course of our observations. Figure 4.75 shows W Tri's changes in period and average visual magnitude taken at approximately 10-year intervals. The AAVSO data indicate a period closer to 600 days than the value of 108 days cited in the GCVS. The variability is reasonably well-defined and appears to be the result of regular pulsation. However, spectroscopic data are lacking so the nature of the pulsation cannot be studied. Additional spectroscopic observations would be welcomed.

Table 4.85: Spectroscopic observations of W Trianguli Year HJD Phase VR (km/s) Spectral Type Source 1939 2429505 0.1001 12 M5 Joy 1940 2429932 0.9202 2 M5 Joy 1940 2429957 0.8624 6 M5 Joy 2005 2453648 0.8135 37.9 ± 20.4 M5II DAO CCD 2010 2455484 0.9094 8.1 ±21.1 M5II DAO CCD

191 Table 4.86: AAVSO Observations of W Trianguli Subset Dates (V) % Diff. AV TV P (days) % Diff. All 31018-55407 8.20 2.7 5719 592.86 ±0.13 1 31018-34665 8.29 1.10 0.9 122 561.28 ±5.19 -5.33 2 34683-38319 8.29 1.10 2.4 508 598.61 ± 1.90 0.97 3 38321-41962 8.38 2.20 1.9 482 701.24 ±7.33 18.28 4 41973-45615 8.12 -0.98 2.0 678 691.30 ± 2.56 16.60 5 45624-49268 8.14 -0.73 2.4 1136 628.01 ± 2.55 5.93 6 49269-52918 8.20 0.00 1.9 1662 593.12 ±1.94 0.04 7 52919-55407 8.21 0.12 1.8 1131 615.14 ±1.55 3.76

192 ' 1 ' ' 1 ' 1 1 , 7 , , ,

1.4 -

1.2 -

§1.0 LL |o.e - « OCO.6

0.4 -

2005 - Phase 0 8135 0.2 - 2010-Phase 0 9094

, • 1 . . 1 1 1 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) MO ] 3790

M1 r 3745 3710 M2 3660 3615 _i S.M3P 3605 3 P r 3550 "g «M4 - 3535 3 o L c M5 3

M6 3450 ~

M7 - 3353250

M8 -0.5 0.5 1.5 Phase 1 1 1 r r- | r-" —r —• •— 1 T 50 " 1 - 1 -S-40 1 - <> • " JeC 1 . ~ 30 - r- ~ 0 . O - « 20 — > "" - (0 • • TJ 10 (0 j • •« • 1 • • • 0 "

-10 J 1 1 1 , 1 1 -0 5 0.5 1.5 Phase

Figure 4.74: Spectroscopic variation in W Triangulum. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 592.86 day period. 193 ^ i ro po **• en o en o -^ I 1 < I I I I ! I I I I I I I I I I I I 1 U I I I I ' ' ' I ' ' I ' ' ' I i i i I i i i 01

O P0 D. Ol P> 0 a ^ 0> <>-i p» cm a> K) 3 -J P= H#q (W 3 c+ c 1—' aCO . CD n ,8 4^ tr TJ P> ts a* . r» C6 &"

3 o

CO O o 1 cr _L_l_ ' • • • ' • » ' * • • • 1 ... I < • • I • . . I • 4.49 CM Velorum

We determined a period of 762.00 days for CM Vel from the AAVSO ob­ servations. The GCVS lists a period of 780 days and a spectral type of MO-5 II. Figure 4.76 shows CM Vel's changes in period and average visual magnitude taken at approximately 10-year intervals. The average brightness has increased and the period is undergoing changes. The variability is reasonably well-established in the AAVSO observations, and presumably can be explained by pulsation. However, spec­ troscopic observations are lacking for this southern hemisphere star, so the nature of the pulsation cannot be studied with the data at hand.

Table 4.87: AAVSO Observations of CM Velorum Subset Dates (V) % Diff. AV N P (days) % Diff. All 39164-54613 8.16 2.1 238 762.00 ±2.19 1 39164-46240 8.00 -1.96 1.5 55 761.27 ±2.98 -0.10 2 46440-50068 8.19 0.37 2.0 142 768.89 ± 3.37 0.90 3 50489-54613 8.24 0.98 1.7 41 696.01 ± 10.21 -8.66

195 Tl ! ! [ 1 ! ' T—•—• '—r '' '-•', -i— 8.00 . i ,

CD •3 8.05 - - 3 .•E C

2s > 8.10 Co - -

" • 0 3 e Visua l (B • "^e^o -

• • 8.25 I ... i ... i 44000 46000 48000 50000 52000 HJD (2400000+) ' i ' ' ' i T ' ' ' t ' i | -. •

760 "f -

""740 - la D

- Perio d

700 I: i ..,!,,, 1 , ... J- 44000 46000 48000 50000 52000 HJD (2400000+)

8.25 2.85 2.86 2.87 2.88 log(Period)

Figure 4.76: Period and average magnitude changes in CM Velorum from AAVSO observa­ tions.

196 4.50 FG Vulpeculae

Figure 4.77 shows FG Vul's variations in spectral type and radial velocity, along with a montage of CCD spectra taken at different epochs. The spectroscopic observations were phased using a period of 351.77 days and a time of maximum light of JD2453951.13, determined from the AAVSO observations. The GCVS lists a period of 86 days and a spectral type of M5 II. Both periods result in approximately the same phasing for the two spectroscopic observations. We do not have enough observations to determine at what phase FG Vul reaches highest temperature and luminosity class. There are insufficient AAVSO measurements to use for a period study of the star, but a previous photographic study by Gotz (1984), tied to published photographic data, gave a period of 86 days. The 351-day period may be a result of seasonal bias. The two spectroscopic observations hint at consistency with pulsation, but additional observations are needed to fully study pulsation in the star.

Table 4.88: AAVSO Observations of FG Vulpeculae Subset Dates (V) % Diff. AV N P (days) % Diff. All 50949-54807 9.61 1.0 29 351.77 ±3.71

Table 4.89: Spectroscopic observations of FG Vulpeculae

Year HJD Phase VR (km/s) Spectral Type Source 2009 2455092 0.2495 -40.5 ±19.2 M5Ib DAO CCD 2010 2455489 0.3807 -31.6 ±20.9 M5 lab DAO CCD

197 -| r i ii i 'i i t i i i T T" 1 I I I U I I 1 4 1 ( I i' •• ,V' , 1.2 '.I .I ' •I $ 1.0 '.•, • !V * x ,'» ' I if.' ' ' A1 ' J3 I I 1 'i " J , A' '(t%.\ U- I «' , VI 0,0.8 ".V'' I iH, < i1 v • 1 JS /1-' " ii i 0) 0.6 in; II, J IT ,| 0.4 - Ii A! 2009 - Phase 0.2495 i^v 02 |.<- 2010 -Phase 0.3807 i i 0.0 • -i i i_ 4000 4200 4400 4600 4800 5000 5200 Wavelength (A) 1 3790 MO r""' ' - —-. 1 1 r —r •T--IJ- I I r 1 n . i r 1 M1 3745 J 3710 M2 -. 3660 : 3615 _i 0) Q.M3 ^ - 3605 g • K,>%- — —• 355 0 "g *M4 - 3535 S O c 0) 3 WM5 • • • • J 3450g M6 ~ •i 3350 M7 H-. 3250

M8 u . . . 1 r i -0.5 0.5 1.5 Phase -r I ' -r- i | .—i—i i | —i r- • -20 ^^ ' in • JE£ "^-30 _ -. .& . <» <• . o . 0o> > .,> _ -40 4>

-fin i i i -0.5 0.5 1.5 Phase

Figure 4.77: Spectroscopic variation in FG Vulpeculae. Top: Spectra from different epochs. Middle: Spectral type as a function of phase. Bottom: Radial velocity as a function of phase. Data phased with 351.77 day period. 198 4.51 Summary of Results

Table 4.90 presents a concise summary of the results found. We have divided the stars into three new classifications that have arisen as a result of our work. Class A includes stars that may be LC variables rather than SRC variables, or that have very little available data. Class B includes stars that are most likely SRC variables, but need more data. Class C includes stars that are most certainly SRC variables and have enough data available that we have been able to make some conclusions about the nature of their variability. 13 stars are in class A, 22 stars are in class B, 8 stars are borderline cases between classes B and C, and 6 stars are in class C.

Table 4.90: Summary of Results

Star Class Spectral Type Period (d) Comments SS And A M6-M7 lab 178 Irregular light curve, possible LC V Ari A C5II 58.7 Very poor, irregular light curve, period not well-established, possible LC UX Aur B M4-5 Ia-II 357/90 Periodicity uncertain, needs better photometry V349 Aur B M4 Ib-II 32.5 No photometry for finding period, but spectral type changes observed RS Cnc B M6-M7 lab-lb 240/120 Period well-established, only 2 spectra with VR, needs more spectroscopic data UZCMa B M6II 86.8 Period well-established, needs spectroscopic data BZ Car A M2-4 la-lb 130/97 Periodicity reasonable, strange brightness drop, recent irregularity CK Car A M3.5 lab 533 Period well-established, irregular brightness variability, possible LC continued...

199 Table 4.91: Summary of Results (continued)

Star Class Spectral Type Period (d) Comments CLCar B M5Iab 513 Period well-established, brightness drops possibly from dust, needs spectroscopy EVCar A M4.5 la 347 Period not well-established brightness variability, needs spectroscopy, possible LC IX Car B M2 lab 350-400 Variability well-established, small amplitude, mean brightness changes PZ Cas C M2-4 la 253 Solid period, some changes in mean brightness WCep B KO-I la-lb 2000/350 Variable but not consistently, is it in fact pulsating? Periodicity reasonable, but starspot activity likely SWCep B/C M3.5 la-lab 599/70 Good spectra, but lacks photometry. Period needs confirmation. WCep A M4 Ia-Iabe 364 AAVSO data too scattered, + B8 Ve eclipses and orbit well-studied, but pulsation not. Is it an LC? MYCep A M7Ia No photometry, small amplitude, 1 spectrum Li Cep B M2 Iae 700-1000 Lots of data, period unstable, could be LC? TCet B/C M5-6 He 160 Good photometry, good period, needs more spectra RWCyg B M2-4 la-lab 520 Amplitude changes, needs better phasing AZCyg B/C M2-4 la-lb 459 Period well-defined, amplitude small, needs improved phasing BCCyg C M2-4 la-lb 693 Good data, well-established period, good spectra, dust extinction episodes continued...

200 Table 4.92: Summary of Results (continued) Star Class Spectral Type Period (d) Comments VEri A M6II 290/97 Periodicity not well-marked, no spectra, borderline SRC at best TV Gem B K5.5-M1.3 lab 425/70 Needs better period, but spectral type changes consistent with pulsation IS Gem A K3II 359/47 K star with short P, small amplitude, no good data V959 Her A M4 Ib-II 140 Not in old GCVS, no spectral type changes, lack of photometry. Don't know why it was classified SRC. a Her B/C M5 Ib-II 508.7 Highly irregular light curve, period uncertain, but spectral data good RVHya A M5II 243/116 Poor photometry, no spectra, don't know if period is accurate Wind B M4-5 He 198 Period well-established, but needs spectra U Lac B/C M4 Iabpe + B 395 Good light curve and reasonable period YLyn B M6 Ib-II 283/110 Period needs to be better constrained, need more spectral data, pulsation is small amplitude S2 Lyr A M4II 627 Needs spectral data, light variation is not obvious in AAVSO data a Ori B Ml-2 la-lb 425/2335 Lots of observations, but difficult to phase, period not well-defined, good VR and spectral types continued...

201 Table 4.93: Summary of Results (continued) Star Class Spectral Type Period (d) Comments SPer C M3-M7 Iae 807 Good results T Per C M2Iab 2457 Good results, but amplitude small, and 2457 day period is unusual for M2 star WPer B/C M3-7 la-lab 531/485 Good spectral results, but period needs confirmation RSPer B M4Iab 244 Promising case, but needs better photometry. SUPer C M3.5 lab 468/533 Good results, period needs to be better-constrained XX Per C M4 lb + B 403 Good spectral results, but period needs confirmation AD Per B M2.5 lab 371 Spectral results okay, but photometry is poor. Is the 1 year period real? BUPer A M3.5 lb 367/2960 Period to close to 1 year to be certain. Brightness is varying, but better photometry is needed. FZ Per B/C MO.5-2 lab 371/184 Promising case, but period needs to be confirmed. Spectral results are good. V411 Per B M3.4 la 467 Period is poorly established. Needs more photometry. VXSgr B M4-10 Iae 756.65 Good photometry and period, but needs spectra. KWSgr B MO-4 la 352/670 Promising, but period not well-established. Needs VR and more photometry. continued...

202 Table 4.94: Summary of Results (continued) Star Class Spectral Type Period (d) Comments AHSco B M4-5 la-lab 766 Great photometry, good period, no spectra CETau B/C M2 lab-lb 174 Reasonably good photometry, period needs to be a bit better constrained WTri B M5II 593 Good period, but spectra don't show variation CM Vel B MO-5 II 762 Good period, no spectra FG Vul B M5II 352/86 Period okay, but needs more spectra

203 Chapter 5

Group-Wide Trends

In this chapter we examine the properties of the stars as a group using the results presented in the preceding chapter. We look at insights gained from studying the period changes and spectroscopic variability, as well as a relationship among spectral type, luminosity class, and amplitude, and the period-luminosity relation.

5.1 Insights From the Radial Velocity Curves

It is apparent from our analysis of the radial velocity curves that some of the stars seem to reach their smallest dimensions near light minimum while others seem to reach their smallest dimensions near light maximum. Tables 5.1 and 5.2 list the stars in each group. Since maximum luminosity invariably corresponds to hottest temperature, and most stars are hottest when smallest, it would seem that all of the program stars should reach their smallest dimensions near light maximum, which is why it seems essential to examine their radial velocity variations more closely. Otherwise, there is no obvious common characteristic for the two groups that could provide an explanation for such a dichotomy. Maximum temperature and greatest luminosity class occur near light maxi­ mum in essentially all cases, making the two groups appear to behave similarly despite the radial velocity results. Uncertainties in the radial velocity measurements and dif­ ficulties in determining accurate periods and phasing for some of the stars could be complicating the issue. It is likely that better photometry would lead to improved phasing that would resolve the discrepancy.

204 Table 5.1: Stars that reach smallest dimensions near light maximum (Phase 0.75-0.99 and 0.00-0.25) Star Phase of Spectral Type Period AV Phase of Max T Max L Smallest Size RS Cnc 0.93 M6-M7 lab-lb 120 2.5 at min T1 SWCep 0.98 M2-M4 la-lab 599.10 2.1 near 0.0 at max T VVCep 0.76 M1.5-M3 la-lb 364.21 1.4 at max T a Her 0.11 M4-M6 la-lb 508.07 2.2 at max T SPer 0.017 M4-M5 Ia+ - lab 806.64 6.1 near 0.0 at max T SUPer 0.12 M3-M4 la-lb 468.91 2.8 WPer 0.87 M3.5-M5 la-lb 531.47 3.6 near 0.5 at max T ^ole anomalous object

Table 5.2: Stars that reach smallest dimensions near light minimum (Phase 0.25-0.75) Star Phase of Spectral Type Period AV Phase of Max T Max L Smallest Size PZCas 0.34 M2-M4 la-lab 253.97 3.6 near 0.5 at max T fi Cep 0.54 M0.5-M3 Ia+ - lab 843.65 2.5 WCep 0.33 K0-K1 la-lb 346.2 2.7 near 0.5 TCet 0.46 M5 160.84 AZCyg 0.75 M2-M3.5 la-lb 459.17 3.1 near 0.0 at max T BCCyg 0.44 M2-M5 la-lb 699.35 2.8 near 0.0 at max T RWCyg 0.63 M3-M4 lab 520.52 3.4 near 0.5 U Lac 0.56 M2-M4 Ia+ - lab 395.00 3.4 a Ori 0.27 M1-M3 la-lb 425.59 2.9 near 0.0 at max T AD Per 0.49 M2-M4 la-lb 371.24 2.3 near 0.0 at max T FZPer 0.69 M0-M1 Ia+ - la 371.00 2.3 at max T RSPer 0.64 M3-M5 Ia+ - lab 244.21 2.9 near 0.5 at min T TPer 0.45 M1-M2 Ia+ - lab 358.86 2.5 near 0.0 at max T V411 Per 0.72 M1-M2 lab 394.55 1.1 near 0.0 XX Per 0.67 M4-M5 la-lab 403.00 2.5 near 0.0 at max T CETau 0.26 M1-M2.5 lab-lb 174.39 4.3 at max T

205 5.2 Spectral Type-Amplitude Relation

It became apparent as we studied the stars that some of the coolest stars had some of the largest amplitudes, while some of the hottest stars had some of the smallest amplitudes. Figure 5.1 shows median spectral type plotted versus light amplitude. There is some scatter in the plot, but a trend towards larger amplitudes in cooler stars and smaller amplitudes in hotter stars is apparent. Some of the scatter can be explained by the difficulties in actually defining the pulsation amplitude and median spectral type in stars that are undergoing so many changes, but when we used luminosity class to sub-divide the plot, tighter correlations within luminosity classes became apparent. Stars with greater luminosities and later spectral types generally have higher amplitudes. Table 5.3 lists the stars used in the spectral-type amplitude relation, and figure 5.1 shows the relation categorized according to luminosity class. This is a new observational result, although a theoretical investigation of the pulsation properties of red supergiants by Bono & Panagia (2000) found that model stars of lower effective temperature have greater pulsation amplitudes. As a further theoretical basis for the result, we integrated a simple Planck function over the wavelength range of the Johnson V filter for temperatures of 3200-3800 K, and plotted the trend in AV as a function of temperature for three values of AT. Results are shown in figure 5.2, and they confirm the trends seen in the observational data. Note that greater AT values produce larger slopes and zeropoints. Comparison with our observational results seems to indicate that la stars undergo the greatest temperature changes while Ib-II stars undergo the smallest temperature changes. We performed linear regressions to determine lines of best fit for each of the three luminosity subgroups (excluding points in each group that crossed into the region of a neighboring group. We obtained the following results:

206 For the la stars:

AV = 0.6242 ± 0.1596(Spectral Type) + 1.6752 ± 0.3684 (5.1)

For the lab stars:

AV = 0.5385 ± 0.1258(Spectral Type) + 0.5288 ± 0.3945 (5.2)

For the Ib-II stars:

AV = 0.8248 ± 0.1855(Spectral Type) - 2.3482 ± 0.9627 (5.3)

The equations have correlation coefficients of 0.8475, 0.8680, and 0.5893, re­ spectively. One source of uncertainty in the result that could be reduced with future dedicated SRC observing campaigns is a lack of spectral type measurements over the entire pulsation cycles of the stars. We have used the median spectral types found from the measurements that we have, but filling in the spectral type vs. phase plots with more data points in order to determine median spectral types more confidently would remove some of the uncertainty. More spectroscopic data would also allow us to determine the full range of the spectral type variation for each star and conclusively state whether or not stars of greater luminosity class undergo greater temperature changes.

207 '—r- —i 1 1 r- —T- 1 l l | i • • la • 6.0 lab - - • Ib-ll y=0.6242*x+1.6752 5.0 y=0.5385*x+0.5288 ; — y=0.8248*x-2.3482 . • >4.0 - „ "^ • •

< • - • 0) - ^^% • •o •• 2 3.0 • • • D. • E - • • ^ • • : < « ^^"^ 2.0 • • • ^ • • 1.0 ^ • • ^ • • l i l 1 i ,i„ M1 M2 M3 M4 M5 M6 Median Spectral Type

Figure 5.1: Relationships among spectral type, luminosity class, and amplitude.

0.8 —I—'—'—•—•- i i i i I i i - AT = 300 K AT = 200 K 0.7 - AT = 100K

C 0.6 o SQ. 0) N £.0.5 to JO > 0.4 - <

0.3 -

0.2 - -: • 3700 3600 3500 3400 3300 Temperature (K)

Figure 5.2: AV as a function of T for various values of temperature amplitude, AT.

208 Table 5.3: Stars used in spectral type-amplitude relation Star Spectral Type AV SS Andromedae M6.50 lb 3.0 UX Aurigae M4.50 lb 1.6 V394 Aurigae M3.25 lb 2.5 RS Cancri M6.50 lb 2.5 BZ Carinae M2.90 la 4.2 PZ Cassseopeiae M2.97 la 3.6 li Cephei M1.56 la 2.5 SW Cephei M3.00 lab 2.1 VV Cephei M2.25 lab 1.4 AZ Cygni M2.65 la 3.1 BC Cygni M3.65 la 2.8 RW Cygni M3.50 lab 3.4 TV Geminorum M0.40 lab 2.6 a Herculis M5.00 lb 2.2 V959 Herculis M4.00 lb 0.4 U Lacertae M3.10 la 3.4 Y Lyncis M6.00 II 2.9 S2 Lyrae M3.00 lb 2.0 a Orionis M2.00 lab 2.9 AD Persei M3.00 lab 2.3 BU Persei M3.60 lb 3.3 FZ Persei M0.50 la 2.3 RS Persei M4.00 lab 2.9 S Persei M4.40 la 6.1 SU Persei M3.60 lab 2.8 T Persei M1.50 la 2.5 V411 Persei Ml.50 lab 1.1 W Persei M4.25 la 3.6 XX Persei M4.50 lab 2.5 KW Sagittarii M1.96 la 2.5 CE Tauri M2.05 lab 2.0 W Triangulii M5.00 II 2.7 FG Vulpeculae M5.00 lb 1.0

209 5.3 Period-Luminosity and Period-Radius Relations

We used stars with known distances that are cluster or association members to examine the SRC period-luminosity relation. Table 5.4 lists the stars used in the analysis, figure 5.3 shows the period-luminosity relation, and figure 5.4 shows the period-radius relation. The anomalous star in both cases is RS Per, which seems to have an unusually short period of variability for its spectral type (M3-M5) and luminosity class (la-lab). We chose to include only stars with distances established from cluster/association membership rather than using HIPPARCOS parallaxes be­ cause the systematic errors in the HIPPARCOS values are unacceptably large at the distances involved. Initially we used all stars that were known cluster members and calculated bolometric magnitudes using the bolometric corrections from Levesque & Massey (2005), distances and reddening values from a variety of sources, average apparent visual magnitudes from the AAVSO data, and periods determined in chapter 4. That produced relations with a lot of scatter and insignificant correlations. We investigated whether subsets of the data showed significant relations (including plotting different luminosity classes separately and plotting cluster and association members separately) and saw no obvious patterns. Finally, we plotted only the stars listed in Levesque & Massey (2005) using the bolometric magnitudes calculated in that paper and the periods we determined in chapter 4. That produced period-luminosity and period- radius relations with significant correlations, and we believe that the problem was with the AAVSO average magnitudes. Perhaps they are simply too uncertain, either because of differences in observers for stars with fewer data points or an uneven distribution of data across different epochs of observations. We have chosen, therefore, to include only stars with either bolometric magnitudes determined by Levesque & Massey (2005) or with absolute visual magnitudes determined by Humphreys (1978) in conjunction with the Levesque & Massey (2005) bolometric corrections. Data sources are indicated in the table.

210 Our results show that stars with greater luminosities have longer periods, similar to period-luminosity relations for other types of pulsating variables. The equation of the line of best fit through the data is

Mbol = (-4.18 ± 0.90) log(P) + (3.49 ± 2.42), (5.4)

with a correlation coefficient of-0.78. Our period-radius relation has a positive slope, also similar to what is expected for pulsating variables. The line of best fit is given by

\og(R/RQ) = (1.06 ± 0.46) log(P) + (0.066 ± 0.17), (5.5)

with a correlation coefficient of 0.86. RS Persei was not included when determining the lines of best fit, as it appears to be an outlier. T Persei was included with its shorter period of 377 days, as the short period produced a better fit with the rest of the stars than its longer period of 2457 days. We have not excluded stars that were assigned to class A in chapter 4, as they have not yet been conclusively eliminated from the SRC class. Both relations contain some scatter, which likely has several causes. First, the periods of the stars are not constant and in some cases are not established reliably. We have already shown that the periods change when examined over 10-year intervals, and it is apparent from the light curves that even the duration from one maximum to the next is not always the same. The second issue is that factors other than pulsation contribute to the brightness variations. Although cyclic changes in the radial velocities give supporting evidence to the theory that the stars do pulsate, the scatter in some of the spectral type plots indicates that pulsation does not tell us the entire story. We know from the work of Gray (2008) that a Orionis is covered by a few giant convection cells, which has a significant impact on its light variations, and it seems reasonable to conclude that the other SRC variables experience a similar type of convection. The dust production and mass ejections that occur in the atmospheres of such variables further complicate the issue. 211 . 1 ' T- • 1 [ ' * 1 1 ' 1 ' I Jt -9.5 - S' • -9.0 • ~ ' • «j-8.5 • • • • "• •§"8-0 o • f-7.5 • 9-''• - JS *S^ .

-7.0 • " • • -6.5 "

-Rfi 1 1 » ' I 1 2.4 2.6 2.8 tog(Period)

Figure 5.3: Period-luminosity relation.

l . 1 i i | i i r i ' i r™ • ' r i i 3.4

- • ^^ .

3.2 - • ^% • ^-"» 3 • - • •V

2.8 • - • •

2.6 -

' i i « i 2.4 2.6 2.8 iog(Period)

Figure 5.4: Period-mean radius relation.

212 Table 5.4: Stars used in period-luminosity and period-radius relations

Star Cluster/ Period V V-M„ J\y M„ BC M6oJ Teff log(L/L0) R/Ro Association (days) (K) CK Car1 Car OB1-D 533 61 7 45 11 70 1 86 -6 11 -1 96 -8 27 3550 5 2 1082 IX Car1 Car OB1-E 369 1 7 38 12 00 1 86 -6 48 -1 57 -8 08 3660 5 1 933 PZ Cas1 Cas OB5 925 9 50 11 90 4 49 -6 89 -1 74 -9 64 3605 58 1972 /x Cep1 Trumpler 37 843 65 4 08 9 70 2 01 -7 63 -143 -9 08 3710 55 1438 RW Cyg2 Cyg OB9 520 52 8 13 10 36 4 07 -6 3 -1 96 -8 26 3550 52 1077 BC Cyg1 Berkeley 87 692 9 97 11 00 5 58 -6 61 -174 -8 46 3605 53 1145 TV Gem1 Gem OBI 425 14 6 56 10 70 2 17 -6 31 -1 25 -7 76 3790 5 02 751 S Per1 Per OB1-D 806 64 9 23 1140 4 18 -6 35 -2 03 -8 53 3535 53 1230 T Per2 Per OBI 377 8 64 12 15 2 09 -5 3 -143 -6 73 3710 46 487 WPer1 Per OB1-D 53147 10 39 11 40 4 03 -5 04 -2 03 -7 09 3535 48 634 RS Per1 Per OB1-D/ 244 8 35 11 90 2 63 -6 18 -2 03 -8 15 3535 52 1032 NGC 884 SU Per1 Per OB1-D 468 91 7 63 11 40 2 01 -5 78 -1 74 -7 64 3605 50 785 XX Per2 Per OBI 403 8 26 11 94 1 12 -4 7 -2 03 -6 73 3535 46 537 AD Per2 Per OBI 371 24 79 11 59 191 -5 8 -174 -7 54 3605 49 750 BU Per1 Per OB1-D 363 9 23 1140 3 25 -5 42 -196 -7 17 3550 48 652 FZ Per2 Per OBI 371 7 96 11 62 1 94 -5 8 -135 -7 15 3745 48 580 KW Sgr1 Sgr OB5 670 9 35 12 40 4 65 -7 70 -143 -9 15 3710 56 1486

1 V, V-M^, A„, BC, M;,0; from Levesque &; Massey (2005), Teff determined from Levesque & Massey (2005) based on author's spectral types, log(L/Lo) & R/Ro calculated by author 2 V, V-M„, A„ from Humphreys (1978), BC & Teff determined from Levesque & Massey (2005) based on author's spectral types, Mboi, log(L/Lo) & R/Ro calculated by author

Table 5.5: Bolometric corrections from Levesque & Massey (2005) Spectral Type B.C. K1-K1.5 -0.79 K2-K3 -0.90 K5-M0 -1.16 M0 -1.25 Ml -1.35 Ml.5 -1.43 M2 -1.57 M2.5 -1.70 M3 -1.74 M3.5 -1.96 M4-M4.5 -2.03 M5 -2.49

213 5.3.1 Other Period-Luminosity Relations of Note

We are including here a brief summary of period-luminosity relations for sim­ ilar stars (M giants and supergiants, Miras, SR variables, etc.) and a few comments on the Cepheid period-luminosity relations for context. The Cepheid period-luminosity relation can be described by

log(L/L0) = (2.415 ± 0.035) + (1.148 ± 0.044) log(P) (5.6)

(see Turner 2010), which has a similar trend to what we found for SRC variables, albeit with less scatter as Cepheids have well-defined periods and mean magnitudes. Period increases with luminosity in both cases. It is well-established theoretically that the Cepheid period-luminosity relation is a result of pulsation in the stars. As mentioned in the introduction, Stothers (1969) demonstrated theoretically that pulsation could cause the brightness variations seen in M supergiants. His study was not limited to SRC variables specifically. He did not plot a period-luminosity relation or give an equation describing it, but his "revised periods" for the stars (calculated from temperatures and luminosities using a Q value consistent with pul­ sation) increase as the stars' brightness increases (decreasing bolometric magnitude), consistent with what we found here. Feast et al. (1980) derived bolometric magnitudes for 24 red supergiant vari­ ables (again, not limited to SRC variables) in the Large Magellanic Cloud using infrared photometry. They found a period-luminosity relation for the stars of

Mbol = -8.61og(P) + 16.4. (5.7)

Although there is a large amount of scatter in their plotted relation, it again shows the same general trend we found, although with a slope twice as large as what we find. Catchpole & Feast (1981) did the same for 22 red supergiant variables in the

214 Small Magellanic Cloud, and found the same trend, this time described by

Mbo] = -7.21og(P) + 12.8. (5.8)

Pierce et al. (2000) observed period-luminosity relations in the R band and several near-infrared bands for red supergiant variables in the Per OBI association, the LMC, and M33. Jurcevic et al. (2000) did the same for red supergiant variables in M101. In all cases, the same trends were seen (periods increasing with decreasing absolute magnitudes). Slopes in the two papers range from -1.78 to -3.29, slightly smaller than the slope we found. Similar results can also be found in the following papers. All show period increasing with luminosity, although there is a lot of scatter in some of the results and the slope values vary. The only paper in the list that is limited to SRC variables specifically is Turner et al. (2006).

• Guo & Li (2002), for model M supergiants. Varying slopes are seen depending on the model choice.

• Knapp et al. (2003), for Miras, SRA variables, and SRB variables using Hip- parcos parallaxes and K band absolute magnitudes. The authors founds slopes of -3.39 ±0.47 for the Miras and -1.34 ±0.06 for the SRA and SRB variables.

• Ye§ilyaprak & Asian (2004), for SR stars (mainly giants) using Hipparcos par­ allaxes and absolute magnitudes in the R band a variety of near-IR bands (although the opposite slope is seen with absolute magnitudes in the U, B, and V bands, which is curious and likely has something to with the fact that most of the light output is not in those wavelength ranges). Slopes range from 2.89 ± 0.49 in the Fband to -4.09 ± 0.71 in the [25] band.

• Kiss et al. (2006), for both short and long periods (determined using Fourier analysis of the AAVSO observations) in the same red supergiants and K band

215 absolute magnitudes. The stars showed the same trend we found, with the long periods forming a parallel relation with a smaller zeropoint. We note that in our own relation, a point formed using T Persei's long period lies to the right of our main relation, but falls in the same region as the long period relation of Kiss et al. (2006) relation. The short-period relation in the paper has a slope of -3.44 ± 0.6.

• Turner et al. (2006), for BC Cyg and four SRC variables in the Per OBI asso­ ciation. This is the only previously published period-luminosity relation that is limited to SRC variables specifically. The slope found here is approximately -3

in Mbol vs. P.

• Glass & van Leeuwen (2007), for SR variables (mainly giants) in the solar neighborhood using K-ba,nd magnitudes and Hipparcos parallaxes. There is a lot of scatter in the results, but slopes are near —2.

• Tabur et al. (2010), for RGB and AGB stars in the Magellanic clouds and solar neighborhood using Hipparcos parallaxes. There is a lot of scatter in the results, but the authors found a slope of —3.72 for a chosen reference sequence of stars.

• Yang & Jiang (2011), for groups of red supergiants in the LMC in the Kband and various near- and mid-infrared bands. Slopes range from —1.97 ± 1.03 in the Fband to -7.83 ± 0.75 in the [24] band.

5.4 Size Changes

For stars with radial velocity data, we estimated AR, the change in radius, using the Baade-Wesselink method. Given that VR = ^, we can integrate over half a pulsation cycle as follows to obtain an estimate of the size change (provided that the radial velocity variation is caused by pulsation and can be approximated with a sine wave):

216 dR = pvRdt (5.9)

where p is the projection factor

I dR = p VRdt (5.10)

primax I dR = Rmax ~ Rmin = 2AR (5-11)

where AR is the variation about the mean radius

a S 2AR = p[ \Rdt = pAvS r -^d9 (5.12) JRrriir, Z JO ^ where P is the period

2AR = pAVR^-[cos(6)]Z (5.13) Z 7T

2AR = pAVR^- (5.14) Z 7T

AR = pAVR^- (5.15) ZTV The projection factor, p, for M supergiants has not been well-studied, but for Cepheids the projection factor is near 1.3 (see, for example Merand et al. 2005). Based on the fact that M supergiants display greater limb darkening than Cepheids, we would assume that they have a smaller projection factor. In the absence of an established value in the literature, we have simply taken p to be equal to 1 for the purpose of our estimates. That gives us the following to approximate AR:

AR = AVR^- (5.16) Z7T

217 Table 5.6 shows the stars' radius change estimates in Solar radii and as frac­ tions of the stars' individual radii for stars that are cluster members with available distance estimates. Note that some of the stars do not have radial velocity measure­ ments that cover the entire phase, so some of the estimates are likely small. But in most cases, the size changes implied by the radial velocity variation are small enough that they are consistent with pulsation. However, in several of the longer period stars, the size changes implied are on the order of the size of the star. T Persei is an extreme example, with an implied size change of over 2 stellar radii when its long period is taken to be the pulsation period. That hints at another process, such as convection, being at least partly responsible for the observed radial velocity changes in such stars.

218 Table 5.6: Size Changes Star P (days) AR (RQ) AR/R SS And 178.35 55.0 UX Aur 357 31.8 RSCnc 120 50.8 PZ Cas 253.97 66.3 0.034 WCep 346.26 78.7 SWCep 599.10 107.2 ' VV Cep 364.21 110.9 fi Cep 843.65 293.5 0.20 T Cet 160.84 28.3 RWCyg 520.52 163.6 0.15 AZCyg 459.17 72.6 BCCyg 692.78 323.2 0.28 TV Gem 425.14 35.3 0.047 a Her 508.07 376.6 U Lac 395 254.5 YLyn 282.56 14.2 a Ori (long period) 2335 92.3 a Ori (short period) 425.59 16.8 SPer 806.64 239.2 0.19 T Per (long period) 2457 1175.4 2.41 T Per (short period) 377 180.3491 0.37 WPer 531.47 114.5 0.18 RSPer 244.21 122.1 0.12 SUPer 468.91 54.7 0.070 XX Per 403 214.3 0.40 AD Per 371.34 129.2 0.17 BUPer 363 66.4 0.10 FZ Per 371 209.7 0.36 V411 Per 394.55 103.0 CETau 174.39 5.5 WTri 592.86 151.8 FG Vul 351.77 30.94

219 5.5 Remarks

As previous theoretical and observational work has shown, at least three mech­ anisms work together to cause the brightness variations seen in SRC variables: pul­ sation, convection, and intermittent dust ejections. We have certainly found new evidence of pulsation. The cyclic changes in temperature and radial velocity that we have found in many of the stars are caused by pulsation. The period-luminosity and period-radius relations that we have shown are the result of pulsation. The new spec­ tral type-light amplitude relation is driven by temperature changes, and thus it can also be considered as evidence of pulsation. The size of the radius changes implied by the radial velocities (found using the shorter periods for the stars rather than periods over 2000 days) are small enough to be consistent with pulsation, since implied size changes on the order of the radius of the star or greater would indicate that the radial changes are the result of something other than pulsation. We have also found some evidence of dust ejections in the stars. Dust ejections are the best explanation for the irregular temporary decreases in mean brightness observed in some of the stars in chapter 4. We would expect continued ongoing monitoring of all of the stars to produce more evidence of intermittent dust ejections. Convection is a bit more difficult to observe and we cannot make any conclu­ sions about it based on our study (with the exception of the large size changes found using the long periods of a Ori and T Per, which are inconsistent with pulsation). Work like that done by Gray (2000, 2001, 2005, 2008) for a Orionis would be needed to study convection in the other stars. Gray's study of convection involves the shape of the bisectors of unblended spectral lines, which requires higher-resolution spectra than those obtained here. The lines that Gray uses are also further to the red than our spectra. We recommend that future surveys of SRC variables include high reso­ lution spectra in the red and near-IR in order to facilitate the study of convection in the stars.

220 Chapter 6

Conclusions and Future Directions

Our survey of 49 SRC variables has shown that they form a diverse group of stars that are undergoing changes. Each star exhibits changes in period and aver­ age magnitude. The stars' temperatures and luminosities change over the course of their pulsation cycles, but the stars do not all exhibit the same types of changes in temperature or luminosity. Some of the stars appear to reach their minimum dimen­ sions near light minimum while others appear to reach their minimum dimensions near light maximum. There is also a great deal of variation in the amplitude of the magnitude changes that the stars undergo. Some of the stars have fairly regular light curves, while others appear to change dramatically from cycle to cycle. Despite their individual differences, the stars appear to follow a period-luminosity relation, a period-mean radius relation, and a relationship involving spectral type, luminosity class, and amplitude, albeit with scatter. The existence of such relations indicates that similar processes are occurring in the stars. We have observed cyclic changes in radial velocity and temperature in many of the stars, which provide further evidence that pulsation is one of the processes occurring in SRC variables. In several of the stars, we have been able to determine that maximum temperature occurs near smallest dimensions, consistent with the behavior of other pulsating variables. Strangely, some of the stars also appear to reach maximum luminosity near the same time that they reach smallest dimensions and maximum temperature, which is the opposite of what would be expected in a pulsating star. We do note that the stars have very low surface gravities to begin with, and the actual changes in luminosity class are usually small and sometimes not even detected. In some cases the stars also appear to undergo irregular decreases in mean brightness that could be explained by dust ejection. 221 This study is the most comprehensive survey of the behavior of SRC variables yet made. We have presented many new results for individual stars, as well as a new spectral type-luminosity class-amplitude relation. We have constructed period- luminosity and period-mean radius relations for the stars with more data points than have been used previously, and the relations show trends that would be expected for pulsating variables. We have used both newly obtained data and data from existing sources. The study of long-period variable stars is difficult because of the time scales involved, and perhaps one of the reasons that not many have attempted it is that there was no certainty that the results obtained would be worth the effort and time required. We have shown here that the study of SRC variables does yield intriguing results. There are more questions to be answered, and more data to be obtained. Our study provides justification and a foundation for continued and ongoing monitoring of SRC variables.

222 References

Abt, H. A., Meinel, A. B., & Morgan, W. W. 1968, "An Atlas of Low-Dispersion Grating Stellar Spectra"

Alksnis,A. 1961, Trudy Astrophysics Lab Riga, 7, 33

Balega, Y. et al. 1982, A&A, 115, 253

Bester, M. et al. 1996, ApJ, 463, 336

Brelstaff, T. et al. 1997, JBAA, 107, 135

Bono, G. & Panagia, N. 2000, ASP Conf. Series, 203, 105

Catchpole, R. M. & Feast, M. W. 1980, MNRAS, 197, 385

Chipps, K. A. & Stencel, R. E. 2004, JAVSO, 32, 1C

Christy, R. F. 1962 ApJ, 136, 887

Elias, J. H. et al. 1985, ApJS, 57, 91

Feast, M. W., WoUey, R., & Ylimaz, N. 1972, MNRAS, 158, 23

Feast, M. W. et al 1980, MNRAS, 193, 377

Fernie, J. D. 1986, AJ, 306, 642

Fernie, J. D. 1989, PASP, 101, 225

Foster, G. 1995, AJ, 109, 1889

Gahm, G. F. 1970, A&A, 4, 268

Glass, I. S. & van Leeuwen, F. 2007, MNRAS, 378, 1543

Gotz, W. 1984, IBVS, 2461, 1 223 Gray, D. F. 2000, ApJ, 532, 487

Gray, D. F. 2001, PASP, 113, 789

Gray, D. F. 2005, PASP, 117, 711

Gray, D. F. 2008, AJ, 135, 1450

Gray, R. 0. k Corbally, C. J. 2009, "Stellar Spectral Classification"

Griffin, R. F. k Filiz Ak, N. 2010, Ap&SS, 330, 47

Guo, J. H. k Li, Y. 2002, ApJ, 565, 559

Houk, N., Irivine, N. J., k Rosenbush, D. 1974, "An Atlas of Objective-Prism Spec­ tra"

Houk, N. k Newberry, M. V. 1984, "A Second Atlas of Objective-Prism Spectra"

Humphreys, R. W. 1970, ApJ, 160, 1149

Humphreys, R. M. k Lockwood, G. W. 1972, ApJ, 172, L59

Humphreys, R. M., Strecker, D. W., k Ney, E. P. 1972, ApJ, 172, 75

Humphreys, R. M. 1978, ApJS, 38, 309

Humphreys, R. M. 1983, ApJ, 269, 335

Humphreys, R. M. k Ney, E. P. 1974, ApJ, 194, 623

Jurcevic, J. S., Pierce, M. J., k Jacoby, G. H. 2000, MNRAS, 313, 868

Joy, A. H. 1942, ApJ, 96, 344

Keenan, P. C. k Hynek, J. A. 1945, ApJ, 101, 265

Keenan, P. C., k McNeil, R. C., 1976, An Atlas of Spectra of the Cooler Stars: Types G, K, M, S and C, (Columbus: Ohio State University) 224 Keenan, P. C. & McNeil, R. C. 1989, ApJS, 71, 245

Kiss, L. L. et al. 2006, MNRAS, 372, 1721

Kharchenko, N. et al. 2005, A&A, 440, 403

Knapp, G. R. et al. 2003, A&A, 403, 993

Lee, T. A. 1970 ApJ, 162, 217

Leedjarv, L. et al. 1999, A&A, 349, 511L

Levesque, E. M. & Massey, P. 2005, ApJ, 628, 973

Lim, J. et al. 1998, Nature, 392, 575

Massey, P., Valdes, F., & Barnes, J. 1992, "A User's Guide to Reducing Slit Spectra with IRAF" (available at http://iraf.net/irafdocs/spect.pdf)

Massey, P. 1997, "A User's Guide to CCD Reductions with IRAF" (available at http://iraf.net/irafdocs/ccduser3.pdf)

Merand, A. et al. 2005, A&A, 438, 9

Mermiliod, Mayor, & Udry 2008, A&A, 485, 303

Palacios, A. et al. 2010, A&A, 516,13

Percy, J. R. et al. 1996, PASP, 108, 139

Percy, J. R. & Terziev, E. 2011, JAVSO, accepted for publication

Pierece, M. J., Jurcevic, J. S., & Crabtree, D. 2000, MNRAS, 313, 271

Pojmanski, G. 2005, The ASAS-3 Variable Star Catalog

Samus, N. N. et al., General Catalog of Variable Stars

Shcwarzenberg-Czerny, A. 1996, ApJ, 460, L107 225 Sharpless, S. & Wawrukiewicz, A. S. 1973, AJ, 78, 477

Smartt, S. J. 2009, Annual Review of Astronomy & Astrophysics, 47, 63

Snyder, L.F. 1991, IBVS, 3632, 1

Solf, J. 1978, A&AS, 34, 409

Stencel, R. E. et al. 1988, AJ, 95, 141

Stephenson, C. B. 1959, PASP, 71, 145

Stothers, R. 1969, ApJ, 156, 541

Stothers, R. & Leung, K. C 1971, A&A, 10, 290

Swope, H. H. 1940, HA, 109, 1

Tabur, V. et al. 2010, MNRAS, 409, 777

Tatebe, K. et al. 2007, ApJ, 670, L21

Townes, C. H. et al. 2009, ApJ, 697L, 127T

Turner, D. G. k Forbes 1982, PASP, 94, 789

Turner, D. G. 2003, JAVSO, 31, 160

Turner, D. G. et al. 2006, PASP, 118, 1533

Turner, D. G. et al. 2009, MNRAS, 397, 1046

Turner, D. G. 2010, Ap&SS, 326, 219

Valdes, F. 1993, "Guide to the Slit Spectra Reduction Task DOSLIT" (available at http://iraf.net/irafdocs/doslit.pdf)

Van den Bergh, S. 1984, Astrophysics and Space Science, 102, 295

226 van Dyck, H. M. et al. 1998, AJ, 116, 981

Wawrukiewicz, A. S. & Lee, T. A. 1974, PASP, 86, 51

Weaver, T.A., Zimmerman, G. B., & Woosley, S. E. 1978 ApJ, 225, 1021

Weiner, J. et al. 2003, ApJ, 589, 976

White, N. M. & Wing, R. F. 1978, ApJ, 222, 209

Wilson, R. W. et al. 1992, MNRAS, 257, 369

Wroblewski, A. 1961, Uranke, 32, 1

Yang, S. L. S. et al. 1999, ASP Conf. Series, 185, 228

Yang, M. & Jiang, B. W. 2011, ApJ, 727, 53

Yesjlyaprak, C. & Asian, Z. 2004, MNRAS, 355, 601

227 Appendix A

Spectra

The following figures show individual spectra for each star (DAO CCD and scanned DAO photographic). Each spectrum is labelled with the observation year and a close-up of the wavelength region used for luminosity classification is shown to the right of the entire spectrum. Observation years of 2005-2010 correspond to CCD spectra; years earlier than 2005 correspond to scanned photographic spectra.

4000 4200 4400 4600 48O0 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.l: SS Andromedae

228 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.2: UX Aurigae

229 4000 4200 4400 4600 4800 5000 $200 4375 4385 4395 Wavelength (A)

Figure A.3: RS Cancri

230 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.4: PZ Casseopeiae

231 1.2 1.0 0.9 §0-8 6 E °- 0.8 0.4 0.2 1.2 1.0 1.1 5 0.8 1.0 E 0.6 0.4 0.9 0.2 j] l ! i | I I I I | I l l I | l: 1.2 F{f*««*MJ^^ 1.1 §0.8 1.0 E 0.6 0.4 2008 0.9 0.2 : I I I I I I I I I. I I I 1.2 1.0 ^y*WW^|/^ jr 1.1 §0.8 1.0 E °-6 0.4 0.9 0.2 1.2 1.1 §0.8 1.0 EC 0-6 0.4 0.9 0.2 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 1 Wavelength (A)

Figure A.5: W Cephei

232 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.6: SW Cephei

233 1.1

- 1.0

1.0

0.9

1.1

1.0

1.1 1.0 ^^^^^^ 1.0 U. 0.6 r 2010 : r 0.9 0.2 r 1—_1 L 1—1 I I ' ' • I l__I L _L JL J i I _IL J I L J_ * ' * » • i i •''''* ' * 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.7: W Cephei

234 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.8: MY Cephei

235 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.9: \± Cephei

236 4400 4600 4800 5200 4375 4385 4395 Wavelength (A)

Figure A. 10: RW Cygni

237 4000 4200 4400 4600 4800 WOO 5200 4375 4385 4395 Wavelength (A)

Figure A.ll: AZ Cygni

238 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.12: BC Cygni

239 I t ) I J—I—I—I I 1 I—I 1 j I ! 1.2 1.1 1.0 0.9 0.8 0.7 'J_ j' i 'i i i i i t t I t : 4000 4200 4400 4600 4800 5000 5200=*-* 4375 4385 4395 Wavelength (A)

Figure A.13: TV Geminorum

240 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A. 14: a Herculis

241 4000 4200 4400 4800 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A. 15: U Lacertae

242 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A. 16: Y Lyncis

243 4000 4200 4400 4800 4800 4375 4385 4395 Wavelength (A)

Figure A.17: a Orionis

244 4000 4200 4400 4600 4600 5000 5200 4375 4385 4395 Wavelength (A)

Figure A. 18: S Persei

245 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A. 19: T Persei

246 1.2 1.1 1.0 0.9 Hi 11111111111111 ij 2008 1.2 1.1 U^H^^ Ai 1.0 0.9 i i i i | i i i i | i| 1.2 1.1 1.0 0.9

1.2 1.1 1.0 0.9

4000 4200 4400 4600 4800 5000 $200 4375 4385 4395 Wavelength (A)

Figure A.20: W Persei

247 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.21: RS Persei

248 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.22: SU Persei

249 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.23: XX Persei

250 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.24: AD Persei

251 3 0.8 EC 0.6 0.4 0.2 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.25: BU Persei

252 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.26: FZ Persei

253 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.27: V411 Persei

254 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.28: CE Tauri

255 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.29: W Triangulum

256 4000 4200 4400 4600 4800 5000 5200 4375 4385 4395 Wavelength (A)

Figure A.30: FG Vulpeculae

257 Appendix B

Light Curves

•i a * 1 -l 1 ' | i i i 1 1 1 •> l ' - 8.0 • ~

8.5 • « - • • • * * • • • m 0) « • • • • n - "2 9.0 m # « *• * » •«• • 3 • » * * • **ttt * * • * » m • • - • * * • * • • * • « * * - • » * • • • • * • * •Wf M• - | 9.5 • **> * *••) * • • • * • • • • • 4 * • » • • • mm •m m • ^^ • * • • * * *« * M • m - 3ca mm* «• * » m* *• *• * • * • * • *»• - • *• *• t» • * • # # • * * - ^10.0 • « * * • • * * • •# _ > • * « #• « ** * • M* B• • *»**«•»• •• • • • m »*• • • •• • • • • • • - • * • * * • • - 10.5 • * + # - • • • " * » 11.0 * • - I 1 , , , 1 1 , i 30000 35000 40000 45000 50000 55000 HJD (240000+)

Figure B.l: SS Andromedae visual (AAVSO) light curve.

258 1 j ' ! 1 > 1 1 1 1 1 1 1 1 1 1 I 1 1 ' ' 1 ' I ' 9.0 ' ". ** " « — 9.5 M * * • • • * « •" 0.0 * * "l , , , , 1 ! F —1 1- " 1 • —• i , . . , . " 29500 30000 30500 31000 31500 32000 32500 330<

1 8.7 I I T—l" 1 1 I ' i : i T | 1 1 | T V 1 ' 1 ' i x» • * 9.3 ml * *• * * * • ""* 9.9 *• * » * * 10.5 ta. r 1 . , . i , . . . 1 i i i i v, 1 . , , 33500 34000 34500 35000 35500 38000 36500 I ' ' ' • I ' ' ' ' I ' ' ' ' I

9.0 • m 10.0 11.0 L_> I i i J i I i i • i I i L_1I i I i i i i I i i i i ! i i i i I i i i i L 37000 37500 38000 38500 39000 39500 40000 40500 I ' ' ! ' 1 ' ' I * 1 ' • i 1 • • • i < > i j > • i . t i 9.0 • • • • • * * * * « 10.0 * • *• ;v - 9 • * 11.0 I- V 1 . 1 , , i , i , , 1. . i i i i 40500 41000 41500 42000 42500 43000 43500 44000

1 —T ! ] 1 1 1 1 1 | 1 1 1 1 i i i i i 8.6 1 ' ' • _ urn « •* 9.4 • • • ™" (\9 _. 1 . , . , 1 , , , , 1 , . . . 1 , , , ,i,;r, i , . , _ 44500 45000 45500 46000 46500 47000 47500

1 | < 1 1 . | 1 1 ——I [ 8.8 _' ' I . 1 1 1 . ' ' 1 1 *# 1 .' - 9.4 _ # . • * . - 10.0 fcn-." . 1 • • , 1 .... 1 . • t I , • i . _ 48000 48500 49000 49500 50000 50500 51000 HM l l l l -r—"i I 1 m A ••• •; * * % 9.4 • • 10.0 A,. • • i i • i * i i • i • i i , , . , 1 , • its! < i 52500 53000 53500 54000 54500 55000

Figure B.2: SS Andromedae visual (AAVSO) light curve - expanded view of figure B.l.

259 Visual Magnitude hjbcocni»tobboa) I ' ' ' I t ' " I ' ' ' I | l i i | i ; i

* • » «

s era* : • c • • td CO

< >

OS o >

CO O . i » | *

cm tr

O 3

» t

T I I I » I • i i I ' ' ' ' • ' ' ' • ' ' I ' ' • I • ' ' * • ' • * J 7.2 t ,1 . ' ' I | I I I I | I ' I i > i I I I t i • i i | i i 1 I | i • 1 i | I n- 7.8 8.4 > * • * 9.0 • • . . . • 35000 35500 36000 36500 37000 37500 38000 38500 1 ' " t ' ' ' 1 ' ' " ' 1 1 1 8.4 • % A* B.8 • • * m • 9.2 1 . , . , , 1 , . , , 1 I 39000 39500 40000 40500 41000 41500

8.4 T—' ' '—f i ' ' ' i ' i ! | y i i | I 8.7 — • • # — 9.0 # - 9.3 4 , , . i ,,.!,.. 1 , . , 1 , . . , I , , 44200 •WfUU 44600 44800 45000 45200 45400 45600 7.7 — ' 1 ' 1 > 1 1 1 " ' 1 1 r- ' * - 8.2 * • • * * •" S.7 « * • 9.2 - 1 I * 1 • . _ 46200 46400 46600 46800 i i—i—i—IIIII T -i—i—r—i—!—i—:—s—|—i—i—r 8.2 8.6 9.0 !>.. 9.4 1= -L _f 1 1 L. _L -I I • ' ' I JL _|_ 47000 48000 49000 50000 51000 52000 53000 54000

Figure B.4: V Arietis visual (AAVSO) light curve - expanded view of figure B.3.

261 .J i i , 1 j i t i | i i , : | i i i | iiiji.ii | 1 J 7.8 * ~

8.0 • * • * —

8.2 * J 0 • • • 3 8.4 m • « «. c ^ * ^ ** SP I8-6 * • • # «" 15 - <30 8.8 * * • * * — • «M»* * » > * * * 9.0 • • • • • * » • • 9.2 S ••• • — • * 9.4 • 1 i ... i I . , 25000 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.5: UX Aurigae visual (AAVSO) light curve.

262 1 1 1 1 | 8.0 — * • 1 J ! 1 ' ' 1 1 1 1 . | " ' *» 8.3 8.6 « mm 8.9 mm 9.2 , i , , , , I 1 . . , , 1 21640 21650 21660 21670 21680 •—i—.—.—|—.—i—i—.—j—i—i—i—i—|—i—i—i—i—j—i—i—i—i—j—i—i—i—i—|—q 7.6 &:!

* * s I t s—i t I—i—i t i \ . f t ' *» ** i—_i—t L?L_J—i i ' ' I I__I i i L 34000 34500 35000 35500 36000 36500 37000

! ( ' »'* «J 1 * .1 1 1 1 8.6 J ' m- '_ 8.9 — • • • ## • * • * * • ^ * 9.2 "™ * HH • * * „• t 1 — 9.5 -* i i I 1 45000 45500 46000 46500 47000

< , < 1 1 | 1 1 I 1 8.6 I 1 1 I J ! I 1 1 | I 1 1 , , 1 1 1 1 | 1 • V ~ S.9 "" • • - 9.2 M* * - 9.5 , 1 .• , , , I , . , . 1 .... 1 • , , T 47500 48000 48500 49000 49500 50000 50500

8.4 L . 1 | •!" 1 1 1 ' ' ' 1 | • "T 1 1 | I « 1 1 | 1 1 1 ' 1 ' - 8.7 * • • 9.0 mm 9.3 r i 1 i i i i 1 I .J 1 1 1 . . , 1 , , , 1 . - 50840 50850 50860 50870 50880 50890 50900

7.8 mm | 1 I J I j 1 1 1 1 1 1 1 -I—1 | 1 1 I 1 | 1" 1 -!—1—|' I II 1 .1 "I- mm 8.1 mm H 8.4 - • * * » "'.' • • ** ~ • W • • — - • , • * i , , . , 1 , ' . . , 1 , , , , 1 . , , , 1 , , , , 1 , 1 • r i 1 54550 54600 54650 54700 54750 54800 54850 54900

Figure B.6: UX Aurigae visual (AAVSO) light curve - expanded view of figure B.5.

263 I ' ' • * 1 • I' 1 ! | 1 I I '••! I 1 I «' 1 *

5.8 z • •g 6.0 m - 3 _ C • . JJ6.w 2 "• * « mm « - * • • • _ 3 . - |6.4 — z

6.6

i , , , l I 1 "l 54760 54780 54800 54820 54840 54860 HJD (2400000+)

Figure B.7: V394 Aurigae visual (AAVSO) light curve.

264 ""* r -! 3 1 ! 1 1 5 1 ! r ^

# • • * *

5.5 - * *• * ** •<*• • * * w* *••*# •«* m> mm mm mm •Ml ««•»•*••* • «w* «• • «M» 4* re » •• * »

• •• mm •• • • *

7.5 ts- -I 1 1 L. .J 1 1 1__I I 1 1—1 1 I I i I I t E E l__l t E BS 25000 30000 35000 400Q0 45000 50000 55000 HJD (240000+)

Figure B.8: RS Cancri visual (AAVSO) light curve.

265 -! 1 i 1 t 1 1 1 1 1 3 ? 3 1 ! ! ! 1 1 F 1 1 C 1 J J T" 6.0 6.4 - /,•* if 6.8 J i i i i £ ' ' i i E_ 23000 23500 24000 24500 25000 6.0 1 l# 1 1 a ' I '. ' I —[-"•—' 1 1 1 1 T— 6.3 ~ ~ 6.6 «•* I . , , I , , 1 1 1* I 1 26800 29000 29200 29400 29600 29600 5.8 —j 1 1 1 1 , , 1 j , , 1 . (, i 1 r J -T 1 1# ]. i 1 1 j p- 6.2 «• 6.6 ( J • • _l I 1 1 I E 1 1 3 ' ' E I ' ' E ! ' » )__1 E * * ' 32400 32600 32800 33000 33200 33400 33600 5.8 h 6.2 6.6 h 1 I L——I r i—I-LJ 1 1 E__l i 1 1 li 1—_3 I 1 i—1 t £ 3 I I • ' E LJLJ—s • 1 r ' E 34000 34500 35000 35500 36000 36500 37000 5.2 5.8 6.4 > ' I : i I_I ' ' ' i i I i i t t 1 i i * • y| • * » i 21 i * * • *w* I » » • i l 37500 38000 38500 39000 39500 40000 40500 41 (XX S E v -go *3L 1m i** •'*<* '^f- "•#» *\3# A* y*: *-0 tT K i * * i *\ t i | | | j g ] |__| t • .—^^J , j ] |__| i I__J flii—i i i E 3 41000 41500 42000 42500 43000 43500 44000 44500 1 1 E ! | 1 15—1 1 | 1 1 1 B 1 1 1 E E | 1 1 1 B 1 1 E E E J- r 5.1 ^T—! ' ' I ' " ' ' I '% 1' ' I ' " ' J I ' ' > ' I ' ' ' ' I " ' ' ' i ' ' 5.9 h 6.7 ~ ^%, *W^F* *^Sf? \fyjf** fyfQfo/^Pf r 44|p^ jMkfc "yMfF^ /^LA %jy( I I I I I E 1_E I I f I I I I I 1 S E I E t 1 L—l I 1—1 i——I 1 E E L-^L E I L 45000 45500 46000 46500 47000 47500 46000 5.6 p 6.4 7.2 48500 49000 49500 50000 50500 51000 51500 520C 5.6 S 6.4 9f% ^W'* 42^W^ *^*"P « 7-2 h. "i . '• . , I , , • ^_L 52000 52500 53000 53500 54000 54500 55000

Figure B.9: RS Cancri visual (AAVSO) light curve - expanded view of figure B.8.

266 Visual Magnitude tvs o b in b tn b

Mi***; *.i* • .lit*** .1. • * * | «!M'I cm* J;J;: c ••iii> Ii*«» td " • • m • If. . .. • t • • »» :$• * »!!• • •!•• :«J.»I *.;•• • >!' •MM • •• • '.till t «.» o :h ».I*I* **«:« I •;: to < i. ll-M • ••.» O I'IIII • » »* * M»*t |« * • ••I • I «. • •••! . ;.:w • • ".in.Hi,: I.. . t« II. «• .• O t • * . ... : Ul.t't cm ::!' I Him! • I« • . . . .»M«»I •I .»* • H.ilM

•••• •••t*lll I• • ««• • • « • • #

1 ' • • • I • • 1 I I I • . I I . • 1_ -l rTT 1 E—t 1 r—T 1 1 1 s r~—* 1 1 r- 10.5 1 -q 11.5 125 . . i . . . . i .... i ... * ,i,.., i ..••«•. V , , . r i , , . . n 36500 37000 37500 38000 38500 3SO00 39500 4000C

10.9 1 1 1 1 1 1 1 1 ! 1 1 1 1 ! 1—1 1 1 1 1 1 r ! ! 1 1 T—! 1 1 1 [ 1 1 1 1—"I 1 1 11.6 12.3 13.0 A 1 • ' i i * • • » • * * £ L* i I——J 1—i i E :—e i i ** ' ' E i I s ' • • t* ' «* 40000 40500 41000 41500 42000 42500 43000 43500

—•i—!—i—f—|—i—! !—r—•i—r—i—i—i—|—!—l—i—r—|—i—T^-T—i—j—i 1—i—:—|—i—r—i i— 10.5 11.5 4 r„ 12.5 :• ty***** **#/• /** '•?*• pg®' &**' *"?' **&' _t__l 1 1 i L_ J__i i i_—i ! i 1 1 E L—J i 1 i I 1 1 i 3 1 • • • 1 L 44000 44500 45000 45500 4S000 46500 47000 •s—i—t—|—i—3—:—i—r—r—i—i—s—|—r—i—i 1—g—s—i—i—i—j—i—j i u | i—i—J—i—|—r—-i 1—i— 10.9 11.6 12.3 \f *f± **tf ^ «&- ,-ww? ^^..-f*8" **$r *"^s ';*$: 13.0 _l i i—a—i I i i—i i l__i—I__I—i—l—t t—i—i F 47500 48000 48500 43000 49500 50000 50500 5101 1 I 1 1 1 1 i 1 ! j- 10.5 »*» *' .,*. 11.5 _ * .fl^r ajF** f^ *.:&>. + •» •* 123 I • ' • ' I I i . » I • » 1 1 1 L 51000 52000 53000 54000 55000

Figure B.ll: UZ Canis Majoris visual (AAVSO) light curve - expanded view of figure B.IO.

268 p 1 r-

* •

* • * WM • * « * w*w m* m • • >* * # *

1 . i i i I l 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.12: BZ Carinae visual (AAVSO) light curve.

269 8.0 i i 1 i i ' 1 I- • * • * # 8.3 • • * 8.6 • * • w m #• # m — 89 .... i . » , , . , 1 , . , , 1 * * * 31700 31750 31800 31850 31900 31950 .3200 i 0 r-

1 8.1 -**• 1 " ' I 1 ' ' ' ' I \1 _ 8.9 9.7 1 * 1 1 39500 40000 40500 41000 41500

6.6 • 1 1 ' 1 I # 7.4 • ... .» -v\ .. • « * •• • • 8.2 .* • 1 1 I I i 1* 44000 44500 45000 45500 46000

1 1 7.1 i ' I < • • i • • A. 7.9 • • • .... - • 4 • 8.7 , . 1 , , , , 1 . , , , l • 46500 47000 47500 48000 48500 49000 49500 500! 6.9 i j i i I ' - • * • • 7.4 * * — 7.9

50000 50500 51000 51500 52000 52500 53000

1 A3 1 ' * w» • • i • „• * i 1 7.8 * * mm # • • • • 83 I v. < Y •** as i i i 1 C • - 54000 54200 54400 54600 54800 55000 55200

Figure B.13: BZ Carinae visual (AAVSO) light curve - expanded view of figure B.12.

270 ' \ ' i i i . 1 < l . . 1 | 1 ! 1 ( ! . 1 ! i | ' ' ' 1— 3 1 r^; 7.0 • » KM m # * W mt* * - • • • * * • • • WM9 • «» •M # » • • • • • 4MW M • •»* • » 7.5 * * •* — * • * •• •• • * «• • • - * * * mm* ** •* * * • • - © » • •HP tmmmmt«*»« * • «• • « • •• • w** • * • • • mmmtm ••••P • • * • • •• * * *»•»• • • •m TJ 8.0 • * tmt •• • 3 • ^m # * • *••«• #*•»•«• * • - • •• * * "c * wmm • • * • • * m-•* • - % 85 * mm * - • «•» • • ••*m• « * «-. 2 • •* • • - * • *» * » - 15 • «* - 3 9.0 — to • . > 9.5 * : * 10.0 * • • , i i i i_l i—_J i I t_—i i 1 i i i , . , 1 . , . 1 40000 42000 44000 48000 48000 50000 52000 54000 HJD (2400000+)

Figure B.14: CK Carinae visual (AAVSO) light curve.

271 8.1 -\y? 8.9 1 ^ 9.7 10.5 L i i i i i S i i I i i i i I i i i i 1 i i i i L 39500 40000 40500 41000 41500 7.0 J 1 * , ! | , ' \ l I " ' ' ' 1 ' ' I 1 1 ' -i r——i— | 1 1 1 T 7.5 "* * *• • ~ •• * " • • - 8.0 "» * • * * • • « «« 8.5 ™ * • _ 9.0 1 t . , 1 . , M . 1 , . III, X 43500 44000 44500 45000 45500 48000 4650 -1 - 7.4 I ' • • ' t ' ' • ' I ' ' • • I ' ' ' ' i. " ' ' ' T7—'—I *' ' T>'.—E' I* —'—f' ' .' ' I 7.8 m 8.2 ^* * #*Wj» * %** im * f.m*f* ^**«lf3p* ^™" T^S^ \*Zr 8.6 I • • • • I • • f.*t*. ."• • I». . • t I . • . , I , • • . I • . . • I 46500 47000 47500 48000 48500 49000 49500 50000 —i i 1 s 1 1 1 1 1 1 1 1 i i j j i 1 : 1 r 1 1 1 1 1 1 7.0 7.5 8.0 w 8.5 • » * 1 \ * ' ' I • ' i 1 ^ * • • » 1 a 1 | ] I ' • 1 I I ' ' 50000 51000 52000 53000 54000 55000

Figure B.15: CK Carinae visual (AAVSO) light curve - expanded view of figure B.14.

272 Visual Magnitude o (O to 03 b b 01 b 1 1 1 J 1 a 1 J J J 1—1—1—1 j 1—l 1 1 J i 1 1 t j l 1

•:ij j •- .»h! :. • •••*• S * oq

a il** J. • w ••1 Mi. OS »*U*!, • •is. o :||: * • tr1 O :: t • • to it « -J co CO C t • *»• • »

1. CO O

cm

• • • <1 CD t. • • • it •.. , • t • 1 . 9 •

* *.t#ii»»»»« • • i • • • ...

• • • ' I • • « 1 I 1 1 1 1 I 1 • > • I ... r I 1 • 8.2 N ' • ' '•»' • i.t • •i—i—r- • j.. ... | ...... • , * .^ » v 9.8 La_I 1 I i i i i I i i i • I • ' i i i • • ' i I i ' • • I i i • • ' • 35000 35500 36000 36500 37000 37500 38000 —i—i 1 1 rvi—1 r-""* 1 1—|—i 1 1 1 1 r-—i 1 s 1 1 1—T [—i r—! 1 1—i—!— 7.6 8.4 ~ » *• N; ^*V^!»* ^fljAfv **jB?I* •** *** *J*.'»* *"'! * •*•.» * !••<»•«• .s 9.2 J i tdj i I i i i i I i i i i I i i i i I i i i i L 38500 39000 39500 40000 40500 41000 41500

Lt I I I | J 1 1 I ma /M 1 ' 1 ' ' ' 1 • * .». ' ' I ' • 8.4 • • • » * * _- • * \ *.* 9.0 *• • • "" J i l i i , . i ! i 42500 43000 43500 44000 44500 45000 45500

I , 1 1 > 1 I 1 8.3 • 1 ' • * t " 1 1 i - • • "• • • * 8-9 * * • * • • • • • •• • • • • * • * • » _ • "* * * * *• • • * - 9.5 • « • • * 1 , 1 1 f 1 J 1—1 L. *, 1 46000 46500 47000 47500 48000 48500 49000

8.4 I • ' ' ' I ' ' ' ' I ' 'A' ' M 9.0 9.6 -I i 1—i—i 1—J....J—J E—\—i i__i L—J—i—i—( i_J—i 1 : • i * *—i 1—L_i i a. ,i. I 49500 50QOG 50500 51000 51500 52000 52500 53000

—I' "~r i 1 1—~| i 1 1 r | i 1—"i— i | 1 r i J 1 r •"! r- 7.5 8.5 9.5 53000 53500 54000 54500 55000

Figure B.17: CL Carinae visual (AAVSO) light curve - expanded view of figure B.16.

274 I t ' ' I F i » • r- • • «* m - • • • • * * * • * *m #• . 10.0 • • ** MM # • • * * * * * M • - • • • • • * • - • • • • «• • • * * * » * • « « • * • * * *» • - - • • » • #» # • • • • * * * m* •* • * * * • * » - *» m pi •««* • a* • •**• TJ 10.5 - • *» «» • • • * * * * • • • * _ 3 » • "c . M *• - 9W * » • •»• • mm • • m • m • • • • • *-•• • • *• ^ • cs • • * • • • m m » m • • • • • »• • * «• s • *• • • * «• m • Ml • • * m m * * • * * * * • * * • •• • • ** ** • • • * - sm 110 • •Ml * • * * * • m m- * * * *• # - UJ * * » •* • • * • • •» * tt • » • • • - » #* * * * • * 4* » « * « • * • - • » W » * • • * • • - • • * * • • - 11.5 * * * * * t • * * *

I 1 i 15000 20000 25000 30000 3500 HJD (2400000+)

Figure B.18: CL Carinae photographic light curve.

275 1Q0 p-j—I 1—!—I—J 1—I 1—i—|—i—I—! 1—|—I—I 1—:—|—i—I 1—i—|—i—j—i—i—J—i—I 1—I—|—i— iio - • J ;{<•' * \ .' * ***. . 11.5"" • * "•• L I £ I S I I 1—J 1 1 1 1 i I I 1 I i I I——3 1 1 1 1 1 I I I 1 l__l 15000 i 1550 0i 16000 1650 £ 0i 17000 1750 01 18000 18500

1 • i r j i 1 10.0 t ' ' 1 1 *.%t 1 1 ' 10.5 - .*Hf. » * * l£-4 11.0 **•m .*V • 11.5 * • 12.0 I-- I . i , . , , i 1 . , 1 , , . 1 •V 1 —1 1 1 19000 19500 20000 20500 21000 21500 22000 1—1 1 1 1 ! 1 1 [ 1 I 1 1 1 ! 1 1 1 1 ! 1 ! 1 1 1 1 1 1 1 1 1 ! 1 ! 1 r inn - • *• •• . • 10.5 ~%* . . #., • , * -* t. . *• . .. . • no - • >l\ : •• •» *. »e % 11.5 *—< 2250t 0 t ] £ I2300 I 0 I £3 1 12350 1 0 1 1__E i2400 I 0 I l__l 12450 I 0 1 I 1 12500 1 0 1—1 I t2550 I 0 i E £ -] 1 1 1 1 1 1 1 1 1 J 1 ! 1 1 J 1 1 > 1 J 1 1 1 1 ( 1 1 ! 1 J 1 1 1 1 {—T" 10.0 ** * 10.5 M 11.0 ••v. • •••^ —I 1 1 I t I E • • • 1 1 ! i I I iI I i 1 Ll__ t i ZM 1 1 i 1 i 1 1 l__t I 1 I L. 26000 26500 27000 27500 20000 28500 29000 29500 '••1 1 • 1 j 1 i 1 1 | 1 1 ' ' ' 1 1 1 ' 10.0 1 10.5 * A " • . • * • mm* — * • • " * m M * 11.0 1 " - . . . , 1 , , , . 1 . 1 l V >• 1 i# , i . t »* . i . 29500 30000 30500 31000 31500 32000 32500 33000 1 ! 1 10.2 mt # 1 •j 1 r 1 ' ' 1 ' ' 1 ' 1 ' I ' ' 1 " 10.5 • »• i 10.8 * * * 11.1 I I 1 , | . . 1 1 > 1 1 . •, 1 1 . 1 , - 33200 33400 33800 33800 34000 34200 34400

Figure B.19: CL Carinae photographic light curve - expanded view of figure B.18.

276 r-i—.—|—i—i—i—i—i—i—i—|—i—i—i—|—i-

#* * #* • » 8 •

22 > 10

11 |- i I i_i i I i i i I i i—i I i i i I i i i I i i i * ' • i I i i i 40000 42000 44000 46000 48000 50000 52000 54000

HJD (2400Q00+)

Figure B.20: EV Carinae visual (AAVSO) light curve.

277 -i—i- 7.6 r—j—'—•—i—>—<—'—«—i—>—'—>—'—r 8.0 8.4 8.8 i i i I i-l i ' • E i i i i_—I i i i ' I ' i i • I 39500 40000 40500 41000 41500 1 /£ I " ' . I j i '. ' .1 ! 1 1— 1)11 I II 1 ' - 1 1 ,, 1 ' ' ' 1 mm * • + 7.8 •• • •-* • .. * • • * * • •• ** 8.4 • « 9.0 - - 9.6 1 . , , , I , . i i 1 , 1 , , 1 • • T 43500 44000 44500 45000 45500 46000 4650

7.1 • i • y i j -I ' * i 7.9 • • • • . • •*• 8.7 • • « •* • 9.5 * "l . . , i * * • , , i J_..I i i . , i * 103 "-J i t f 46500 47000 47500 48000 48500 49000 49500 50000 1 1 1 r 1 ' ' ' 1 ' _ 6.5 L ' " * * *« • 7.5 • * •T* • . • «w« f 4 8.5 mm * V » 9.5 i- V , . 1 1 1 1 1 1 ! 1 1 50000 51000 52000 53000 54000 55000

Figure B.21: EV Carinae visual (AAVSO) light curve - expanded view of figure B.20.

278 * I 3 * ' 1 r —i • i r ( I | 1 J—! 1- I- I —i r J • J i t - • - " • • • " - 4 " — • » •• 4 4 — " m m «• 4 *m •• « • • - ## * * 44>*«* * 44 • * - - «* «* 4 • 4 • 4 - - 4 • • • •• 44 m mm • •» mm 4 4 4 • 4 - — «•» 44 • 4 «•»•> **> * 4 • 4 4 • * - - «*«•» * m 4> •* •» • 4 «• 4 4 44 4 4 4 - - **4M4* * • 44 * # - - «•*«•» 4 • • * 44 4» 4 4 4 «ft * 41 - - •H «BN>aM»4 • • 4 4 * 4)44 44 4 44 •»•• 44* 4 - mm *••> «•**• • 44 4 4 «•• 44 • * 4M 44 44 4 * 4 — - Mi 4* • * * * m 4M • 4*44 •ft 4 • • 44 4* 444 1 I4M 4 4»>«4> • 4 - - 4» *> 4M»* 4*4) 44) •III fin 44»4B • 4 4 4) 44 flHMM»4« » 4 4» 44> 4> • - * • • * • * 4>44» 4> 4 4 4* - - • * * *• 44 *4*4X» mm* * 4)4 4 t 4 44 4»4»44 • 44 4ft m - m «tMHI 44B4MM44 4 4 4* 4 4> *4 44> * 44 44 4 - m 4 4 44ft 44 4*4444>4* • 4 * 4)44 _ . * 4> 44)4) 4»4» * 4 4 4 44 • *4 4* 4 * 4 . - 4444 4 4 4 4 4 - - 4 * 4 4 4> 4 4 - — • * • — . • 4 . . , 1 , . , 1 . i > 1 , , , 1 , , . I 1 i i 1 1 , t - 40000 42000 44000 46000 48000 50000 52000 54000

HJD (2400000+)

Figure B.22: IX Carinae visual (AAVSO) light curve.

279 -5 1 1 5 1 1 1 1 1 r 1 1 1 1 1 1 1 1 j 1 r— 7.2 7.6 ^ jpUfajtf oaf * Xl.lll i^*\ 1 8.0 \- < £ , - , , , 39500 40000 40500 41000 41500 1 ! 1 6.1 1 1 '» ' * * I i i > 1 .' 1 i > i • -\ 6.9 . *•% t. ' *. . *V" ..**«** *+. •' * *f^»'** - 7.7 - **_t ••*. 1 i • •• • . . • 1 1 , ', ", .* 1 44000 44500 45000 45500 46000 465C 6.1 1 ' ) ' ' • ' 1 ' ' ' ' I ' ' ' ' I ' ' ' ' i '—' ' ' i ' 6.9 7.7 46500 47000 47500 48000 46500 49000 49500 50000 6.7 F—'—'—'—I—T1—^—i ' ."—' ' I '—'—' ' I—'—'—'—' A ' 7.3 - * - * " - -' * " • % * * * * 7.9 - * r • »J* *., *"S*. J#** *l|*w» . .akfrr • .*a*«. * • *• 8.5 **' ' ' g I i • i i I g t S—li I i 1 : i l_i i i«* • I i— . L! i Lsfit—i—i i £ 50500 51000 51500 52000 52500 53000 5350 7.2 p 1 ' ' ' 1 ' ' ' 1 ' . '.„' 1 ' ' ' 1 ' ' "»—I ' ' ' P—' ' 7,8 _ » * . %r i _ •• t . •' \ B.4 -.',...,...,. . J . I 1 I I 1 i I 1_I_J I I ! &_ 54000 54200 54400 54600 54800 55000 55200

Figure B.23: IX Carinae visual (AAVSO) light curve - expanded view of figure B.22.

280 pi 1 1 1 ! 1 1 1 1 1 1 > 1 1 1 j 1 1 1 ( n

!_l 1 I I I jl I L i I I i I . I I 1 1 I I t 15000 20000 25000 30000 3500 HJD (240000+)

Figure B.24: IX Carinae photographic light curve.

281 g_2 ET-I 1 1 > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9.5 9.8

i t 1 i ! ] 1 ' * » I > • 1 1 I E I Z—I 1 t I I S 1 l 1 I i I 1 I LJ J t—L 15000 15500 16000 16500 17000 17500 18000 18500

1 1 1 [ • •» • J 9.7 - • 1 * 1 I • • • 1 ' - m 9 •MWIH • mm *• m»*» m• ••• • • 10.0 • «•» • « * • • • » •»• • » * • • • • • mm •a* m tmmm• • • • * *• »• • 10.3 • * • m* • i » — 1 , i , , ', 1 $ , , I . , . . 1 I ", ,- 19000 19500 20000 20500 21000 21500 22000

1 8.8 J 1 •"T 1 I ' ' ' 1 ' '. 1 i 1 9.1 9.4 • * * * Ml 9.7 V • * 10.0 :, *:«i r . ** i 1 i *,* f...T 22500 23000 23500 24000 24500 8.8 •^—. [ r-j 1 1 | 1 . , , 1 1 1 , . , , 1 , , , , ^ . 9.1 9.4 9.7 10.0 - * • , » ' r* * i *- >: -"i *:& *,*«> A* *&t I I t 2500I 0 I I I «•2600 I 0 . 1 | | 2700| 0 I • • • 2800I 0 j | | |2900 I *0 • •**"." 1 1 9.0 " ' ' 1 ' —r— i* 1 1 ' ' ' 1 1 L 9.3 : • • « # 9.6 _ •. * * _ 4 * * .'. • » • • * 9.9 "\* *1. • ** *••. # | 1 , »*;?•; 1 *l * , *, 1 1 • 29500 30000 30500 31000 31500 32000 32500 33000

1 i 1 ' " ' 1 ' 1 ' I I I 1 j 1 I J i i 9.8 • * 9.9 — • * - 10.0 i a i.i 1 , , 1 ,*,!,, , 1 . . 33400 33600 33800 34000 34200 34400

Figure B.25: IX Carinae photographic light curve - expanded view of figure ??.

282 Visual Magnitude

o O CO CO CD CD t* b an b in b I { I I 1 I | I I 1 I | ! I I I | I I -TTTT1 -

• ••• «t

era .liiiifM. . c . iit< o * • s. v td

05

LSI O • . *:. e» .«•• "« «* CO en CD * • * *•: i O • * N3 *o 00 2 •J • * en

CO ..n»M«ts:«' O n.(lit!*tiil.*' cm

...tl !••• •••ill*"*' M ., .

1 •••In J! » • • i • ' » • 1 . • i . i i E ' ' * ' * • ' ! I ' • ' ' * ' 1—3J-< 1-; [ 1-; 1—»;n j 8.5 9.5 10.5 *Mr ^r • * • J : i 1 I i i i I i i—» i * i i i I 36000 38000 40000 42000 440C

1 1 1 1 V J 1 1 1 J J J i •' ' .1 1 ' 1 i i 8.5 I . « • i * * • • » *» • • > * * • • * * V • * * 9.5 - ft • •* \ * • - # V * • • * * ** « ** 10.5 1 1 1 1 . 1 , i ~ , 1 I , 1 f . « t 1 f i , f i r 44000 44500 45000 45500 46000 46500 47000 47501

-|—i—i—i—i—|—i—i 1—J—|—i 1 i—i—|—i 1 1 r—r- 8.5 9.5 I • 1 i i 1 I i 1 i—l 1 1 I I I 1 f 1 1 J i 1— , t i I 1 t t i I 1 1 1 I i__l L. 47500 48000 48500 49000 49500 50000 5050Q 51000

1 ( 1 1 1 1 E 1 1 1 !~~T 1 5 1—1 I 1—1 j 1 I 1 1 1 1 1 I 1 1 E—I 1 ! 1 1 T I 8.5 9.5

10.5 Z-l !__! «• * ' > ' ' I I *»* *l l_l l_l L_J I I l__l I I I I I I L_I I I l__l I I 51500 52000 52500 53000 53500 54000 54500 w. II •T—T i i -i— I J" •iT 1 1 1 1 1 I 1 1— i I 1 ' 1 I y • _ s *• .0 4 • * • * • * * • • • *• * • • • • * • * • %** $ u • %*'9 t # .5 \ 0 1 1 1 .1 1 I 1 i- 54800 54900 55000 55100 55200 55300 55400

Figure B.27: PZ Casseopeiae visual (AAVSO) light curve - expanded view of figure B.26.

284 T—r-

• • • ** • •* » i » * »• ••«

* *** # *

»• • ttt * •« •• # • * «MMM»*«-

* « +**• *«•« • • • •• •

. I . , l • _> L JL -J I i L. J L 25000 30000 35000 40000 45000 50000 55000 HJD (24G0000+)

Figure B.28: W Cephei visual (AAVSO) light curve.

285 -! ! J T" 7.8 8.3 8.8 J_ _L j_ _L_ 1 JL J_ 25500 26000 26500 27000 27500 28000 26500 29000 6.8 i i—E—r- -i—i—i—r- -T 1 1- 7.1 7.4 7.7 8.0 bi _I_ J_ .J i E L. _J_ I J_ J_ 29500 30000 30500 31000 32000 32500 — 31500 7.0 T 1 1 r- I 1 T- T -I 1 ! T- 7.5 8.0 8.5 9.0 —I i_ 1111 J i i i i 5 i i t i l i i 7*~T t i i i i_ _L _J I i_ l- 33500 34000 34500 35000 35500 36000 3S50C i i r—-T- I J—r 1 t r 7.6 —'—'—'—'— ~ —'. * JjhU '—'—1 • '—__i_ '—i ' _ B.0 • -. :\_.<* B.4 I I I L. J_ _L J t I __l I i E t I t l l l I l l l l * • * 36500 37000 37500 38000 38500 39000 39500 40000 -I 1 ! 1 J~~I 1 I I 1 1 1 1 1 1 1 ! !—l ] 1 1 1 1 { 1 ! 1 1 1 1 ! «." f 1 . I I 7.2 7.7 8.2 _J 1—1 —• T* ^"* • . . i , i t , I » j g t ] i | , , | | j i ] £ | __j [ | __| | 40500 41000 41500 42000 42500 43000 43500

C_i i 1 i i i i__l i i i i I i i i i I i i i i i* * I_*LI I i i i i I i i i i 3 44000 44500 45000 45500 46000 46500 47000 4750 6.7 f-' It' ' ' ' I i—t—i""::g—t r—rr—p- 7.3 - £ frt 7.9 - Jdk&x-t-r^ vJ&T •:-$&*. 8-5 K I • , • ••• zap J L__! ll L 1 1 1 I I E_ 47500 48000 48500 • • • •4900 • 0 49500 50000 50500 51000 ! U t £—T^-S E E 1 1 1 T~ j_.>._, .'—' l_ _ '—'—nrJ—'—I—3 7.3 - ______7.9 - W9-*" •7?-i»V' ' g.5 lt__i i I_1J i i i i i I Jlhi-. _t_ii_tf 51000 51500 52000 52500 53000 53500 54000 54500 6.7 pi" T——1 1 1—! 1 1 1 1—I ! 1 1 IJ 1 T"—T 1 1111 1 IJ 1 1 1 1 1 1 S—I 1 TT"™I 7.3 7.9 8.5 i i t^ i i^ 1 • ' ' I • » • ' ^ ' ' « •* r! i t i i__! ^i c i__i \ i * * « \—i 54800 54900 55000 55100 55200 55300 55400

Figure B.29: W Cephei visual (AAVSO) light curve - expanded view of figure B.28.

286 1 1 1 1 i E r- i ! r-

j i i_ -i i • * _'L i • • t_ J 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.30: SW Cephei visual (AAVSO) light curve.

287 ' ', 1 ' ' ' 1 ' i i 1 i i J I 1 1 , , , , . 1 i «»»* i j , 8.2 • 8.4 • 8.6 - , 1 , • , i , . , 1 , , i r , 1 , , , 28000 28200 28400 28600 28800 29000 29200 29400 29600 7.0 11 ' ' ' 1 ' ' ' 1 i ' ' " ' i ' ' ' " 1 ' t 7.5 * _ B.0 B.5 - • . 9.0 , , l , l , - 43000 44000 45000 46000 47000 48000 40000

8.6 • • 1. •' ' l_. '_ 8.8 • • • — 9.0 • 9.2 — • I l l i T 1 50800 51000 51200 51400 51600 51800

I i i . | 8.2 " 1 • «# K.J- 8.8 • • \ • * • 9.0 • 9.4 I l t i 1 54000 54200 54400 54600 54800

Figure B.31: SW Cephei visual light curve - expanded view of figure B.30.

288 -T 5 1 r-

4.6

4.8 0 3 5.0 c I5-2 13 «5.4

5.6 -

5.8 -

_L ' ' ) L. _L J_ _i C ' • J_ _1 I 1_ JL _L 25000 30000 35000 40000 45000 50000 55000 HJD (24G0000+)

Figure B.32: W Cephei visual (AAVSO) light curve.

289 4.8 5.2 -«. «r , A ,...••*.;" 5.8

24500 25000 25500 26000 26500 27000 27500

1 1 | l j , , i ! i i i i 4.8 1 ' i » i ' ' i ' 5.2 « • • • 5.6 mm. * * * 1 i i , , , i , *, . i 27840 27860 27880 27900 27920 27940 27960

r i i i i 1 l i—i— 1 i i I A.H "~ • I -r - 5.2 • • * _ 5.6 •- • * m • • 1 • - i . i • 1 . i < 1 . , , 1 r 1 1 I 33054 33056 33058 33060 33082 33064 33066 33068

1 1 1 4.8 1 I ' ' 1 ' I 1 ' \_ 5.2 • • * • 5.6 _ * i . t ,* . 1 41200 41400 41600 41800 42000 42200

T ! 1 1 1 r- -i 1 1 1 r ~i 1 1 1 i i I r- 4.8 T 5.2 ^pH^Bi^^^s^ijj» V»»^TOft ^»*»* »^j* » 1 5.6 J_ JL 1,1 ' u. . L • • . I 44000 45000 46000 47000 48000 49000 50001

I i I 1—I i i—r- l 4.8 I " " '• t I 5.2 5.6 -i I i i i i I l_i L. _J I I I *l I I i I I I I I I I I I I l± i- 50000 50500 51000 51500 52000 52500 53000 53500 -1 J 1 1 1 1—I 1 i ^ J 1 1 1 1 ! 1 1 S—31 1 J 1 t L J 1 (—I J 1 P—1 j I I I 4.8 5.2 5.6 j I ULJ 1 1 1 1 i_J 1 1 1 I 1 ! i_il 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 I 1 1 i_ 53600 53800 54000 54200 54400 54600 54800 55000 55200 55400

Figure B.33: W Cephei visual (AAVSO) light curve - expanded view of figure B.32.

290 Visual Magnitude in .fa A in b 1 t' ' ' ' I

'ft .

er2a >-* (0 w Is

o tr to to

CO o

. 1111 o • • 111111 C < CD M,.'i • !l I 111111:: - iijl Iill"*** • r » i • • • • Ml-*' t I « • • I t IT 1 i 1 1 1 1 1 ,,,,,,[ 1 » ' 1 1 , 1 1 , J (11,1 i > • ' 3.8 4.2 _ s>* * • *•**.. •••• i: . _ 4.6 -1 1 I , 1 . < 1 , . , , f • 1 •, * , , , i . , . , i , , , , 1 , . i- -4500 -4000 -3500 -3000 -2500 -2000 -1500 -1 1 V { 1 E 1 1 1 ! ! 1 t 4.0 4.5 5.0 -i i i i i i ' ' i ' * • B i ' • J i i i i 1= -500 0 500 1000 1500 2000 3.6 f-' I ' ' [ /. { 1*1 i i ! 1 [ 1 1 j 1 u 1 1 r [ 1 1 1 i 4.2 L 4.8 - , * * *•..• "••• ? -W "-* 5.4 ^"' *** • • 1 • i • l2—i I I I E I E E_J I ( 1 L_J I I I I 1 i L_ 3000 3500 4000 4500 5000 5500 6000 1—i—s—i—j" iitt i—r—r—i—i—j—i—i—r ' 1 ' j 1 1 1 i | i i. ii 4.0 v.*.—•" - 4.4 4.8 "" I 1 ±_. ._1 1 ! 1 1 i__ J 1. .1 I 1 > 1. I , 1 , , , , 1 , • , %••<••: . . 1 . , 1 ~ 6500 7000 7500 8000 8500 9000 9500 -T | i i i i j—j i i i | i i i i j i i i i | i i s i | i i : I | 1 1 I I £ 3.8 4.1 4.4 4.7 —1 I I \—l I I i__J l 1 I I E I i ^_J ' • r I • • ' 1_J I • • ' 1—1 i__l • '"* 10000 10500 11000 11500 12000 12500 13000 135O0 ! 1 1 1-1 1 1 1 1 1 1 1 1 ! ! 1-j ! ! 1 1 1 TZ ' ' 1 • ' ' ' 1 ' ' ' ' i ' ' 3.8 4.2 4.6 " &**?* ' > ' I • ' ' ' I ' ' i i I • ' ' ' 1 t__j i 1 1 f j t__i L__t 1 ' ' I • 3C 13500 14000 14500 15000 15500 16000 16500 17000

4.0 4.5 5.0 Zj I I I I I I 1 I E 1 • ' • I » .««~~r | | > • i | | | | | | I • ' ' ' I ! I •' 17500 18000 18500 19000 19500 20000 20500

Figure B.35: /x Cephei light curve - expanded view of figure B.34 (continued in next figure).

292 1 ! 1 r- n T——1 ! 1- 3.8 ^K 4.2 »*»*. 4.6 X 21000 21500 22000 22500 22300* 0 23500 24000 245C

J i £•_> ; L 24500 25000 25500 26000 26500 27000 27500 28000 3.6 1 <• ' '—' I ' • ' ' I ' ' ' ' I ' i 1 1 r- wT^S^ 3.9 4.2 % 4.5 • • • • • ' • • • • i • > • • ' • - t j_ _L 2800:>vD - 28500 29000 29500 30000 30500 31000 31500 T 1 1 T- l(ii 1 ^•** ft* ft* 3.6 L_U nit 4.2 ' L* 11 r* %**HI :** Ete* 1 • ^ 4.8 ^M"* ?^SO S *h , r , i* 1 32000 32500 33000 33500 34000 34500 35000 —r-—*—i '—n—i—*~-n—r- 3—T—[ ( I 3.8 - >«*!J! 4.4 - 5.0 - -4P*A' J_ 38000 39000

3.4 FT 4.0 - 4.6 U <*•?->• i&^v*A&&'i*Ak • •-< 53600 53800 54000 54200 54400 54800 54800 55000 55200 55400

Figure B.36: /x Cephei expanded light curve (continued).

293 i i—i i—i—r- 4.5

5.0

© »• * • » • *••• *• *• • «••» 3 5.5 *• AM* «•*»%**<•**»• «-• * • «• M» •« •* »* c • *»« * *•••*• mm • #* SP «-«• • **n» **** MM •*» m*+ 5 6.0 • •**••* »•#* M»*MMMft m • * liitiO •<••»••* #••# W >6.5 • *••• *«

<•* •* •• « ••• »•* • ••• • » ••*»»••* •• * 7.0 • «• •• • *•»« •#* * » •» • « • •#«

7.5 b_L -I I E t i__l L • , r J_ I i _t t a I__L _j i i L. J_d 25000 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.37: T Cet visual (AAVSO) light curve.

294 5.1 -5 ! ! ! 1 1 ( 1 E 1 I 1—n 1 1 ! 1 C 1 1 f 1 1 ( 1 1 I 1 S • 3 ! 1 5.9 6.7 \ «y*'. ;.. '." .; . /- /^ Vs 2050.0j i i i2100 * 0* ' t__2150t I 0i i ; u_2200J 0' j * t2250 I 0I I t i2300 L_0 i • > •2350 F 0* ' • -I ! 1 1-1 1 1 T—T—~| 1 1 1 1 1 3 1 ! 1 1 1 1 1 ! J 1 1 5.6 **. ' X V •" Ai 6.4 J I L_l I_JJ I L_LJ I I L [_lj I 1 I 1 i L. I I C I I 1—1 I t i L I I £2_i L 24000 24500 25000 25500 26000 26500 27000 27500 r 5.6 177 • • i • • ^r % i %%/ **J* -A A *V \J *A **V I I I l__l I L —I 1 E 1 I i_J i • * • i_3 E I 1 l__I 1 I I I I I I I I 3 31500 32000 32500 33000 33500 34000 34500 i—i—i i—i—r—i—i—|—i 1—3—!—|—i—i—i i | i—i—i 171—i i .1 i—|—i—i—i—i—|—t—i 1 1—j 5.5 : 6.5 :, *%* ^ ^ :.*\* V V* V*L *V V '** 7.5 in * ' i I__I s—r i—i—i—i—' i • 2_i i I i t i i I i « • * I i i i LZI • • ' • -i 35000 35500 36000 36500 37000 37500 38000 3850 r-i—I—i—r-p—i—t—i—i—i—j—i—i—i—i—i—j—i—i—i—i—r—i—i—i—x—T—i—T—T—i—i—i—i—i—i—i—n—i 5.6 6.4 :•' & *fc -,*L ** '\L -,'/• Yf •% '*0 •&- 7.2 =J I 2 I I 1 I I I I I J I ! I I I ' *T* ' I S 1 I I I I I I L!_i I Z •••*'- 38500 38000 39500 40000 40500 41000 41500 42000 5.6 p ; 4 6.4 - V^' ^ *fy #ijf W^ '«fl& ^ :H/ *yj^ *t$- 7.2 42000 42500 43000 43500 44000 44500 45000 45500 f— 11 5.1 i —i^—|—i^—i—s—I—1—i—I—i^—i—s—I—i—i^—!—I—ri—i^—!—I—i—i-—i^ 1 1 1—p—i W ' W—|—'— ~ —*—|—' ' '—'—|—'—'—'—*" 5.9 h 6.7 t S \ 1^ I 1 I I I I I i L I I L_I I* I l__i l_J 2—f^ t t * I .* i • • I it. t 48000 46500 47000 47500 48000 48500 49000 5.1 5.9 6.7 h: ; ;& •-*& •*& ^* *0 ijk ^b. jkf *Ji jfe: • i I__I i i i i i i i i__i i i i i i "^ • ' »**" i i i 2 II_I i i__i i iz i t_m_i 49500 50000 50500 51000 51500 52W0 52500 53000 5.8 m 6.6 -. \f^ &£' ***&' -^ ' *&i+' ' ?*&- 5300J 0 I t~ l_ZJ_l 53501^ 0 fc_l 1 ! I 5400I 0 I 1 I 1 54501 0 5500I*0

Figure B.38: T Cet visual (AAVSO) light curve - expanded view of figure B.37.

295 Visual Magnitude o Q (0 00 03 if b» In b b bi b TTTTTTTT TTTTTTT m-rr

. . -1.. *. *; i:. I j j: j •: •;.:; • 3 **t»iii • ••* t* o5' e (6 W CO

P9

to 05 . • t • C :»!i: " ' £» • •»•

O * His

o -! A iii... < * 1 .i! ,,!'l ilij!:...

• «i**li|t:;.

•••''''••''•' _L1 ••''•••'''••• ' J0 l_'-»l • I I I I I I—I " I I ' ' I I I ' I • I ' ' ' ' I I I ' I I I ' >.o - . . -J 1 E • ' ' I I 1 I 1 I E 1 1 1 L_E I • • I 1 I i 3 i [ I 1 E l__l I £ I L 1S500 17000 17500 18000 18500 19000 19500 20000 p-j r—s T—| 1—I—I—I—T—if ! 1 1 L^l 1 1—1 { 1 1 1 1 1 1—I 1 1 1 1 1 1— 8.0 9.0 i i i^r i i • *^t> • i i t TTI i i i i iiij i i i i i i i i i i i i I i 2000020500 21000 21500 22000 22500 23000 23500 -1 p r 8.5 —rr —'—•—'—i—'—•—•—•—i—* •:* •—•—i—'— —•—'—i—•— zp,—^n—s-71 9.5 fc •JQ.5 LN—! E 1 I • ' I E E E E 1 E 1 i • *t ' > ' E L -E s s i_ 24000 24500 25000 25500 26000 26500 8.5 •*. 1 1 1 1 1 | I ' ' '- 9.5 — 10.5 r 1 . • 1 . 1 1 , . , . 1 • . , , 1 , , , , 1 , , .- 29000 30000 31000 32000 33000 J L 1 ! 1 fl I r j 1 1 j 1 1 P 8.0 9.0 J ' • 1 I S t £ * ' • « F 33500 33520 33540 33560 335£ z—\—— ' .i—'—i—•—'—'—'—i—'—'—'—•—i—'—•—'—•—i—•—•—•—•—r~7—'—•—•—r

10.0 J 1— ' ' ' l__t E I ' ' • E__J E——I E ' I i E E i E I E I L 35000 35500 36000 36500 37000 37500 38000 T-'—I—TJSw1—'—!—1—'—•—Jt~*l—'—'—•—K—I—CTT—1—1—1—'—1—1—1—I—1—3"Z"i—1—I—E~3—' •'- i 9.0 10.0 —J i ' * I E i_l 1 S_i L_l 1—1 i I t • 1 ,' 1 [ • • 1 I ' • • 1 I E t I 1 L 38500 39000 39500 40000 40500 41000 41500 42000 8.4 r^—|—J—i 1—[—|—i—i—i—i—|—i—i—!—i—|—t—i—i—i—i—i""T i—J—^i—5^-1—i—i—i—j—i—i r i i—^ 9.2 Z k* '•>—** •>•::* • -&az •**&? w*** **iUr" &*" ..*-£* *-•*"'* -»* - i 1 1 1 1 L—1 E L I....A , J 1 E 1 * * • E l_l 32—I 1 1 S 1 L__l I I I E i_l i 1 42000 42500 43000 43500 44000 44500 45000 45500 g^l TO ] 1 1 1 1 1 \ ! j 1 1 1 1 1 ! ! I I 8-6 - « * . in iMiftiiM ii .^-m* * ir n * LJ i • t I » i • * I i__i i i I _li t I i II_—i i—XT, ,1 l,...j-_j t_i i Ll_i I E I t 48000 46500 47QG0 47500 48G00 48500 49000 i. i 1 1 1 1 ; l i 1 1 1 r—r~""i j 1 1 1 \ 1 1 F 1 1—| 1—i 1 ( j r 8.5 |- A*—<*

9.5 • 1' I E E——I I E i E_E I E E I E I I 1 E 1 1 1 I E 1 ! E E E E I L 49500 50000 50500 51000 51500 52000 52500 1 ! 1 1 1 1 [ 1 1 I I 1 1 1 '! f" " ! J 1 1^ r- 8.5 9.5 53000 53500 54000 54500 55000

Figure B.40: RW Cygni visual (AAVSO) light curve - expanded view of figure ??.

297 Visual Magnitude O CO CO CO 1 ' ) • " ' I ' ' ' ' I ' » • ' \ ' ' ' 'I

• .1 M » • ' i • . . »* •* ,,"• . . *,.•••• .•ill** • » «! !• . . ••.. « . • 3 I.II*. •• • • .»:••• • •.*• » , m" .••I.IJ. •it«ii. * .. .*• ; •: td . .. •.«,!::•• i.« • • • > *« «« • ! o • » !• to oo 1= 1 **•: •• • •• •}• *:• • • • • I . .. .||# en O

(TO •• t.

o «• • .•• t. t * •' .» '.. * I «. . :i«. • .• t •«• «. *• . ••* J • • • I a i V" ' :• f *.:. • ••••Mil* '"flu'.- • 52 » # * • -*-ii«iii^i»»iiiiiitJ»i>ii i i i i I f TT-! "V|. 8.1 8.9

9.7 _2 i I I I i I ' * i a-_ E ^* '"* 30000 32000 34000 36000 38000 40000 I I?—i—'—I • 1 <~pI —'—I—<1 i U _1 j .j—'—I—r-p—'—'—i—'—'—i—i—|—'—'—'—'—f—'—•—'—r 7.8 f # m # »l - «

8.6 *»;•*• m'z»f. •*"•** • *% **"• . •• . ." 9.4 esu 1 1 1 1 l I l i i 3 L j i_l i i i i l_i S-i-i i I t I i—i i i i i i E__s 40500 41000 41500 42000 42500 43000 43500 44000

7.8 "" 1 ' ' ' ' I ',»' ' ' I ' ' ' ' i ' ' ' • I • • ' ' I »'. ' ' . ' I ' ' *•• • * • * •«•»«» vw * * * • »•***** *»•* * »# * • • 8.6

.4 est i t i 1 i i_s-i a I \ i i a L i i i__t I t t E i I i ' • * F i_—i i i L. 44500 45000 45500 46000 46500 47000 47500 J 1 1 1 1 1. • I ' 1 1 1 I 1 ' ' •w 7.5 * * « •• 8.5 • • • ... * « • * • ••* * * * * * * — # • % • 9.5 • »« • • V* * 1 , 1 1 f 1 I I 1 48000 40500 49000 49500 50000 50500 51000 ^| ! 1 1 1 1 1—I 1 1 JIT! 5 J 1 1 1 1 1 1 1 1 1 J—T )—••?-•• ) •—| 1 1 1 1 f 7.5 8.5 *«%* * 9.5 £ I I 1 • I i 1 i I i i I i i I i I i *f *V * i I J i i i I i i i i I I i i a 1 i i_ 51500 52000 52500 53000 53500 54000 54500 55000

Figure B.42: AZ Cygni visual (AAVSO) light curve - expanded view of figure B.41.

299 Visual Magnitude

0 O CO C0 CD 01 b w o b» 11 1 1 1 1I 1• 1' 1' 1' I ' ' ' • I ' ' * • t ' ' ' ' I ' ' ' ' I

Or? (3 (!) W »* W 1 • !

•«11 • • • 1. a :.11 • * CTC) • • * • • ^. : o en' • • 1. o • «* * * * t > * 1 • • 1 • * • 1 • CO • 1 1 • O * • 1 • • • • * o I I M 11. • it I • 1 » » 1 *:« :; »• • •11 »«*i; t ill ii- • • I

.j;:;i:hjiiiMi(;;. 8.6 r—T 1 » 1 1 ' " ' 1 • ' ' ' 1 ' • • . i - 9.4 « 10.2 « V 11.0 i 1 1 34000 36000 38G00 40000 42000 44000 ' ' 1 " ' 1 ' • -*i 9.3 • 1 ^m 9 9.9 • • • • * 10.5 Z T> , , f , . . , 1 . . . . 1 , . . 1 , , , 44500 45000 45500 46000 46500 47000 47500

1 9.1 - ^ i I • i ' 1 • 1 • . 9.9 4 ••"V • •* v. * * * *, /• •* 10.7 1 , , , , , i , 1 . , • * * i , . . , r 48000 48500 49000 43500 50000 50500 51000 5150 i l 9.1 9.9 • 10.7 1 j.. i 1 J ! I _1 1 *i : 52000 53000 54000 55000

Figure B.44: BC Cyg visual light curve - expanded view of figure B.43.

301 20000 30000 40000 50000 HJD (2400000+)

Figure B.45: BC Cygni photographic light curve.

302 12.0 \- ' i i 1 i i 1 ' I ' ' «• * «' • * I 13.5 r'. 1 , 1 . * * * . , 1 y* 11500 12000 12500 13000 13500 14000 14500 15000

12.0 ' " 1. ' I I l 1 1 X • 1 .•.•«' _ 9 • * * •• « 13.5 i • • , 1 , , , , , 1 , 15500 16000 16500 17000 17500 18000 18500

1 12.0 * 1 ' * i | i i , , | , i 1 i i j * %• * » • •* 13.5 I . , 1 , , 1 f , i * * I* 19000 19500 20000 20500 21000 21500

12.0 1 i i 1 ii 1 i — ^ • •• •..•}»• •• • • «» • 13.5 * *i l *, . •*> * 1* , , • 1 i - 24000 24500 25000 25500 26000

12.4 • I ' ' • i j i . ' 1 '# • »* . • •V" *••,»• 13 4 rl *•• ,* t» t r 1 i I 1 i . V i i i 2850I 07 . 27000 27500 28000 28500 29000 29500

12.4 i.' ' Hfm i**V . l~ 13.2 Jl _L • tfr' _i i i*i 30000 30500 31000 31500 32000 32500 33000 3350C 12.4 -s—p- -t 1 1 T- T T 1 1 T- -1 1 1 P" 135 m §** J_ it _L j_ 33500 34000 34500 35000 35500 36000 36500

1 i | i r i • , i , J. 12.4 •* * • '*» 135 XI I T . . 1 , . , , 1 T 38000 38500 39000 39500 40000 4050 J S I—P" t I 1 I T—r—i—r i i—i—r- 12.5 x ••4.' ' 13.5 _j_ , 7«1 _1 I I L. < ' ! I 1 • 41000 41500 42000 42500 43000 43500 44000 T 3 ( ! 1 1 1 r-TTr—T—! [ 1 1 1 1 1 1 5 1 1 1 ] 1 1 J S 1 1 \ 1 1 ! 1 3 12.5 13.5 = • • • L1_I I i i—i i I ~ • i—i l—i i i e I i—i i i t i i i ' ' < ' • 44500 45000 45500 46000 48500 47000 47500 12.4 1 .«•! ' 1 1 1 ' " •• 1 ' 13.0 • -*. I 1 1 "... 1 i I 1 •»* , • 1 1 * 1 48500 49000 49500 50000

Figure B.46: BC Cygni photographic light curve - expanded view of figure B.45.

303 1 r l 1 • i l i i . . , . ' i K i i i 1 i i i 1 . . I i i i i 1 *• - • . . • " 8 * • »• • • * •• •* • •* * *# *•* * » * • • • * • • • • « * • * * * * * * • #*• * * * * * • f ** * • * * m+ • • * • • • • • " 9 m *« • • • • • • * *•• • • 3 • • * • * *• •• •• * • • • ** ••* • *• • • * "c •* •# • • •# **«•« *• ** * * «* • * « * • ** *•* • • • « • • • • • * " # • • * •• * • •• " • • • • 10 • * • • • * * - • - W - * - 11 • * -

12 . • _ 1 i > , < 1 i . t , i i 1 : i i i I ,. 20000 25000 30000 35000 40000 45000 50000 55000 HJD (240000G+)

Figure B.47: V Eridanus visual (AAVSO) light curve.

304 -i 1 ,—| 1 1 1 1—|—i 1—-r—i [—, , ,—, ,-nr^, , i 4 8.5 *' ... <•* •** 9.5 105 fc— I * • ' * I ' • • » I i i 1 1 l__j t i s I * ' ' » E * i • ' I B i i g k= 19500 20000 20500 21000 21500 22000 22500 2300 8.1 I i i J i I ' ' l ' I i i i 1 i 8.6 • - 9.1 9.6 ~ • m — i . , , , I , , , , l , . , , l , , , , I , , , l . 25260 25270 25280 25290 25300 25310 25320 7.9 [ '"!.." 1 ) 1 i 8.6 - 1. * S3 ** » •• • * • 10.0 1 . . 1 . , i i t t. . i , • , , i i > * i T 33000 34000 35000 36000 37000 7.9 ^ 1 I ! i 1 1 1 [ 1 J i ' , , . i i 1 1 i i 1 • _ 8.6 - • • •• •• • • • 9.3 •• • "•• * • \7* . •v.. * - 10.0 , i • . •i , , i i t . * i i 38000 3850a 0 39000 39500 40000 40500 41000 l 1 1 1 ! 1 I l 1 r—I 1 1 1 1 1 1 r—| 1 I I 1 1 1 ! 1 ! r—I r—I r- 7.9 8.6 9.3 10.0 J i i i t__] • • • ' E i i i uJ i i a i L 42000 42500 43000 43500 44000 44500 4500C 7.0 n • ' ' • I '—' • ' I. ' • ' ' t ' ' • ' I '—' ' • I ' ' '—' i « > ' > I '—' 8.0 9.0 10.0 11.0 ^ ' ' ' ! i—I *' ' ' * E ' ' ' E ' ' 1 t I I ' • ' * *' f__l I I i I 1 I !__! U 45000 45500 46000 46500 47000 47500 48000 48500 [11! 7.6 J ' ' » ' i 1 " ' 1 | 1 I ' ' J . ^ 8.3 • / * • • 9.0 # *•• • • • **• . • « * — 9.7 ~ .* • 10.4 J , , 1 1 . , . 1 , 1 , , , 1 1 1 1 , , 1 t F _ 49000 49500 50000 50500 51000 51500 52000 8.5 J I 1 1 1 1 ' 1 ' < i i 1 1 ' ' ' ' 1 •'•' 'Xm 9.0 m • • 9.5 • 10.0 • • ft ™ _i 1. i , , , , i , , . , t i «,** . , . i . . . . I 52500 53000 53500 54000 54500 55000

Figure B.48: V Eridanus visual (AAVSO) light curve - expanded view of figure ??.

305 -1 ! 1 1 1 1 I I -i 1 r-

+• • •• *mmm * #>• •• «MWMHM«*»WW« *«*w w*w—»-i—••••••• t *3* I

3 *mm • * >7.5 h • •*• *«••

8.0 -

_1_ X -3 i E 1_ _I_ i l 30000 35000 40000 45000 50000 55000 HJD (24GO0OO+)

Figure B.49: TV Geminorum visual (AAVSO) light curve.

306 | 1 1 1 i J 1 I I 1 | 6.6 *' • 7.0

74 1 . , . , i l- 28000 28500 29000 29500 1 1 1 ! 1 J E 1 1 1 1 1 1 1 1 pr-! 1 1 s 1 r- 6.8 7.2 • • • 7.6 J i i i 1 I i t i i I E a i E I i i Ij i__! X 32500 33000 33500 34000 34500 35000 n—i—i——i—i ri i—|—s—j—i—t—|—i—r—i—i—|—i—i—j—3—r—i—i—s—i—|—f—B——i—i—i—i—i—!—i—i—i—r" 6.0 u 7.0 ^fe $*** -v^ *^r^ **"^ ^^ *t *v* '*'*r* * ^ * B.O J i t i i I * < * » I i s i i L 35000 35500 36000 36500 37000 37500 38000 38500 6.0 6.5 7.0 7.5 t i t I E i i i E i i *_LJ I i i t e I i i i i S i i s i 1 il i i i I i i i i_ 39000 39500 40000 4O500 41000 41500 42000 6.0 1 1 1 11 r—| 1 1 1 ! 1 ! |—1 1 1 1 !—I 1 Q^ 1 1 1 J.—I 1 ! 1 1 1 1 1 6.5 7.0 7.5 * mp *g ,m z&i m % .4* m & 8-° h i I i i i i I i i i i ElChii i i ii_i£_!l i i i i I i i i i Ii i i i i I i i i i LI 42500 43000 43500 44000 44500 45000 45500 T 1 1—S 1 ! T 1 M I T—I 1 1 C—I E-

i i i I i i^> > il i i i t L_i i i i I i i i i ! i i i i I • i i i 1 t_i 43000 44000 45000 46000 47000 48000 49O00 ""1 1 1 } 1 1 1 E 1 1 1 1 1 1 1 E \ 1 1—~1 1 1 1 1 1 E i 1 1 ! 1 V B T 6.1 # 6.8 7.5 ••&!> *Zp **9*$lg| *£& JMl ?$% '^& *3lfc: 8.2 _I 1 1 E 1 I E I I I i • »•" ' E I E I I I I E 1 E E I I I I I !_1 3 50000 50500 51000 51500 52000 52500 53000 6.3 -1 E 1 I 1 J I IT B 1 T 6.9 7.5 :.>**i*

Figure B.50: TV Geminorum visual light curve - expanded view of figure B.49.

307 -j i i 1 1 1 r-

5.0

• » • ** * «*» »* -§5.5 "c

• m «» •* «» » «* m 6.0 - • <» "• • —• • •«>••• »• to #« «§ •»•«»«•» «**••#* * •• > 5.5 -

7.0 hL^ J I L j i i _L _L -i t i i i L. J i 40000 42000 44000 46000 48000 50000 52000 54000 HJD (2400000+)

Figure B.51: IS Geminorum visual (AAVSO) light curve.

308 ->=—"—|—'—'—>—'—I—'—T>—'—I—« 1 1 1—f—i—'—T*—]—<—i—fT-T—J—i 1—i—'—f—t—i—>—TTl 5.6 *• ««*•»«» * tmmtmtm »— — * *»• * mm» « *..••«* 5.9 > • • •+«» » » « ««*» • «• + « • 4» «W •««»«•«» 4* «CMMMMM» • «NH»MMM M»» *»• » MUMIMHBHft • • • • • «• • m» » MM*** *m»m !•• • * «•*• •* «»•«# • • • mmrnm** • •«•* « VWWBH* 6.2 ' » • • » «»•««««»* * M»* • #» • «• 1 • I • - ' ' ' I ' I l__l 1 I I I * I » ' ' » I I I I I I I 1 1 ! [ ' • ' ' * 40500 41000 41500 42000 42500 43000 43500 4400C T—| 1 1 1 1 |—i 1 1 u j 1 1—! H-^ ! 1 r—i j 1 1 1 1 1 1 1 r—n j 1—r—I 1—^—r 5.6 5.9 m •» •» •• • nMIM M*M MM»* m ••»*• «•« «• »•• *• «M» «M»« * » MM* » a* m «•;

8.2 -I i i • *' * j i ] * * \—i—i—i—!_JI [__i i i I i i i i I i a__j i I ' • **» L. 44000 44500 45000 45500 48000 46500 47000 47500 —i—i—i—i—T—!—i—i—!—|—i i—i 1—r—i—i . i .i i—i—i—!^-i—|—i 17—!—J.i' 1 O.JL'S.1—]—1 -\S , 5.6

5.9 • «• •»•»«• ••• •• mill *••«••<•*«• «M» ••»•• «» MmiM 6.2 • * * • •»«» • •* • #** *M»* •* «•• •• **• * * mmmmmm _l I 1 i__l 1 f E t 1_1 l_l I I 1 1 » • I t I l I I J I i 1 L_l S L__I L—t 48000 40500 490G0 49500 50000 50500 51000 T 1—r^-i—i-rn 1—c—I ^ r—i—i—i—r1^—i—i rr—i—i—i r—i—i—i 1—i 1 i—^i—i—i—i—i—3 1—

5.4 *m «** * • m 5.7 • • «» #»—m» ****•«•»» *><•» ** MM »**•* * «M * *••• *4MBM» " * ' 6.0 — Mi **H«MM» • • • 5.9 « « • • * • • * • •# • » 9 * 6.2 i 1 « f* . 1 1 - 55000 55100 55200 55300

Figure B.52: IS Geminorum visual (AAVSO) light curve - expanded view of figure B.51.

309 n 1 r I i i | i i 1 i

1 • • • — • ••"

I . <• *• • • -

- m • m*# m -

1 * • • • • _:

- • _:

- • 1 1 1 f 52000 53000 54000 55000 HJD (2400000+)

Figure B.53: V959 Herculis visual (AAVSO) light curve.

310 ! ! [ ! 4#5 ' '— — —I > ' ' ' * ' ' ' > I ' ' ' ' ^ ' ' ' ' I ' ' ' I > > * * ' 25000 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.54: a Herculis visual (AAVSO) light curve.

311 2.9 «. 1 ' ' 1 t 1 J 4 » 1 • ' * ' •• •a* • 9: 8. 3.4

3.2 m *" „ lJUV JUS * TB.r •"4RHBT "VJOLI "Jl ill I" Ajana^JvJSJBM^Ur^WV V' > 3.6 — # ** ^"wi • *BFTWI • •* *§ *$? M^p » »^ * ^j 5 I S I i I I ' • ' E 1—tl 1 1 E E 1 1 E__l i i I I I l__l l__I L_J I S I E I L± 31500 32000 32500 33000 33500 34000 34500 35000 -I—I 1 1 1 1 1 1 1 ] 1 T—! ! 1 1 ! 1 1 1 |» lj« V ! 1 1 1 1 ! 1 1 ! 1—I—I 1 ! ! 1— — -*.t ,JXm ?JL*^Z& t it*A»*» *-».«f^ (•« •^. HjkjUr • VMMF>» Jf**«»?•• * jgrTWr ^•MMIU»»1 *^V/* * %m\.dr*mm _ i!«UKi, **t*fjpw* ^»*JW>T— iwvvmp j ^ • *» mm* «. *• j&mjjgf *%# • «• TV% ~ 3.7 t # 4.2 —» i * i < 1 t » t I ] E { E u_J E E E E I E E E S I S S i E I E E E . I ti* . »— 35500 36000 36500 37000 37500 38000 38500 2.7 -I 1 1 E f—l k I I 1 1 ITT ! [S—E E 1 E (—I E ! E B—""TT E rj—J E ! 1 1- 3.4

4.1 b=- I I E » . I • 1 !__! 1 ] f 1 i_J| g )__) |__f t j j • I • i t j | i^j , (__;£ 39000 39500 40000 40500 41000 41500 42000 4250 - , p J 1 1 1 IB—] 1 E 1 1 J E E E E 1 1 I I I 1—1 E 1 B [ B B B E [ E B E 1 [ T^ ,„ 1 liMiii i "Ifltfil " 1 tint ill itiBi* .\m~ iitiTliii "Till i liliilT 4Jtvi jsdut'

4.1 •—• 1 '•••'• • it E I I E 2—1 I 1—f-1 E LI—I 1 E E E 1 S l±_i S I • • • ' I • 42500 43000 43500 44000 44600 45000 45500 46000

4.1 •— •••!•*• T r l_ij n_j | | £ £ E E I I I I 1_U E E E S I i •* ' • I * • ' * • 43000 44O00 45000 46000 47000 48000 49000 2.7 - 3.4 - 4.1 ka 50000 50500 51000 51500 52000 52500 53000 2.7 -1 B E F- 3.4 •J^^ttWC* •"•"wrthif ^"ifliwiM* ii'Miiiiy ' fovhm- **&$ 4.1 l=_i L! -, •• * i* . • iy» .* i '. *. * '• i •••'*• • . * *. 53500 54000 54500 55000

Figure B.55: a Herculis visual (AAVSO) light curve - expanded view of figure B.54.

312 -i 1 1 j 1 1—i 3 s 1 1 r—i 1—i 1 1 1 r- I ^

« » # • * «

« *

-1 t [—1 I i L _L -I i i t I 1 I L * i 1 » f 25000 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.56: RV Hydrae visual (AAVSO) light curve.

313 -I-S-I | i i i -r- 1 i • i 1 1 f '""••• r—•—' —•—r—r~ 7.6 . _ B.0 • • / *. _ 8.4 * u — fia —i i * • i i i i 1 < i i i* 1 I i i . 1 , . 1 . - 22000 23000 24000 25000 26000 J 1 1 1 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 1 [ 1 TT-T j 1 1 1- 7.6 8.0 6.4 E__i 1 i 1 i i i 1 1 t i I f t i 1 i a i * ' • i I • • ' 34800 35000 35200 35400 35600 35800 36000 36200 -i—i—|—i—i—i 1—|—i—i—i 1—|—i 1 1 1—j-gr—i 1—r—j—i—i—i—i—|—i—i—i—i—|—i—i—i—r 7.6 Ji _. r — 8.0 v 8.4 J I I I I I I I I I I I I I I i I 1 I i I t i 1 I I L-& I I L 36500 37000 37500 38000 38500 39O00 39500 400( 1 I I 1 J 1 | 1 . , 1 j I 1 ' ' ' 7R _' ' ' • . . , , . • • 7.8 - • m • •* • - 8.0 * » m* • * -. * • - 8.2 -. I , I 1 f 1 L_ 1 , 1 . 1 1 1_1 L . i 1 1 < 1 , 1 , , , , . , , . 1 ~ 40000 4O5O0 41000 41500 42000 42500 43000 43500

1 1 II 1 1 1 ' 1 ' 1 ' 1 1 7.6 ' .l-' ' \ * * " I • \ — • • 8.0 # * * • • •* * • » - 8.4 V * • . . i , l_ t i > 1 \ I . 1 44000 44500 45000 45500 46000 48500 47000 i ' 1 ' 1 1 ' . i | i 7.6 * . 8.0 - % » •\ m • 8.4 aw • • • - p 1 i 1 I i i f i 48000 50000 52000 54000

Figure B.57: RV Hydrae visual (AAVSO) light curve - expanded view of figure B.56.

314 * • » • » • • » * • # • • * •* * * 4* * * * • • # W * # *#•••«» 4* • * « • w *t #*• •• • #** a *» •> • a* *•#**»•*«••*•» «k • *4» Ml • at> « «»* *•* • ••«*•* <* »• * »«»**» IV* *»«•** * « # • <•••» •* • *« a *• • • *• •*> »w M «•* * • * «t #* •*• «M» * *»•** • •***# «M * • *»**# «*«M»n*» *• mm m •• » • »«• • «>••• •••*•• «H> ••»

• * # « • •

_E i a i I i ', • i ' i i 1 E i E I t i i I i i a I i i i t ; i i L 40000 42000 44000 46000 48000 50000 52000 54000 58000

HJD (24Q0Q00-I-)

Figure B.58: W Indus visual (AAVSO) light curve.

315 —i—i—r 1 1 l fl.3 _ 1 ' '< • ' 1 ' ' ' 1 1 i » 1 '_ 8.9 # #^»R Ik. 9.5 • * * * • % V . H,V 101 *• • 1. Y 10.7 1 , , , I , 1 , , . . 1 . % 1 , ! , • , 1 i , •,- 40500 41000 41500 42000 42500 43000 43500 44000

—J— 1 i 1 8.1 fi­ —i—i 1 J .' i > i. • • —i i i 1 -1—r ! 1 ! T 8.9 • • •* * * * 9.7 • * • V •v..- < • ** * « - •• m* * 10.5 • # • 11.3 ll. 1 i r* t , i . , t < 1 t i i 1 i i i , i"" 44500 45000 45500 46000 46500 47000 47500

-1—s—i—i—|—i—i—r 8 31__ •' i., •' ' •' ' i!•" ik,, ' i ' iI iL •' :;'. •' iI •' •' •' '• i • • • • r 8.9 9.5 10.1 ... 10-7fc_i i i i i • J * i i i I—i—i—i i J i s i i I i i i i I i i i i I i i i i L 48000 49000 50000 51000 52000 53000 54000 55000

Figure B.59: W Indus visual (AAVSO) light curve - expanded view of figure B.58.

316 -i 1 r-

§> 9-5 h

15 10.0 - 3

11.0 -

11.5 - I I > I ! I l_ l J d 48000 5OO00 52000 54000 56000 HJD (2400000+)

Figure B.60: U Lacertae visual (AAVSO) light curve.

317 BQ i=~' i ' ' ' 1 ' ' ' 1 T-i r- 8.3 8.6

25220 25240 25260 25280 8.6 JL ' * | » * i i i i , j i i i i • • - 8.8 9.0 - - 9.2 «. — 9.4 — * i , , , t i , —- 36000 38000 40000 42000 1 8.5 *»« • 9.5 • « •« V*"* Q.t> , , , , l , , , , 1 . . , . 1 . . . 1 .... I . ... 1 ... T | , , — 49000 49500 50000 50500 51000 51500 52000

9.0 -pr=3^-> ' 1 r—i 1 1 . 1 j 1 1 1 1 1 , . 1 1 [ r—i , 1 1 . i ^ i 9.5 10.0 10.5 I I *•<••• •<* . J_— a t * ' » 1 1 1 1 1 i f F i 1 1 j__a i I F t 1 1— 52500 53000 53500 54000 54500 55000 5551

Figure B.61: U Lacertae visual (AAVSO) light curve - expanded view of figure B.60.

318 6.0

* • i 6.5 * # • • • *••>•*»• « •*•• #* • * # •» "§7.of- * •»«P*»*» * •

PMWWW *« ca * • *» # ' >8.0 h * #• «• • » •**# «4» 8.5 -

9.0 l . I I I L. i J d 35000 40000 45000 50000 55000 HJD (240G0Q0+)

Figure B.62: Y Lyncis visual (AAVSO) light curve.

319 r—i i | . i » i ) i 1 1 1 t i i i i | i i • . | i 1 1 i | y i i i | i i 1 .1 | 6.6 7.0 7.4 7.8 I 1 1 1 !_J I ' t • I l I 1 I 3 i i I i E E t I I 1 I J E i i—\t t 1 [__i I I L 35000 35500 38000 36500 37000 37500 38000 3850 s i—•—' *! v—|—'—^T1—i m jt I * l—[~~I—!—I—'—r "Lt—'—T"~'—'"""'—'—I—'—'—'—!—I—'—(—'—'—£—' 6.8 7.2 7.6 8.0 _j 1 a i i i I ! i i i I t i i i £ i i i i fe i J i i I J i * * * I s m i i I i 36500 39000 39500 40000 40500 41000 41500 42000

6.5 7.0 7.5 B.0 8.5 _i i T**i i i i 1 i i i i 1 IE_i i t L_i i i i I i i i i l_ii i i i I i i z 42000 42500 43000 43500 44000 44500 45000 45500 T Jill ! i I—T ( I I ^U—I I I 1 I 1 I 1 1 T—71 1 1 _ L ' 1 U I r-—I f—T 1 1- .A. 7.n5 .it 8.0 *m 8.5 I ' ' ' ' ^ t—i I I I I ^^ ' I t I E I I I I I l_t i I i I I l_t I L. 46000 46500 47000 47500 48000 48500 49000 6.2 i • |—i—i—i—i—|—t—r r • v m"t—r—i—i 1—r—T—i 1 1—i—i 1 r—i—j—i—i 1—3 1—s \—! r- 6.8 7.4 8.0 8.6 _i__E I t i ' I ' t t , • , T • f ^ A , L_i, 4, » »I I' I' I fI I I I I I1 1I 1_i I1_ 1I IB tI Et Ii LI L 49500 50000 50500 510)0 51500 52000 52500 53000

6.5 7.0 7.5 8.0 8.5 3 i i i i I i IJ i i I i i i i I i t i i II i i •— i_ 53000 53500 54000 54500 55000

Figure B.63: Y Lyncis visual (AAVSO) light curve - expanded view of figure B.62.

320 -i 1 1 r-

4.0 •• • *«•**•

• «ft «•* * »• ••#*»••»#• ••«»* C 4.5 t * • •• i * * « • * • * * 2 * * * to «5.0

5.5 -

J I i I i i i i I 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.64: 62 Lyrae visual (AAVSO) light curve.

321 T—!—rra—<—i—<—i—•—'—|—<—>—>—r—i—'—'—i—>—|—'—'—<—•—|—>—«—a—>—|—i—<—p—i—i—'—r 4.2 « *• • « » m» mm •• * » »••» » WIMIIWI • • • • M •« • * • « •»• «*^*MM» *M4«MIM* «4» «* *«*•« «»» ••««» » • 4.5 f» * «»• • •««<• • *«••• . %.•..». •• T* g.O Lb l__l I L—i 1 1 1—13 1 1 1 1 1 ! S 1——1 1 1 1 1 L_—I 1 1—1 1 I I 1 1 1 I I 1 1 1 39000 39500 40000 40500 41000 41500 42000 T—i—i—i—i—i—rrr—i—i—i—i—i—i—r-i—•—i—>—•—>—i—i—>—>—>—i—i—•—•—•—•—r 3.6 . * V .V f* . * 4.2 4.8 _i i l_Li i i E 1 i a E t J E & i t I Si i t i I i i a i I t i i s I i i 1 i 42500 43000 43500 44000 44500 45000 45500 46000 _ 1 • * 1 i * T " 4.2 J ' " \ mmmam • • '.J. ' 9 *» * * * • r mSmmnm • 4.5 • mm • • i.' s, • aw • * * 4.8 • « mm «• .mVL* g 5.1 - 1 1 | • • 1 i , i , 1 , , 1*. T 46000 46500 47000 47500 48000 48500 49000 49500

mm * -r~r * * * # * 1 ' 1 _ 4.2 « mmm* «* • # » W*IMMH 4.5 ** *» * ******** • OM* «» # 4.8 • I 1 , . •, , 1 , ' , , 1 51000 51500 52000 52500 53000 1 ' n > • 1 A. 3.8 1 ' ." *t • —ii—'—'—'—nn— 1 1 ' w. • m *• » • *•* 4.4 - -k • # • • * ** »A^J * * * • 5.0 *%* * i . , . 1 . . , . i 7 . i "T , , i , -i i— 1 1 i 54000 54200 54400 54600 54800 55000 55200 55400

Figure B.65: 52 Lyrae visual (AAVSO) light curve - expanded view of figure B.64.

322 TTT

2.0 -

2.5 - J. i i i i i i i i i_ J i i i 20000 25000 30000 35000 40000 45000 50000 55000 HJD (2400QOO+)

Figure B.66: a Orionis visual (AAVSO) light curve.

323 0.3 _ ' ' I ' ' ' ' 1 ' l 1 1 1 l—l i—i 1 r^-l 1 i 1 1 ! 1 . j 1 1 1 1 J 1 ! " " 1 0.8 Hr .*»•* »* • ~ 1.3 , I , , , f I , , f 20000 20500 21000 21500 22000 22500 23000 2350 L - --0.6 * -• .. /t*u v^ * i^> J£&£ .-* 1.2 I • ... I .... I ... • »1 • .^T . 1 ... r i , , , , I I", • ,* l« 23500 24000 24500 25000 25500 26000 26500 27000 0.2 0.8 1.4 J 1 I I I I . 1 1 l I 1 1 1 I 1 I I I I I I I 1 I I 1 I I E*S ! I I 1 I I 3 27000 27500 28000 28500 29000 29500 30000 30500 P—"T 0.2 - "" 0.8 h 1.4 _i i E i i i I^T^I i i i L£ i i i da i i L!_I i i i i i I i i i i I i i i_SL 31000 31500 32000 32500 33000 33500 34G0Q 0.2 —s—I—i—i—ii j „L_' r-jT—I—i—!—i—i—1—i—i—r—i—I—i 1—i—r-ra;—i—i—I—!—I—i 1 r- 1 wi i 0.8 1.4 : * ** W «fe ••*! 4* ±+ ;$&r ,Kt '*jg _£j I_ll I t ! I I I I 1 I I I I I L i 1 I I I J 1 L-ll I I I ! 1 I I l_ 34500 35000 35500 36000 36500 37000 37500 38000 0.2F77- 1 0.8 - 'A vjti ^HE -^#'%iAMtf W ## 4#' Mk'M 1.4 tl^pjp r l^^^^t ^^^^*% *^rt^^ .^B^pWr^^ "w^^^r" ^^^^^ ^1^ ^ffql^r* ^^^ 380001_— I I I3850 1_01 L—I I3900 1110 ! 3950' * 0 ' 1 1_J4000 I 0 I I 1 14050 I 0I I I i4100 i 0 I iXl I4150 I' 0' • 0.2 0.8 1.4 H m* 'qbir afrit- 4lt ^ft^-iAfr ^rf f^fr jMfrtfii M _i s i I • . • . I i i—i—i—LJ s t i i_ EL-i a__i—t i t t__E I t i—J—a—I i i i 42000 42500 43000 43500 44000 44500 45000 i—i—I—i—i—!—i—I—i—i—s—r—r—i—i—i—i—|—i—i 1—i—I—i—i—i—i—i— 0.0 1 1 1 1 1 ! 1 1 1 1 ! 1 J I I 1 1 1 1 1 1 ! 1 ! 1 1 1 1 1 1 1 1 1 1 ! 1 1 YZ 1.0 ML ^Sfc a^ife faA Jttfe «gta|£ —»- S-*& 2.0 *T^, j^r^?y wl y/ t»™ * r^n^ TIBP W|^^ .1 i l_i I 1 1 S 1 LH i 4550i ' 0 ' ' r 4600^ 0 ^_t j f|4650 [ 0 • ' . 4700. I 0 £ i i 4750j E 0 i—E_I 4800t I 0 48500 49000 0.3 - 0.8 - 1.3 - k '-Jsm! tim *iim j&k £»*'*»* Wi"^il 4M W c—l• I_. 'I. TI i. I i. i• i. I. »•••''"! • i i—i i » ' ' i i • i i i i_ 49000 49500 50000 50500 51000 51500 52000 52500 0.2 - 0.8 h ^t..^ . ' ^a^JBf-*a^^.c '

Figure B.67: a Orionis visual (AAVSO) light curve - expanded view of figure B.66.

324 * . £ ,* " : *• • » *•££••• 5 * • it .a J £ X. s. - •• Si.*. s iA'irxi'iiSir t.i : i ..'tsi x> ii SUS.1B SIX 8 SSXX X.8 i. 2 3 .•: sa-SBSB*ss«t"ss ^^B 2X88 S» & S? 510 .S*SA* ssxssits. * XwSXTBlT S'.*fS*&ff" S •SSS -"J SI'S BXISS SS*8XS J SSSXX X*B»n*fXt**SBSrS*B85X>S BBS B&S: 2 / a : • -::i r sua S5"S." ?SH?S 55ff53lF3*'2!5S5Es5ES*'a*! ; a .:rg«s|£ r 's.-jirtraa :•.: 12ii£iiiiiS §11 * * 5 Ss Xs * x J • * ' :5s I 'I sTfisinttr-!srjB-B to ~ X . . .«»> . • xssani *B B ~ s s B r S B M t X s 12 - illiS SS SSs * i tr » • 5 X ! j * 13 - X x * X J_ X J_ 20000 40000 50000 HJD (2400000+)

Figure B.68: S Persei visual (AAVSO) light curve.

325 -j 1 \ r- -i 1 r- 8.0 mm f* -#> • • •*••• * 9.0 _ ^^ mm t ^k 10.0 I , I 7 1 I i , 1 • • i • 11000 11500 12000 12500 13000 13500 14000 145! 8.3 i i | i , , « | i L j , | i , i i 1 ' Xt 9.0 « * V. .•V- 9.7 " 1 , , , , ! , , , , . t , , . , 1 i i i i 1 15500 16000 16500 17000 17500 18000 l—i—)—i—I—i—!—!—i—I—i—i—i—[——i—|—i—i—i—i—j| i i r1-1—|—- i 1 1 1—[—i—1—i—i-1—i—i—i—I—|— 8.0 10.0 :M^'^ ..« «*'* •«<***. *p~ -*;..: 12.0 X J 1 I I i . i i I i i i— 1 J_ I 18500 19000 19500 20000 20500 21000 21500 22000 P ! 1-~I 1 1 I I ! 1 1 1 1 » | L S—3TT—J 1 ! 1 1 [ 1 1 a—]—r| 1 : J 1 1 1-1 8.6 1 9.8 11.0 J I I I 1 1 1 I 5 E I 1 1 i 1 I a 1 I I _i i^V t t I t I 1 S E ! i I I L_ 22500 23000 23500 24000 245Q0 25000 25500 -i—i—1—1—i—i i '• ' I " i i i—i— 9.0 few. vmr »*« 10.0 :«ftjff -1 i I iZ 1 L. JL • •' 25500 26000 26500 27000 27500 28000 28500 29000

Figure B.69: S Persei visual (AAVSO) light curve - expanded view of figure B.68 (continued in next figure).

326 8.0 —'—'—C 9.5 -C* ?T*Z 11.0 "%$T 'm* i__l I X! t i L2 29500 30500 31000 31500 32000 32500 33000 i—l—'—<~ i i 8.0 j i • ' i _ 9.5

11.0 1 1 1 "** _£ | 1 { L_J ! i i i 1 1 1 f I I i__l 1 t E I I I 1 1 1 i I • " «E 33000 33500 34000 34500 35000 35500 36000 36500 8.0 9.5 11.0 J5_J I J I 1 j S mt I ( t 1 I I 1 t J 1 i E 1 L_ 37000 37500 38000 38500 39000 39500 40OO0 8.o r" i • ' Ji£ 1 ' '^.L i * iri^y " ' -' « ' T—i—r—|—i—r 9.5 -toss aajajl k^H gfc. ,imm H**4Sfl tt* "A, j Ifc -.*i MB- 11.0 "> 1 w ^ligcwF^T^P^fff ^ _rTi m& 0 , . i i i 1 . 40500 41000 41500 42000 42500 43000 43500 4400 1 8.0 I ' " > ' I ' ' -i—i—"j—i—T—i—i—I—i—i—i—r i 9.5 11.0 j! II i1 iI iI i__1_Jl ff Li_ s_i I i t i__i 1 i s i i I ' ' • • J_ 44000 44500 45000 45500 46000 46500 47000 47500 9.0 r-Z 10.5 12.0 ** fel* i , , «/ 47500 48000 48500 49000 49500 50000 w5050/ 0 51000 s 1 l 9.5 - Jgsftti l jU*L. f*li i*TBfa* m 11.0 • ^^•^JKHS 12.5 51500 52000 52500 53000 53500 54000 54500 1 1 1 J l J | 1 J 1 I 1 1 ! 1 I | -t J t -T r r- 9.6 10.4 •*" t 11.2 l I i l l l I l l l l_L_I i i i i 3 i : i i I L 54900 55000 55100 55200 55300 55400

Figure B.70: S Persei expanded light curve (continued).

327 .1 . ' e ' l * * | 1 1 . ( | 1 ' *

- • • ' m* 10.5 - « • • • . • 11.0 * • * * "

(B * mm * •* m• * • » • • - X3 • * • m * • • * - 2 11.5 • •• * • * • • • • * • * «• •* * • » w • m * • • *«* • • •«• * mt m * m * • »• m * • •> • * • * • "Dc> • m *•«* • «» «* *• • * • • * mm* • *» m ** m* » • * • m m • m # •» * • * # • • • • S12-co 0 -• m *m * *• • * • -m m- mm «• *» • * • * * •*» • m* • • » • * « — •m • * • • * * * * * - CD * » * * • * • * * ] * • * • 12.S • * • * • * * • » • • - . • • • 13.0 • * 1 i , , , , i 15000 20000 25000 30000 HJD (2400000+)

Figure B.71: S Persei photographic light curve.

328 ' 1 i . i | ' ' ' ' 1 ' ' ' 1 | 1 1 1 1 J ' " ' ' 1 ' 10.5 - r» - 11.5 - • #* ».. »• • * » 12.5 » .,.» "• , ' , : \ . 1 .... 1 r 1 > , , , i 12500 13000 13500 14000 14500 15000 15500 160 T 11.3 . -*• 11.9 - J? ^ 7 12.5 \ V* «*" >" :f* "* ..„ - _L i t I i E i : i i -ii "L a _ 13.0 * 13.8 fct 1 1 i • i , 1 , 1 i 1 . . * 1 , , , , 1 . . < - 20000 20500 21000 21500 22000 22500 23000 1 1 ' ' < i i ' j i i i 11.3 1 • I ' l • * «&. 11.9 • .» : » • • •• . « 12.5 r 1 1 . , i i i « I i i i i J.. I 23500 24000 24500 25000 25500 25000 26500 27000 "T 1 1 T- -i—i—r—i—r—r—r 10.8 I ' ' ' ' I T 11.4 12.0 :*• •. • f f'" 12.6 •V' 13.2 d_ _1 I 1 i. _1_ -i I 1 I i__L J_ _L 27000 27500 28000 28500 29000 29500 30000 30500

31000 31500 32000 32500 33000 33500 34000

Figure B.72: S Persei photographic light curve - expanded view of figure B.71.

329 i ' ' ! '—i •—' ' '—i—' ' ' '—r

I t f i 1 I i 1 a i * • ' i i * ' t L^ 20000 30000 40000 50000 HJD (2400000+)

Figure B.73: T Persei visual (AAVSO) light curve.

330 —i—!—r- 8.6

9.6 . i . • i _I__J S L. _L -i t < * -J a g L. 16500 17000 17500 18500 19000 19500 T I 8.5 Z~ ..«!*•* 9.5 X 20000 20500 21000 21500 22000 22500 23000 8.5 9.5 f" ** ' ' I 1 I I 1 L_i 1 E ' ' * ' I t 1 i i E 3 1 1 I i I I I I 1 L 23500 24000 24500 25000 25500 26000 26500 27000 8.4 -i—i—i r- T r« ic i 1 i i i i I i i i i ] TT i r

9.4 11 * i» i i i t—i i i_-J l i i_u i i *i *T 7 27500 28000 28500 29000 29500 30000 30500 T 1 r-Tl—l 1 1 r- 1 1 1 1 1 ! ! [ J" T-—i—E—r 1 1—t—r- 8.5 •C^*- 9.5 •:• i» . * I *• .». • I *»** Sfcv***."* %.AS 9.2 1 ' • 1 i_3 1 1 1 iJLl 1 i t 1 I 1 1 • • » ' • ' J£ liJ 34500 35000 35500 36000 36500 37000 37500 38000 8.5 9.5 ' 1 1—- I 1—S 1 I 2 1 I » • * * •» - I . »*. « fw I 1 38500 39000 39500 40000 -1 1 r TT 1 r -1 1 1 1 I 1 ! 8.5 rr 9.5 )VJU.t I L J I I L. J_ 40000 41000 42000 43000 44000 45000 p—1—I—i 1 1—!—f m n 1—1—r—1 1—1—1—I—1—1—r—1—3—1—1;—1-5 B.S 9.5 -1 1 I 1 1 1 a I 1 i 1 1 I 1 1 r 1 I 1 i__i 1 t 3 1 1 _L 45500 46000 46500 47000 47500 48000 48500 49000

49000 49500 50000 50500 51000 51500 52000 52500 1 1 r T J I T 9 -«&* 10 »-—L- -1 • • * J . . > .»1*. , _i_ • «*&•» 53000 53500 54000 54500 55000

Figure B.74: T Persei visual (AAVSO) light curve - expanded view of figure B.73.

331 ! [ 1 1 1 [ 1 1 . | , 1 1 j ! 1 . | . 1 1 | 1 ' ' ' i » i i j i i i I i 10.6 * • 10.8 * « • - -• • » • # m * * • * * ,„ - 11.0 • * • *•* w «» • - - mm* • — 0> XX *«•***» • * * * * « •* * - C 11.2 **•«*«**«»**«•**** • * * * * * * * • - CD - ••»«»*•«• *»•#*•**» **•**« * • * * * * - "• • »•••••• *MP* # • a» «• *• •* * * - CO. 11.4

m mmmmm tm^m m*4* • •* *•»•••« • « *• • • • • •

11.6 •* ****** «»** * * •• * * * * * * 11.8 • *•«»* Mi** _

-, , i , , , i . , , i , 1 r 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.75: T Persei photographic light curve.

332 13000 14000 15000 16000 i i I i 10.8 ^ ' " 1 " ' ' 11.2 • 11.6 * •'•V * • •* 12.0 , , 1 , 1 , , , . 1 . 16500 17000 17500 18000 18500 19000 19500 200! 10.8 11.1 11.4 11.7 12.0 20000 20500 21000 21500 22000 22500 23000 23500 10.8 _* I 1 I 1 , i 1 1 1 . —r- ' 1 • • i i j i ' ' > 1 ' * < ' I * • m • 11.1 • • • * 11.4 _ * * * 11.7 • L-l ,I I, . 1 , 1 , *, , . 1 . . , , i , . , , r _i 1 24000 24500 25000 25500 26000 26500 27000

10.8 •* • i •• > » ' i • • • I i - • •• ••* *• * 11.1 •* * * * • • • * *• • * 11.4 • • • I » I f 1 E i i . 27500 28000 28500 29000 23500 30000 30500 - * 10.8 - I 1 | * i \ i i i i J i i Mil l 11.0 • • • 11.2 * • 11.4 • 116 - I •• , i , , 31000 •3150 1 0 32000 32500 33000 33500 34000

Figure B.76: T Persei photographic light curve - expanded view of figure ??.

333 Visual Magnitude o o co co CD b 01 in b b , ) M I J I 1 I I I 1 I J I 1 I I I I I M t j II III I »• ... •• • .r:!.ii nil \l " fi!:;:,.. ••mil *• *. m5 ...... in.i ! ! c o i ll!' " . •«.».ll * td !*• * • • f » i ' • Mil Hit:::' •»•» .... :.;:ui *«• Win •• »» co • * i! li • •«» "ri'liillll • f * »• • ... ••IMIIIt I • Ml." > t. .... CO •iifiiill O !•••• 00 *:!!S!jl|| •t •••ii ! *• ! 3 • •••IlilK I lit I. •••ilii • • * * .••MM *t .. • • •••j i III* * « • « ... •••mi. lii:;' . •: :;:!!:iiiiilllflH,!!!:: 8.6 jr~>—>—'—'—r —i—i—i—i—I—i—r—i—!—ETSTB—i—i—I—'—ri—i—'—I—'—<~ 9.8 11.0 r ""VTA ' ' 1 L. m <*!t-4 «*** f* s:> **•*.** 19000 19500 20000 20500• • • .2100 t 0. , , ,2150• i 0. , i •?2200 i 0i i i i2250 i 0i • 8.2 1 -1 |— 8.2 i"" —'—'—I J«iw>,.. '—»—L ' _.>—'—>—i—' #u '—i—i—i—i—i—'—i—i—'—'—'—i—'—i—T —i—'— an L-i i—i I i i i sf_t i i i i E i i i i I i i I i ! i i i i I i i i i I i i—i—i— 23000 23500 24000 24500 25000 25500 26000

26500 27000 27500 28000 28500 29000 29500 30000 9.0 P 10.0 h 11.0 J i i i t I i i i i L_3 i J! i 1 i i i i C_i i i LJK i i i i J i i_i i T i—L 30000 30500 31000 31500 32000 32500 33000 33500 9.0 10.0 11.0 - 12.0 i_fi i i i i i i ~ • i i i i i i i i i i i i i i i i ~ i~ i—r I—"I J 34000 34500 35000 35500 36000 36500 37000 9.0 10.0 11.0 i i I i i i i—U i i i £ti i i i i I i i E i I i i i—i I i i—i i—1—i—i—i—i—l_l 37500 38000 38500 39000 39500 40000 40500 4100C I. i—i—i i I—i—i 1—i—| —i—i—i—3—I—I—i— 9.0 _} r 10.0 11.0 41000 41500 42000 42500 43000 43500 44000 44500 9.0 -i—r—i—) ±. i ~i—i—i—[—r—i—i—i—|—i—i—I—I—|—i—;—i—i—J-m—i—i—i—]—i—n—i—i—|—ij. i 10.0 11.0 45000 45500 46000 46500 47000 47500 48000 9.0 10.0 11.0 12.0 ^ j—i—' ^"y*l • •—i—i—I—i—1_ -I I I L. 48500 49000 49500 50000 50500 51000 51500 520C j i i-^l 1 T 9.0 i tM—r T —T—i—i—j—a—i—t—J—3 10.0 11.0 _L _S_t ' [ J_ •*»*« i X *&—**\ If*** n 52000 52500 53000 53500 54000 54500 • • 55001 1 0 I 1 I 3555 IC

Figure B.78: W Persei visual (AAVSO) light curve - expanded view offigure B.77 .

335 -' I \ 1 I 1 1 J 1 i * | 1 1 1 • • * - • * * * — • • • ™ - • • » • • • • • - - * # • * - - » *•*» • * • • • • * * • * • • * • • * » • • * __ MB * * «* - • • »w •« m m *• • • • • * * • # • • • • • * # « - « •<* «»•» • • » • » * • * » - - W W«9 ••»• * * • • • « • • - * * • • • • m • • • « m. • • * * • • • .. - • * • * » * - • » • • - - ** • • » • - • • • • • • - - * • * « • - - - - - » - - • « - - • « • - 1 1 t , . . 1 1 i 1 15000 20000 25000 30000 HJD (2400000+)

Figure B.79: W Persei photographic light curve.

336 11.1 i | i t i ' " i i i i 11.9 • t •.- . tfi *$. H£ 12.7 «»• lg*~- 13.5 , I . . , i , , , , i i , , , , i , 13500 14000 14500 15000 15500 16000 16500 170 1 10.9 n— 1" i i i i 1 i 1 1 ' ' ' 1 i ' ' > —*—i^ 11.6 •• * *• 9 *8* :\ #* ~\ 12.3 - r* > • « 13.0 * i , , . , i , , 1 1 , i , , . i i,i, r 1 17000 17500 18000 1BSO0 19000 19500 20000 20500 11.1 1 > > , i jiii i | i i i i I i i i i I i 11.9 fc » . * * • . • * • * * * •* « • 12.7 13.5 - f 1 , , . , l , , , , 1 , , ,,!,', , , 1 , 20500 21000 21500 22000 22500 23000 23500 24C 11.4 ! ' 1 '. , , , , i i | i i i 1 i * • * 12.1 - .. * * • • 12.8 13.5 7,1, , , i l" i . , , l , , . , l , 24500 25000 25500 26000 26500 27000 27500 28C 11.4 • • • 12.1 • * • ... - « * * 12.8 * 13.5 i , , , , I , , , , 1 , , , . 1 " 28000 28500 29000 29500 30000 30500 31000 31500 11.4 I ' ' ' ' '. i | i 1 - 12.1 — • * . • - 12.8 • . _ 13.5 I < . . 1 i i i l" 32000 32500 33000 33500 34000

Figure B.80: W Persei photographic light curve - expanded view of figure B.79.

337 Visual Magnitude O O tD <0 CD 00 ~4 u\ b oi b m b in i i i i | i i i i | i i i i | i i i i | i i i i | i i i

..•• «*.."

tra" c >-« • * • • • ».• I. • :i • • bo o ..:iii»Mr::,,t«- . . 8 • : . ° • ••• • .... Pi o CO • I • • • • •••.. I«• * co co oo ...I '! 01 !* • M* if* i* •l»' • I* • it* tit .. • > • it* • S I .ii • •l • • CO •»t * O ;;; *..,*• Si! OP hi! i.. in !!! I • * • lit • *: .* 5» t* • • in «M* i: * : if! it **'i »'-: iif! ••• • i . i Jl! •.» Mi* •!!llll!;! I ' 1 i . • i.. I • | | . . . > 8.5 *V • 4 • — - • * 5* • * 9.5 • • 105 - 1 , *i * i l , , , . - 33500 34000 34500 350GQ 35500 36000 38500

-j 1 1—I—i s 1 r—|—i—3—i 1—I—t—i—i 1—-|—r—i—s—i—|—i—s—! 1- 8.5 9.5

10.5 1 .... I ...1 I . I 1(i ...1 lif. I t ...11 . I 1I ••«..•'t " J__t g d 1t • EI 'f 'I! 'B "* 37500 38000 38500 39000 39500 40000 40500 I 1 1 1 i 1 1 1 1 1 1 1 j— 8.1 8.9 9.7 i i i i i i i i i i i i i i i i i , i S_JLI c 34000 36000 38000 40000 42000 44000 I ' I .'> • ' ' I ' ' ' ' I ' ' ' ' L. .' . • • ' I ' ' I .' I ' *• ' • J ' ' • ' i ' 8.1 8.9 -?-.*/*• *'"*Jfc ~<2*.& ..••;.??» /'«^$....*.• vi* .v^...<> ;^'*.^» .-ff?x., 9.7 "". * t i • ' I i I i i E i t i i I a i E i I i a i i I_—i i i • ** i i t t L-1L 44500 45000 45500 46000 46500 47000 47500 48000

45000 46000 47000 48000 49000 50000 51000

—|—i 1—j—!—|—t—i—i—i—|—i—i—i—i^—|—i i v—]—|—i—i—i—r^—|—i—i 1—I | 8.1 8.9 9.7 3 i i J »» '* < * • •*» • i i I •' » • i I i i i • *!*•*. i i I i i i i LB I_2J i_ 52000 52500 53000 53500 54000 54500 55000

Figure B.82: RS Persei visual (AAVSO) light curve - expanded view of figure B.81.

339 | 1 ! 1 | 1 1 I | 1 1 j 1 1 1 | 1 1 1 i ' 1 ' i i i i j » i i ! i

- • • • L. #* * » m ^ * -_ : • m » • • • • * • * • ~ • * • • • *» * » * ~ • «» * - • * * • • • a • » • •« • • • - * • « * • * m- m * • • • 4k » • • • - • « » * m * # m • • ": * • * '- - • «•»••• • • • • * • * » • * • • ; *«»••« * * * * * m »• * # - «•••»** « mm * -l ; •• » • * • : - » • - r • ~ '- J 1 i E 1 E 1 I E i 1 , i . i . i , , i . , , 1 . , , i . , i i ~ 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.83: RS Persei photographic light curve.

340 ' I i ' 1 I 10.6 _ * •••*• | 11.0 * ' • • • 1 11.4 I 1 -i-% tfj/ %' • .* \ 11.8 1 i « , I 16000 17'00 0 18000 19000 . ^ i 1 i ( i i « | 10.4 I ' i ' ' ' 1 ' ' ' i 10.8 • * * * »*• • • • 11.2 ** • «i» 11.6 r t . 1 . , 1 1 . , i 20000 20500 21000 21500 22000 22500 23000 235< I i • i i j ii i i 1 1 10.6 • * • 1 1 ' ' ' 1 * # •** « • • 10.8 * • * 11.0 • 11.2 •r * * • * • — I , . , , 1 24000 24500 25000 25500 26000 26500 27000 1 1 1 iii| 10.6 1 i ' .' »' 1 1 ' 10 H — • • • 11.0 - • * « • • — 11.2 ~ , l . .J. 1 I , i .*•, , , 1 , , , , 1 1 ", . , l 27500 28000 28500 29000 29500 30000 i 1 i i > i j i i i • 10.9 • I * 11.0 - • • • • - 11.1 • • 115 l . , , i.l i i i • , 1 , . , • l" , 1 f i . 31000 31500 32000 32500 33000 33500 34000

Figure B.84: RS Persei photographic light curve - expanded view of figure B.83.

341 -i p—T r- "ni—i—'—•—•—•—r

-I i I i I L J I I 1 I L. _L _I_ -s i : i _l_L i i i L. 25000 30000 35000 40000 45000 50000 55000 HJD (24CMK300+)

Figure B.85: SU Persei visual (AAVSO) light curve.

342 B.0 -' •'•• • f ' • l e.2 - • , , — • , . T 1 ' • t i 1 1 » ' t t 1 1 i i i I 1 1 1 i L 21400 21450 21500 21550 2180 7.6 F ' ' i ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' 2 7 Q — • - *.. * N, » » 27750 27900 uZ j i i s 1 i i 2780I 0 i i t j 2785I 0 i i t s i * • *"i ' 1 ' 1 I , , . . . i 1 i i i i | 7.9 « • * 8.0 • * • * * * * « , 1 , , , , 1 , , , 1 , 1 , . 1 29550 29800 29850 29700 29750 29800 29850 7.2 1 1 1 ! 1 1 j s . 1 1 j 1 1 i r 1 r 1 p- 7.8 S 8.4 U> *•*• 9.0 <* , *..-*"• ~**%± **&»:'* ..~*-"*. 34000 34500 3500Q 35500 3600 -i 1—|—i 1 1—i—j-—i—i 1 1—|—rp—i 1—|—! 1 i—r—|—t—i r.—s—|—i »J I 8.0 8.5 - •• *f.*. »**»w^ *. •».*^/ »*. •**!*•* ••*** • *.* **/ /**«** «a**jjT •*w*«" 9.0 Ui , , , | | j , t . i , . ,__, | , i j i I , • , ,_| , j , !_i 36000 36500 37000 37500 3S0O0 38500 39000 39500 7.1 C—' 1 ' 1 r—i—i—rl I 1 -1 1 1 1 P^J 1 1-'-"-^ 1 1 J ! 1 1 1 1 1 1 5 1 1 1 ! 1— 7.9 8.7 ' ' • I * . » I I—_I ' » ' ' I 1 1 I t 1 I * • • ' ' t ) I I I I I 1 L 40000 40500 41000 41500 42000 42500 43000 —i—i (—B—i—p-~! 1—i—3—|—i—i—i—i—|—i r—i—i—r—l 1—T—t—r—i 1—i—!—r—r—^i 1—i—r 7.1 7.9 8.7 _: i I t i i i I ^_S i i » • ** i *i It i t i i »* '• • t ,-»T~. t l=_j j | | | ^ Jd 43500 44000 44500 45000 45500 46000 46500 4700 7.1 7.9 8.7 J I • ' I I 1 I i I I 1 1 1 I I I I i 'I "l ' *•*»"*. L_LJ I • • ' I l__i 1 I I i 1_ 47000 47500 48000 48500 49000 49500 50000 50500 7.1 T 1 1 1 ! 1 1 . 1 7.9 8.7 :*«»^#^ *<&?*

Z-i . . r—^ r—-i , n-rn j , 1 1 1 , . , , , 1 1 1 , a _• • *• -•?,**•*£«*,... ^r^^Hv.fV • m*r*. t"»>*...•• • • -..- i t i U i i Ixt I i i h h i i_s i I •* - - -j L L! i i 1_! i 54400 54600 548O0 55000 55200 55400

Figure B.86: SU Persei visual (AAVSO) light curve - expanded view of figure B.85.

343 I ' i . , i i • | i i . | i i . i i i < I . 1 ' 1 ' ' ' % •' ! l ' . . i . 9.4 9

9 * .

9.6 » • m- • m • -

- m> m • » * •» • m • -

9.8 mm • • * - . •9 mm • * » * -

• • • «•• • • m* •> a m • • mm m m m m • » • • m •»

10.0 • • m • mm • • - - • * • •> * • * • -

10.2 m m * • • • • • •

10.4

| , , . i . , . , , i . l . , i , i,l." 16000 1SQ0Q 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.87: SU Persei photographic light curve.

344 ' 1 • 1 ' 1 1 9.6 4» * ' 4** ** **w *M 9.8 — • • •• • • •* • — 10.0 * * ** • * # # 10.2 m • » m «* «w mm I 1 1 * 9 16000 17000 18000 19000 ( I 1 1 , i i , i , | . . ' .1 < . 1 ' " I 9.8 BUI • • * mm * m» • M • • mm « • • •* • 10.0 * * • # ft • "" 10.2 * • • m 1 , , i 1 > l [ f , I 1 . . , i , , ,«.. i 1 2Q000 20500 21000 21500 22000 22500 23000 2351 ' 1 • ' ' 1 ' • ' 1 I 9.6 "" • • • • • * "" 9.8 * « • • *•• • • • • •"• 10.0 * * * * , i , , , , 1 , 1 , *. , 1 , , , 1 . , , • i 1 24000 24500 25000 25500 26000 26500 27000 1 1 ' I i » .i # i .• > 1 • ' 9.7 « * ™ <** * * * * •"«<*« • * « 9.9 * „ • • • «* • * • — • 10.1 • i I 1 1 , « t t f i t ( I 27500 28000 28500 29000 29500 30000 - » ' • 1 ' ' ! .jiii 1 { > ' ' i j i i i ' 1 _ 9.6 • 9.9 _ . # * * • * • • — 10.2 • • - 10.5 "4 . . i i 1 . i . . I , , , , l . , , i 1 i i i i 1 , . i i 1" 31000 31500 32000 32500 33000 33500 34000

Figure B.88: SU Persei photographic light curve - expanded view of figure B.87.

345 Visual Magnitude o to 09 b b bi b if i i i I i i i i j i i i m- ...: * • • • *

I ;t I I d5' |i' 8 8 • * • a o . • • bo co * • X .11* X • •. I j »i * * • • • » « • t it. co H< * * * t »!: * » •••ul » , • • * * i * co •ii i O »• . t > !» •••••is (TO 8 • t • i cr O 1= I! < >;ti i«i• • * • * •s! ii : i ! < • ii i: * • • Ji 1 7.4 I ' ', • ' I ' ' ' ' I '—'—'—,—1—'—'. ' ' I ' 7.7 8.0 8.3 8.6 h- t , T , , l '.. , , , l*», • . >-i .' • . . I >• . . i V , , •, i , , , , I , H 23500 24000 24500 25000 25500 26000 26500 27000 7.6 —i 1 1 1 1—i ! j—i—|—! 1 s 1 1 1 ! 1 1—i—r—i—! 1-1 1 1 1 1—|—s [—a 1 f—i ! 7.9 8.2 8.5 rf%r*?^-.%i*~Ar~>j?j-'ft» . • , . **i .nws-v'hrrv? w. i . >'. , i ''". 27500 28000 28500 29000 29500 30000 30500 7.6 T—!—i £ I—s r—s—r—i—i—:—i—s—i—s—. . i—i—!—i—. i—i'— i! ' I . 7.9 2 • * * • \l I' % » •#«**•#* els E—! i3100 i 0i i i i3150 I_0 J i i i3200 I 0i • *«»»3250» i0 i i i 3300i I0 i • • 3350• I0 i i i 3400i I0 i £J345 « 7.6 h-1 I ' ' * ' I ' ' ' ' i ' ' • " I ' » ' l I ' ! ' ' I ' ' • ' I ' ' ' • I 7-9 - • f . V- «.* *. 85 I"/ I •*•».', .•!•».* .">>'. t.tf.l .... |W«, , , I • , , ', I , • •* • I 34500 35000 35500 36000 36500 37000 37500 38000 1 > ; i . 8.0 -' ' ' 1 * ' " * I '• ' i i | i 1 ' ' 8.3 8.6 , . _ , 1 •• , f •; , . . 1- r I S ! i r "T«> ". , ,*_•! , "•*"* 1* ,• . 1 38500 39000 39500 40000 40500 41000 41500 1 L 7.8 r~ ' • I ' ' ' ' - I ' ' • ' I ' ' ' ' I ' ' « ' ' I ' ' ' ' I ' ' '^,. J^ ., ' ', . —i g1- * • • ** *•«• i** - v 1 B'A - . *m.j «, ''mf.^tm "\ •* \SrS *"*»\ <«£• %../ *^"C*h ff**^-i . i""*"* i * - 8.7 >-,•.•, V.ri4200l 0..* » .%?¥4250, T 0, \ \ ,4300 i 0 , f . 4350. i 0 . . *. ,\i4400 0,.««» , 4450, or 0,* u , .4500 i 0, 7.6 1 1 ! S r—I 1—! ! T ! 1 1 1 1 1 1—1 1 1 1 1 1 J S ! 1 1 ! ! I 1 1 ! 1 1 j—3 7.9 - 8.2 h 8.5 45500 46000 46500 47000 47500 48000 48500 49000 7.8 8.2 8.6 9.0 £1**l?fo^rf # ^^Jjfes^agi: 'Mil 49000 49500 50000 50500 51000 51500 52000 52500 8.0 - 1 s 1 r j t 1 1 1 1 t i^—i i 5 1 ! 1 1 j i r 1 1 1 1 1 r— io!o t_j i i t i I i i,.,, i i i i i i i I i u_I i I i i i i_- 53000 53500 54000 54500 5S000

Figure B.90: XX Persei visual (AAVSO) light curve - expanded view of figure B.89.

347 9.6 F*—l—!—'—'—»~ -i—i—i—i—i—i—i—I—r- -i—i—s—|—t—i—r-

• # * »# • * <

* m m* * • • «***•• # • •99* ••«**«!»•* » m

*••«« #*- • • # _

i t Ji_ i i E s i i : I f ' ' J_ _i i i I i—t _L i I 1 1 1 t 1 I i t 1_—J_I L 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400G004-)

Figure B.91: XX Persei photographic light curve.

348 I ' . ' ' ,—-I——-j — 1 i "' I \ I J ! 9.9 1 - 10.1 • * m • ** • 10.3 * • • * i * - ' i —• i t f i " • • i.. 1, 16000 17000 18000 19000 I ' • 1 I ' i . i I ' ' • ' 1 ' ' ' ' 1 * ' • I ' ' ' ' J. ' ' ' ' i 9.9 , • _ 10.1 — # ••• » •* » — 10.3 » * — i . , , i . , . , 1 , , . , 1 . < I . . I . 1 , , 20000 20500 21000 21500 22000 22500 23000 23S 1 10.2 i_ 10.3 • ••• • . • • • •• • - 10.4 • • • • _ 10.5 i *. . , . l" . . *. , i . . , 1 , . , 1 1 . • , i i , , , . i . . 24000 24500 25000 25500 26000 26500 27000 1 i | i i i 1 i I i i ion i ' •' 1 ' ' 10.2 • • ** MP • t- •> • * • • • * • * ««• 10.4 " #* • •• *• " 10.6 - , 1 . 1 , , , i 1 . . * . . ,*, . 1 , , i , , . . 27500 28000 28500 29000 29500 30000 30500 1 i | i . i i 1 i i i i 1 9.8 I ' ' .' 1 ' 1 _ 10.0 • • 10.2 • 10.4 **» • « • « — 10.6 ~ 1 , . , . 1 . . 1 . • . , . i . 1 , , . i , 1- 31000 31500 32000 32500 33000 33500 34000

Figure B.92: XX Persei photographic light curve - expanded view of figure B.91.

349 -*—r 1 1 i-i

••••* •» m *

• •*• M **i

••* • * » i • • m* W •«•«*# 4 •• «» *» »*N» mmm+*m+ n

»« •# **

• • * ft * •»• «•* # * IWIIIIMIil* * * tMM««HM 4 • • • «• «* » • *» • ft

_L X _I_ JL -l l I u- 30000 35000 40000 45000 50000 55000 HJD (2400000+)

Figure B.93: AD Persei visual (AAVSO) light curve.

350 i i | i i i | i i i | i > i T ' |. < <_ 8.0 • 8.3 • # • #* 8.6 1 i 1 , , 28200 26400 28600 28800 29000 29200 29400 29800 29800 7.6 p-! ' <2 ' J 1 ' ' ' r^-i ' ' ' ' 1 • 1 ' ' 82 "* ' *v '~**J *V' urn. *** •*..***-* *•«'£?£&*- *«.£&*.*" Z l 1 * > * ' l 1 i i l a l_ 33500 34000 34500 35000 3550C 8.0 ^-| ! E ! 1 1—I [ 1 1 1 1 T 1-—i 1 T—I 1 1 1 1 1 1 1 1 1—T 1 ! 1 ! 1 [ 1 j 1 T 8.6 9.2 ~ I i i i i I • i i . i . r , i I i • • • I .... I .... I 35500 36000 36500 37000 37500 38000 38500 39000 - 7.8 I ! 1 1 1 1 1 1 T~—1 1 3 ! 1—3 1 1 J 5 1 1 J L' S ! 1 I U 5 1 I ! r—TI 1 1 1 ! T 8.4 9.0 —1 1__] 1 I 1 1_J 1—_t 1 1 1 1__I i • • ' I l__i 1 I I 1 1 •''''• 1 I 1 i L. 39500 40000 40500 41000 41500 42000 42500 7.1 -] 1 I 1 1 1 1 1 1 1 1 1 ! 1 1—| 1 I—1 1- 7.9 8.7 .. k&M its*** T%&* -k'S?*.. .OVTJ- %•*•». •*»: .-» .-• ~... ..?*>#v> J * l_l i_—I I I I L^_I I I I I I I I I I I I 1 I i I 1 I 1 I L -i i i i 43000 43500 44000 44500 45000 45500 46000 465( 7.1 -' I J ' '.' [ ' •».' '» I ' ' '.,'» ' ' I.' ' ' .' ' ' .' ' ' ' ' ' ' ' '*«»' 7.9 8.7 L_i i i g I i s ! i I 3 i i i_l • • • I i i i i I ' • i i I i i i i I i 46500 47000 47500 48000 48500 49000 49500 50000 7.6 —i . r 1 {J! I ,1, i#,i—J »»,» i .' }..< 1 1 .' .J ' ' 1 1 1 .' * *M£ }$&;. ^^^frnft!^^feg»- ^:*. *:.- - 9.2 Ls—i a i i L±_i i i—I—* *• » ' ' E i E i i 3—' » • ' * i t i i 1 E • • * ' • "• 50000 50500 51000 51500 52000 52500 53000 53500 7.6 i—•—'—'—i—'—'—•—c-1—'—<—\—•—>—'—r 8.4 9.2 _1 r . i i i i . 1 i . i \ . i i I i i i I i i . I i i t_tJ i . i L 53800 54000 54200 54400. 54600 54800 55000 55200 55400

Figure B.94: AD Persei visual (AAVSO) light curve - expanded view of figure B.93.

351 10.2 3 T— | ! 1 ! 1 ! 1 1 1 1 1 ! | ! 1 1 1 ' " i , 1 I j i > J j j.

10.3 • ^

10.4 • • » * - CD tj M 10.5 m • m m • • • J c a> ra •^ 10.6 • # » # CO

10.7 «*»«•« * » •• » « * • «* * • • • • ~

10.8 • » • • • -

-, , I . , . 1 , , . I , . , 1 . , . 1 l l i 1 L. . , i , . , i ,- 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.95: AD Persei photographic light curve.

352 1 1 1 ' I M' 10.5 - • • • ~ •— - ** 4t *« *«M •* • • • » • * » 10.7 • * * «• • 1 7, | I 16000 17000 18000 19000 I I 1 1 | i i * i i i , J i . t . i ' • i • • ' ' 1 10.5 — « • •* • « *m — • • * * • • • * •*» * * «• • # • 10.7 — • • * *• — i r . , . I , , , , , i i i , 1 j , 1 , . I 1 1 1 20000 20500 21000 21500 22800 22500 23000 235( s j i i i ifiiii \ i i i 1 i l ' ' ' I i i i 10.5 - -. * * • — 10.6 •w • • • * •• «• • * • 10.7 * » • • » , 1 , , , i I t i i , i , , , , 1 . , , 24000 24500 25000 25500 26000 26500 27000 10.0 — I I t # 41 I I •• • • 10.3 • • • • • ••**«* » • • • 10.6 *• • •

27500 280 00 28500 29000 29500 30000 10.0 _ 1 " ' . i | i 1 i > i > 1 i i > i j i i i 1 I - 10.2 10.4 • • 106 • " 1 , . , , 1 , • t 1 1 , * , , M , , , . r , ,* , I , , 31000 31500 32000 32500 33000 33500 34000

Figure B.96: AD Persei photographic light curve - expanded view of figure B.95.

353 Visual Magnitude -» O O CO (D 00 00 b OT b J* o w b I 1 I | I ! I ! | ! I 1 I J I , I l I l I I I J I I 1 I I I I I 1 J I L

a

•».i I *

Cd a CD co Cn C

o

*l:li;!s,!». . * ''tittiii*

-• • • I • » • » *I ••' • •»' *i 1• '• <»» i • •'' i' • •' *' •' • *'' I ' ' '.' I 8.5 9.5 -: 4>l 10.5 c_t i 2 .,,.!.. i i t [ i i i 1 i i i i I i • • . I . , i i L 34000 35000 38000 37000 38000 39000 40000 1 1 ( ! "J 1 v ! 1 1 5 1 1 1 1 ! 1 1 ! 1 1 i ] 1 J ! J » l ! r- 8.6 9.4 h » ****•*" 10.2 i i • » i i . i i . I i i . i i_i •••••••" i i , , i i_ 42000 42500 43000 43500 44000 44500 I • • • ' | " « " • | i • • • I • •—' i | ' " ' ' t ' > " ' I •' ' ', ' . I " ' 8.6 9.4 10.2 ^ ' '—i—t I ' • i i E i i i—t—I i i J i i i i i t £ « • ' t I i i_l_t i E «"* • 44500 45000 45500 46000 46500 47000 47500 48000 1—i—i—1—3—i—!—i—i—i—i—i—i-Ti—i—i—STT—'—i—'—i—i—'—T 8.5 9.5 10.5 h- T'Y , T • . , ,'•*' , , , • I , , • • l . , , • I • • , ', l • . . , l 48500 49000 49500 50000 50500 51000 51500

—i—i i i |—:—i 1—i—|—! r—i—i—|—i 1 [—i—|—i 1—r—T—| i l—i—!—|—c—!—r- 8.6 : 9.4 : rW#£*®£*fe£ • '##$. *$?r W#r- *:.*: - 10.2 L_J 1 I 1 I I l__l I I I I I I l__l l__l I I I I I I t I I ' i T «. • » [ I I i 52000 52500 53000 53500 54000 54500 55000

Figure B.98: BU Persei visual (AAVSO) light curve - expanded view of figure B.97.

355 1 1 1 < 1 1 ) 1 10.8 * 11.0 » • _

11.2 m m • * _ • *** * » * # - 11.4 •* • * * • • • _ ***••** * * • * * *« • -

11.6 •M » *» • • * * • • • • - • M*« *• •••«••« • «•*•*•• • • • -• » • • •

11.8 • •»• *» • • «««M • *«•« 4* - - • • • *m • *• * *« * • * • - 12.0 • • —I t 1 E 1 i 1 i 1 ( 1 i E S ' • * i 1 1 1 i. , . 1 ,1,1, . . 1 , . . 1 ~ 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.99: BU Persei photographic light curve.

356 J I 1 i 1 * % 1 11.2 - • •m • • - • • * • 11.5 «r* **• •# — • •« * * • * »• #• •• • *• 11.8 • 1 • , , i t I . * * 1 , , 1600i 0 , , * 1 17000 18000 19000 I ' ' 1 I ' J i i > • 1 ) , ! 1 I i i i i | i i 1 ' J 1.7 — •• • • • w • • • • • • • — **•* » * • • • *• • 1 2

Figure B.lOO: BU Persei photographic light curve - expanded view of figure B.99.

357 Visual Magnitude to 00 ca cn b 01 b -1-1—r-|—i i i i | i i

•i.j... . : I • • • i»

OR C |-( (t> a o

N • • i . t I • CD • t • : I co t: * i Cn • • 00 • • il c • J I in : i .. i* • • CO *' 11 O * - !!• j * •i ! i # OP f o • t (= i <; CD * • • : I h'l . • • : ;! • I l • • iijlll i • • - :-!H|II|MH TSi i .• I i I * * J ' I 1 8.2 * ' ' p I ' ! * •MM *•* a.b « • • m « • • *»* * *## H.H * • m , Ti t , . r 1 , , t l i , , . 1 . t , i 1 1 1 1 I I i | 34000 34500 35000 35500 36000 36500 37000 37500 J 1 1 1 J F 1 1 1 , 1 1 8.2 MR »* * .! • •• * * * •* 8.5 * 8.8 , I , i 1 fir, —i 1 i i i . i l__i— i , 1 i l i l I l l- 38000 38500 39000 39500 40000 40500 41000 7.5 =-i 1 1 1—i—i—5 1—i—i—i—s—3—i—i 1—i—i—r,—i—T r—E—|—I 1 1 1—1—r—j—i r- 8.0 8.5 •"'*" «**V *. . "A. ' n ***• ***• , J i i i i I i i i i I i t i—i I i i i i I i i i i i i i i i L±_i 41500 42000 42500 43000 43500 44000 44500

[ I 1 1 1 1 ! 1 1 ! 1 TTT 1 1 1 1 1 1 1 1 r—I 1 3 T—"~! ! 1 *~~I 1 1 1 I 7.6 8.1 8.6 I -I I I l_ 45000 45500 46000 46500 47000 47500 48000 48500 7.6 pif''*' •w*^W* * i r *f "*«""* — vm*r ••**.** <*%>»* v*«TV m •**" • v»w * 8.2 8.8 I !*$* &%*- -'fcfo'W-**' *-•*«• "v*£ --•*«• yx&fu.^^;w^ - I i i i i I! i i i i I i i i i i i i i i I i i i i E s i i i I i i i i I i L 48500 49000 49500 50000 50500 51000 51500 52000 ->—'—'—i—>—•—77—i—•—'—'—'—I—•—•—'—[—1—' k '—i. { '—rTn—'—i—'—'—'—r 7.8 8.4 9.0 1 I I I ' 1 • ' I I • ' ' I I 1 I—l I ( J_l [.„,,-.k S I 1—t 1 4 I I L. 52500 53000 53500 54000 54500 55000 555(

Figure B.102: FZ Persei visual (AAVSO) light curve - expanded view of figure B.lOl.

359 , 1 i | ! 1 1 9.6 | i i i r- i i i | ... 1 ... t ' l i . . i i 1 1 | I l -*

3.8 • -

10.0 ~ • * • —

* * • * * m * * 4 10.2 m a* • * a* • «ft c ..... * * • * -

*»«***'*»* *#•« • » * « #• • • m * •

10.4 * * m «*•• **«• » • • « • w » » m # - • • *• »»**••• * • • * * * •

10.6 * • • * m • • -

• • * * • * - 10.8 * i . , , i , , , i , , . i . , . i . , . i . , , i , , , I . p i I . , . I ,- 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.103: FZ Persei photographic light curve.

360 1 I « 1 ' ' ' 1 1 * 1 J J 10.2 « •• • • mm •• • • • • • ••« * "" 10.4 «. *•* w *• * • • • • — ** • *•* * • « « «» 10.6 * 1 * 1 1 16000 17000 18000 19000 I i i i j i i i i 1 ' ' i i | i i 1 J J 10.3 * * *• * *9 «. • »* •• •» • • * * • 10.5 - . * * * • • * ** 10.7 r * . i . i , , . . T 20000 2OS00 21000 21500 22000 22500 23000 2350 T1 I 1 1 1 ' E 1 ' .* 1 1 I I I _ 10.0 • * mm • 10.3 • • 10.6 •• ~ 10.9 • ' i . 1 , i . . • , , i : J 24000 24500 25000 25500 26000 26500 27000 9.8 - ' I 1 1 1 i ' I • ! • 10.1 mm * **• « •m *# * #• ** « » * • . * 10.4 . I 1 . i . * * * * * 27500 28000 28500 29000 29500 30000 f " ' i)iii i 1 i i J 10.0 • » m 105 • • * • 10.4 • 10.6 - I . . , ." I . . , . I . , , . 1 i t i i i J i i i 1 i i i • ~ 31000 31500 32000 32500 33000 33500 34000

Figure B.104: FZ Persei photographic light curve - expanded view of figure B.103.

361 "• i i 1— i i i i i i , i i • J j i . * i | i 9.0 —,—,—,—.

9.2 — • • -

9.4 — « • ••

9.6 # #

9.8

«*•»

10.0 » • —

i , , , . i , 53000 53500 54000 54500 HJD (2400000+)

Figure B.105: V411 Persei visual (AAVSO) light curve.

362 11.5 n—i—|—i—i—r- -s—I—!—i—i—i—i—f—r- I T• 1' !' 1! 1 1 1 1 I 1 ! i1 5« 1' 1' 1I T

12.0 - • • • * » • CD "O re 12.5 h c CO CO CD • •» * •> 13.0 -

13.5

I 1 I I I 1 I I E I L I ... i Ei i i i I a i a I i_—i i_—_IL L -I I I L 16000 18000 22000 24000 26000 28000 30000 32000 34000 HJD (2400000+)

Figure B.106: V411 Persei photographic light curve.

363 j j 1— 1 ' * j- i - • T - I ' " 1 1 L J t I 12.8 W* ! I ' ) ( mm m w * • •« * *•• * «ft *• •* 13.1 «* • * « • 13.4 •" • • *™ f i , , 1 _1_ J f , , I . i . 16000 17000 18000 19000 i | . i i I > i 12.0 L ' ' ' 1 ' ' ' ' • ' ' 1 ' ' 1 ' ' ' J 12.5 ~ .* .*• * . _ 130 - .*• - < • 13.5 . l . • • l r , , , l . , , , . . 1 20000 20500 21000 21500 22000 22500 23000 235G 11.5 i ,.,,,! I 1 j 1 ! J > J 1 ' ' '.' 12.0 - • • «»• • « 12.5 (MM m. — »* * *%A * • 13.0 •M • mm 13.5 j 1_ i 1 i .i.. , , I . ,,,l 24000 24500 25000 25500 26000 26500 27000 1 1 i L 1 1 1 T 3 1 1 j 1 1 1 ( I i I 1 1 1 1 ! 1 ( 1 ! 1 12.2 ,H 12.7 13.2 -1 t u J . 27500 28000 28500 29000 29500 30000 1 1 11./ • I i 125 • 12.7 • l , , , . I . , . . 1 , , , > 1 i i I.I I 31000 31500 32000 32500 33000 33500 34000

Figure B.107: V411 Persei photographic light curve - expanded view of figure B.106.

364 Visual Magnitude W O CO i i i 1 i i i—I—i 1 r

• Minium****—ww*

••wwww^sSgSIlJ!^

co OS •••• MNtHtW* Cn

*. *-- * *^ * *irr •Miirtim . . • «scr.r:

» «_lljl ill 11 *"

tl«M) ••»

1 I I I 1 I t I I I ' * ' ' • 8 9 10 11 . >* *.„ -*» *^ i^-X * ^ 12 X J s * ' • ' i i t i—I i i i t__I t£^ • • ' ' i i i I s i i i 28000 28500 29000 29500 30000 30500 31000 31500 8 10

12 J 1 I t 1 I 1 ' ' * • * • t I 1 1 !__! I I I I *^ 1 ~< i i I • ' ' I t I 32000 325Q0 33000 33500 34000 34500 35000 8 9 * 10 11 12 •I ! I I 1 i I I E £_1 I I E I I I I I t ! I I E_£ I I I E I I I I I I L_

i 1 i i i t I > • • ' ' • i • * ' t_s_i i i 1 i * ' < • ' > t < * ' ^* * ' L- _ 39000 39500 40000 40500 41000 41500 42000 42500 8 9 10 11 12 ;\ f X JJ* ^ 4fc %e V. *\ 42500 43000 43500 44000 44500 45000 45500 46000 - 8 j—i i i i I—i—r—i—r—|—I 1—i 1—|—i i i i |—i—i—i—i—|—i—i—i—i—|—i—r—i—r 9 10 ,,, % 11 12 ** •%..•*^» *** J? **i & \z /* X" •[ _I [__1 E 1—J 1 1 1 I (—_l I I l 1 [__! I * ' < ' F 1 1 • *•* * ' ' 1 1 1 £ {__! i- 46500 47000 47500 48000 48500 49000 49500 II ! I , . I . , I I I 1 | 1 I I I | I . . I | I I , I | I I 1 1 |

Figure B.109: VX Sagittarii visual (AAVSO) light curve - expanded view of figure B.108.

366 Visual Magnitude «* o O to tO CD b in b b w ii i I i i i i I i i i i i i i i i I i i i i I i i i

!»:••••

•I " * * • • i . C •1 • • I • • * • * W «»• • * •« • i * t, * * • * • . a . i • i * • *

OS • i • * • * ••• *' co .•*i:.' • • • • • .fi* • c •ill; • • .« *!•» * • • * . !J CO 'I O • • * • • * 5* .«• • i •. «» • • i J * * • • * • *. * 2 • Mi 8 * • • • 111:. !• *s • . j«. I •

.... : !••• * • • •. 1 1 1 | 1 * <> 1 1 • 1 1 | 1 1 1 1 | 1 ! I ' if ' ' ' ' i ' ' ." ' i ' ' 1 8.8 * • • • «• • 9.2 — • **>—•—i—'—'—'—'—i—'—•—>—'—r 9.5 9.9 10.3 10.7 —I I I I i 1 1 1 I 1 M* I I I I I I ti I I I I I 51000 52000 53000 54000 55000

Figure B.lll: KW Sagittarii visual (AAVSO) light curve - expanded view of figure B.llO.

368 Visual Magnitude

111 i i J 1 ' ' I • l •' I

c VM;,. a

to £ > a .§•»•! a 0 >-* Xi CO ** •'!»•;. ... c :.t;itlM*«'-- jo ••}W ljj|.|. MM,. > . • ii-i:; w.;.„

CO O •^ ••*•*•• **»***** ' . •* •Wt*,i,fH.^ CR o . . ..••• ••*• •** o • •«•.« .. ..,.., , . ..*t* «*••••• * ' 3 .••J«l.| 8 •ut'i. «v

»il5i » • 4. *P

• E • * • * * » f fc ' E • • * * I • ' • • 1 * * i f —I—'' —i r--i" -i—|—i—i 1 1— 1—' ' 1 1 ' —I— i—i—j —j-->— 71 » * •• • .. • »• v. • • * • * "• *. .*, 8.7 - i , » . .!.,,,! i , , , 1 , , , , i y ,- 39000 39500 40000 40500 41000 41500 42000 42500 —1—!—i—|—I—1—I—!—|—r—I— -j—i 1 1 1 J. I 1 1 1 1 II 1 r—| 1 1 T-3 J—i r—j- 6.8 7.7 \- ^ ",.t 8.6 9.5 ' % J s i i i I i i i i I I i i i I i i i i ! i i i r !GLi i s i I 43000 43500 44000 44500 45000 45500 46000 6.6 7.4 X 8.2 *' 'f^ &8* -WK $$* '^ "%l j^ r^jt. j£' ^: 9.0 _i i I i t »iii. i i I : i i i [ J i i ' I • i I__I I i i i tzHi i i_i i L 46500 47000 47500 48000 48500 49000 49500 7.1 l—i—' • ' | ' ' ' • i .' ' • ' | ' i..' ' I 7.9 8.7 9.5 ~. i -1.•.*. L 1__.J Ii *&lAi ' I 1 l_siJ I' < *• .' '. I I. t. i1— 1 I 1 I I I i ' ' * L 50000 50500 51000 51500 52000 52500 53000 53500

1 ! 1 1 1-1 7.6 i > >m ' i ' t I • .*.»• * * * V.' • 8.4 • • • » • * » **•. .. * • 9.2 * * * • • • "i , . . . i , , , i -a i I 1 " 53600 53800 54000 54200 54400 , , .5460 f 0 54800 55000 55200

Figure B.113: AH Scorpii visual (AAVSO) light curve - expanded view of figure B.112.

370 "j . I ! I 1 j I . I I I • ' • I I I I I . I 35000 40000 45000 50000 55000 HJD (24G0000+)

Figure B.114: CE Tauri visual (AAVSO) light curve.

371 4.6 .".L ' ' ' ' I .« • ' i ' • ' ' i • 4.9 * • *# * +•# m 5.2 * » jJL 1 i 1 I I I I I I 1 1 I I fc_! 1 1 1 I I I I 1 I I I i 1 l S_ 35000 35500 36000 36500 37000 37500 38000 38500 I ' .' " ' I ' ' ' i I *\ » ' " I ' ' l ' I ' ' ' " I ' ' ' ' j ... ' '. 4.6 *'***..* * * .**.*•. i .• .*• ?7",T . • »• Z^u.••**•» * *^JL •* • ••** • ** * * <»*» < 5.0 « • ww « • » •wii'i »*mm •• • • « M» 5.4 J l I i i I i i i t I i : l l I l i l l i l l l l t l E l i I ! l l . 39000 39500 40000 40500 41000 41500 42000 4.0 i ' ' ' ' i ' • w_i i • • • • r= 4.6 : 5.2 :% "#$ '%$ .£# *ig® .^ '%§¥ r$& * $g *?^fe .. i .... i .... i *. ... i . L_J i i i* i . . i . . • *r i .*...*. i 42500 43000 43500 44000 44500 45000 45500 46000 4.0 -i—i—i—i—i—i—s—i—i—r—i—i—i—i—|—i—i—i—rra—i—i—i—i—|—i—i—i—i |_4J—i—i—i—I—i—> 4.6 : ; 5.2 '-*%? W >%* *&V* '$tiii> f£% * ^tf »£& M? S& \ Jl I ' • * l 1 i E t * ' ' ' > ^ *• ' I 1 I 1 I i » I i | [ | | • i • • I . s 46000 46500 47000 47500 48000 43500 49000 49500 40 T ' ' ' '(iu '• %K' 'jatw' Lift 'V*^.l^e^' s*l ' ' ' ' ' ' •' ' ' *'"• : 5.2 - 5fcfr / A£? **^^ *^S*f *>«? •"$»* \ifi ".HB& .Ac?- \\'Jsl' r • • • i^ , , • T . . . . i.. , . . i 7 , . , i , , , . i ,» , , , »TT 50000 50500 51000 51500 52000 52500 53000 4.0 F1 7 1 ' '—^1 ' TTTT—«™ ' ' Q-1 ' \ '-*1" I ' '•T'-." -\ 4.6 ».«*» ***** *» ^ . »*. **VA** 5.2 i i_! i i i i i i i i a i i i i L 53500 54000 54500 55000

Figure B.115: CE Tauri visual (AAVSO) light curve - expanded view of figure B.114.

372 ® 3 8.0 - o> ?8.5 h fi$ • • «•« *m mm m • m» • ««»»*•» **w •«•• »*mf ** • #*• • • J*2 r •••••• »ii«w «••*#• * > 9.0 f~ * • »* -<••

9.5 -

_L 35000 40000 45000 50000 55000

HJD (24GG000+)

Figure B.116: W Triangulum visual (AAVSO) light curve.

373 1 1 1 1 j , , | 7.8 -K ' ' ' ' 1 " ' ' ' i ' ' '.i ' ' ' l ' » J 1 .' ' ' 1 ' • 8.1 • * • • 8.4 * * *• - • • *

, . , , i _•••« « 8.7 -I i 1 , , l r 1* , , i i 1 *i 31000 31500 32000 32500 33000 33500 34000 34500 i 1 1—i—I r—i 1 1 l l 1 1 1 1 1 i i 1 1—r—i 1—i 1—i 1—T i—|—r^-3—s 1—T—! s J ! 7.6 e.o : v 8.4 i/*.V^"1*f^ >.*^ ^-^ x--" *- *" •**?• -*w *$' 4- 8.8 35000 35500 36000 36500 37000 37500 38000 7.0 7.5 ' ' W 8.0 : 8.5 l£*V .#^K: ^^ '* ;$%£. .£s**,T '*$£ :*&? '**%' #*,*> % 9.0 I 1 I 1 1 L_l I I I I I I I ! • ""^"* * I 1 I i I I I ! I I I I I I 1—1 I I I C 38500 39000 39500 40000 40500 41000 41500 4200C

n—i—i—i 1 1—i—i—i—i—r—T—s—r—r-m—i—i E—r—i—i—i 1 1 i i—i—!—r—i—i—i—:—:—r—t—a 7.6 8.0 8.4 ~ $«A* **S*^«-

7.5 P—' ' ' l ' ' 4 ' I ' ' '.' I '—'—' J.J, ' ' !*>, I i J. ' ' i v—'—' I ' '—a 8.0 8.5 9.0 -•••• • »••••»•""•• • i*** ., i .»>.*• i .... i , , , . i , . ,- 46000 46500 47000 47500 48000 48500 49000 - 7.6 '_ > ' I '* ' .' ' ,1 f>—' ' 't t ' • ' • I .^ ' ' ' I j^ ' ' • I ' 't ' • I J ' • J J 8.0 > 8.4 - &&, :>x££ttf • •AJS_ &&N&L *iir •# 3b« •ldkS .•HL** *wlfe*> *w&feH: "ii - 8.8 49500 50000 50500 51000 51500 52000 5250Q 53QC

-i . 1 1 1 1—ri 1 1 J-7-s 1 rj—1 1 . 1 T 1 1-^-! 1 r 7.6 B.0 B.4 8.8 Hft |^,-?% wm- %% #£ ,^,.yl _i 53003 0 1 i 1 15350 1 0 1 1 z-i 15400 1 0 1 1 1 i5450 a 0 1 1 i 1 55001 0 1 1 i-i 1

Figure B.117: W Triangulum visual (AAVSO) light curve - expanded view of figure B.116.

374 1 1 - i . | | I T fJO ' I ' ' 1 * * • * —' ' , , , , l I ' • • - • • - * • mt m - 7.5 • * • • • • * • • # a> ** * « * • • - • * m * • - * # # » • • * •• • • » 80 • mm m » • » • * • * S * • • • • • • • * *» • — • • • « * • - • • • • * • m * • •• * * * •*# -32 8.5 « • » • • • • * • > * • * • m » * •

* • * I * • * • 9.0 • •

, i , , , 1 , i * , , I i • . . 1 J 1 L. - . ! 40000 42000 44000 46000 48000 50000 52000 54000

HJD (2400000+)

Figure B.118: CM Velorum visual (AAVSO) light curve.

375 1 1 1 ? r—i 1—i—i—g—r—i—i 1 | i i i i | i i i i { •I ' ' ' j 1 1 1 1 1 1 — .6 » • # »•# * • - .0 * • • * * •* 1 * i*C •,«, .4 r r r . • 1 > • i • 1 i i • i 1 i i i , 1 I f r I i 39000 40000 41000 42000 43000 44000 45000 46000 1X1 ... j. —!—r I 1 ! 1 1—T—> - 1 ! ' ' ' . ' 1 j 1 1 I i | i | i— 75 • «* m"A • •*** * * _ 8.0 • «# •M> **> ** • « — • • » *• 8.5 •» * •* <»n **> f* , fr | 1 1 , , , f , 1 » t , taJr i s ) * » ,_ 46500 47000 47500 48000 48500 49000 49500 5000r 0

1 7.6 L. ' 1 • • • 1 ' ' • i 1 > • » 1 • • m <"" 7.9 • » \ 8.2 >' • - r * 8.5 * 4 8.8 «-> 1 • , *r* i , , i i 1 i , 1 , — 51000 52000 53000 54000

Figure B.119: CM Velorum visual (AAVSO) light curve - expanded view of figure B.118.

376 i ' ' | i i i i 1 ' ' " ' 1 ' ' • '

9.2 • - • • —

t o * * • • ignitud e s 96 m, * * •• •» • t o

Visua l b o • • •

10.0 . :

r . , . . i i . . . , i , . , • . 51000 52000 53000 54000

HJD (2400000+)

Figure B.120: FG Vulpeculae visual (AAVSO) light curve.

377 Appendix C

Periodograms

The following figures show periodograms for the AAVSO data for the 48 stars for which such data exist. Periodograms such as these were used to determine an rough period, then Fourier analysis was again performed over a smaller timescale near the period of interest in order to obtain a more precise value. The periodograms shown were made with the CLEANest routine, but in each case the ANOVA routine was also used as a check and gave nearly identical results.

378 -1 1 ! J 1 1 I ! !-

SSAnd

-i i i 500 1000 1500 2000 2500 3000 Time (Days) T

VAri

0 -

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.l: Top: SS Andromedae, Bottom: V Arietis

379 -i j r- -3 s 1 i I 1 s 1 r- -i ; r-

UXAur

500 1000 1500 2000 2500 3000 Time (Days) -i 1 1 r -i 1 r- i I r 1 r- T=1

V394Aur

j i i i > • i_ I _L 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.2: Top: UX Aurigae, Bottom: V394 Aurigae

380 FT T—'—r_ i I J 200 RSCnc

150

j L 500 1000 1500 2000 2500 3000 Time (Days) -r i'" H r i y i j i i i j i i i i i i i i i i I L i J t 30 P UZCMa

25

20

10

0 -

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.3: Top: RS Cancri, Bottom: UZ Canis Majoris

381 500 10QQ 1500 2000 2500 3000 Time (Days) rr i i r- -I 1 V

100 CKCar

80

I 40 -

20 -

0 -

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.4: Top: BZ Carinae, Bottom: CK Carinae

382 500 1000 1500 2000 2500 3000 Time (Days)

5 -

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.5: Top: CL Carinae, Bottom: EV Carinae

383 500 1000 1500 2000 2500 3000 Time (Days) j—'—'—'—•—r l l i r- i < i 1 r r- • PZCas

_i i I i_ 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.6: Top: IX Carinae, Bottom: PZ Casseopeiae

384 500 1000 1500 2000 2500 3000 Time (Days)

SWCep

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.7: Top: W Cephei, Bottom: SW Cephei

385 180 -1 ' ' ' . | i i i , j i , . i | i i ( « 1 i i i i 1 i i i i 1 _

WCep 160 - " 140 -

120 - -

™ "" 8 I Powe r

60 -

40 \

20 \. - " 1 1 0 -i . , , , i . , , , i . , . . i . , , . 1 , , , , 1 , , , , i - 500 1000 1500 2000 2500 3000 Time (Days) .1 1200 - - nCep :

1000 '. . 800 m 600 -

" 400

/\ /'• - 200 k , i^y ' 0 _ LJ -IA^H LI 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.8: Top: W Cephei, Bottom: [x Cephei

386 500 1000 1500 2000 2500 3000 Time (Days) -i 1 r-

RWCyg

J i i L 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.9: Top: T Ceti, Bottom: RW Cygni

387 I I 5 S I 1 1 1 T

AZCyg

500 1000 1500 2000 2500 3000 Time (Days)

500 1000 1500 2500 3000 Time (Days)

Figure C.IO: Top: AZ Cygni, Bottom: BC Cygni

388 500 1000 1500 2000 2500 3000 Time (Days)

* • TV Gem / \ ] 500 7 \ ' 400 i \

300 i \

200 - / \

100 : I / \ / \ "

0 HK^WW-^V - V \: i , , , 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.ll: Top: V Eridanus, Bottom: TV Geminorum

389 i—'—'—'—•—r ->—r "T 1 I IS Gem

20 -

10 -

_L 500 1000 1500 2000 2500 3000 Time (Days) i * i -i—l—i-

V959Her

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.12: Top: IS Geminorum, Bottom: V959 Herculis

390 150 -

0 -

500 1000 1500 2000 2500 3000 Time (Days)

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.13: Top: a Herculis, Bottom: RV Hydrae

391 70 =5—i—i—!—i—|—i—i—i—i—]—i—i—i—>—]—i—i—i—i—i—i—i—i—i—i—i—i—i—! r=

Wind -

60 -

50 - -

40 - -

°- 30 - -

20 SI -

- 10 llI I ft .A A A /\ "

0 ' i i i i • i ' • • • i • ' • * 1 i ' • • 1—i i——J—i—1—t—i—i—i—1—: 500 1000 1500 2000 2500 3000 Time (Days)

ULac 40

30

CD | 0-20

10

1500 2000 3000 Time (Days)

Figure C.14: Top: W Indus, Bottom: U Lacertae

392 1 i i i i 1 i i i i | i i i i i i i y | . 1 l 1

1000 YLyn """

800 -

o - Powe r

400 ~M

200 -

- 0 1 , , . i , , . , 1 , , , , 1 , ,..!,. , , 1 500 1000 1500 2000 2500 3000 Time (Days)

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.15: Top: Y Lyncis, Bottom:^2 Lyrae

393 -1 1 3 1 I 1 1 5 7 i 1 i I j i 1 1 i 1 r-

400

300

I a. 200

100 -

500 1000 1500 2000 2500 3000 Time (Days)

1200 -T 1 1 1 1 1 1 1 1 1 1 1 f i i 1 1 i i 1 r -! 1 r-

• SPer

1000

800

I% 600

400 -

200 -

LLiuJLJ

Figure C.16: Top: a Ononis, Bottom: S Persei

394 500 1000 1500 2000 2500 3000 Time (Days)

400 WPer

300

m a. 200

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.17: Top: T Persei, Bottom: W Persei

395 RSPer

50 -

20 -

10 -

0 -

5G0 1000 1500 2000 2500 3000 Time (Days)

10 -

5 -

j ' > • i a I ' ' 1 i_ 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.18: Top: RS Persei, Bottom: SU Persei

396 500 1000 1500 2000 2500 3000 Time (Days)

1500 Time (Days)

Figure C.19: Top: XX Persei, Bottom: AD Persei

397 -i 1 1— r i—'—"-

BUPer

0 -

1000 1500 2000 3000 Time (Days)

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.20: Top: BU Persei, Bottom: FZ Persei

398 -i a—-T- -l : 1- -i 1 1 i t r- 10 V411 Per

g> a.

2 -

0 -

500 1000 1500 2000 2500 3000 Time (Days) T T 1 1 I 1 1 r-

VXSgr 1000

800

Iffl 600

400

200 -

0 .LJUJULA/JW -1 I I 1 L J_d 500 1000 1500 2000 2500 3000 Time (Days)

Figure C.21: Top: V411 Persei, Bottom: VX Sagittarii

399 500 1000 1500 2000 2500 3000 Time (Days)

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.22: Top: KW Sagittarii, Bottom: AH Scorpii

400 I ^ i i r- "• r ~T2

CETau A

500 1000 1500 2000 2500 3000 Time (Days)

Figure C.23: Top: CE Tauri, Bottom: W Triangulum

401 500 1000 1500 2000 2500 3000 Time (Days)

1500 Time (Days)

Figure C.24: Top: CM Velorum, Bottom: FG Vulpeculae

402 Appendix D

Observing Logs

This appendix provides details for the new CCD spectra obtained at the DAO and the scanned photographic spectra from the DAO archives.

D.l DAO CCD Spectra

The DAO CCD spectra were all obtained using the 1.8-m Plaskett telescope. The following tables contain information for each observing season (2005-2010). In each season, FeAr arc lamp spectra were used as comparison spectra, and an arc spectrum was taken before and after each object exposure to compensate for any spectrograph flexure effects. Each night 10-20 bias and flat frames were also ob­ tained. Each spectrum was obtained at airmass < 2. The subsection for each season lists the CCD and grating used, the wavelength range, and the dispersion for the season. Detailed technical specifications for the CCD's can be found at https : //'www.astrosci.ca/DAO/detectors.html and for the gratings at https : //www.astrosci.ca/DAO/dao72.html. All spectra are single-order. The table for each season gives the following information: Star (multiple observations for a given star are listed sequentially), date (HJD can be found in the table of information for each star in chapter 4), exposure time in seconds and signal-to-noise (calculated using IRAF's SPLOT package).

D.l.l 2005

Detector: SITe-2 Grating: 21(3/2) 1 Wavelength Range: 3550A-6825A Dispersion: 2.0 A/pixel 403 Table D.l: 2005 Observing Log Star Date Exp (s) S/N PZCas Oct 7/8 120 7.24 WCep Oct 7/8 60 8.53 VVCep Oct 10/11 5 7.87 MY Cep Oct 7/8 1800 3.90 li Cep Oct 10/11 2 7.34 AZCyg Oct 7/8 300 7.98 AZCyg Oct 10/11 600 8.26 BCCyg Oct 7/8 600 8.09 BCCyg Oct 10/11 600 4.81 BCCyg Oct 10/11 900 4.78 U Lac Oct 3/4 1200 6.94 SPer Oct 3/4 500 7.70 T Per Oct 3/4 250 9.51 WPer Oct 3/4 200 6.39 RS Per Oct 3/4 200 5.54 SUPer Oct 3/4 100 5.43 XX Per Oct 9/10 600 5.68 AD Per Oct 3/4 200 8.86 FZ Per Oct 3/4 60 7.70 V411 Per Oct 3/4 250 6.33 WTri Oct 3/4 60 3.40

404 D.1.2 2006

Detector: SITe-2 Grating: 2131 B Wavelength Range: 3550A-5240A Dispersion: 1.0 A/pixel

Table D.2: 2006 Observing Log Star Date Exp (s) S/N SS And Oct 17/18 200 4.57 a Her Oct 17/18 60 5.45 YLyn Oct 19/20 120 2.48 BUPer Oct 17/18 400 3.41

405 D.1.3 2007

Detector: SITe-5 Grating: 2131 B Wavelength Range: 3750-3240 Dispersion: 1.5 A/pixel

Table D.3: 2007 Observing Log Star Date Exp (s) S/N UX Aur Oct 7/8 1200 3.80 PZ Cas Oct 4/5 3600 5.65 PZ Cas Oct 7/8 3600 5.67 WCep Oct 2/3 1800 11.47 VVCep Sep 28/29 120 10.83 SWCep Sep 28/29 1200 4.86 [x Cep Sep 28/29 60 6.56 RWCyg Oct 7/8 1200 6.02 AZCyg Oct 2/3 2400 6.16 BCCyg Sep 28/29 1800 5.72 BCCyg Oct 3/4 1800 5.46 BCCyg Oct 4/5 3600 5.55 U Lac Sep 28/29 360 6.12 CETau Oct 7/8 600 6.23 SPer Oct 4/5 2400 5.31 T Per Oct 4/5 3600 6.31 SUPer Oct 4/5 3000 5.52 XX Per Sep 28/29 1200 6.87 AD Per Oct 7/8 1800 6.16 FZ Per Oct 7/8 1000 6.30 V411 Per Oct 7/8 1200 5.62

406 D.1.4 2008

Detector: SITe-5 Grating: 2131 B Wavelength Range: 3750-5240 Dispersion: 1.5 A/pixel

Table D.4: 2008 Observing Log Star Date Exp (s) S/N WCep Oct 13/14 300 11.20 VVCep Oct 8/9 120 9.22 SWCep Oct 8/9 1800 5.33 // Cep Oct 8/9 60 5.57 RWCyg Oct 8/9 1800 3.57 AZCyg Oct 8/9 1800 3.85 BCCyg Oct 8/9 1800 4.82 U Lac Oct 14/15 1200 4.72 SPer Oct 8/9 3600 4.20 T Per Oct 8/9 1800 6.28 WPer Oct 8/9 3600 4.21 SUPer Oct 13/14 1800 4.62 RSPer Oct 13/14 1300 4.72 AD Per Oct 14/15 600 3.85 BU Per Oct 14/15 1200 5.23 FZ Per Oct 14/15 600 6.35 V411 Per Oct 14/15 1800 5.01

407 D.1.5 2009

Detector: SITe-5 Grating: 2131 B Wavelength Range: 3750-5240 Dispersion: 1.5 A/pixel

Table D.5: 2009 Observing Log Star Date Exp (s) S/N RWCyg Sep 10/11 1800 5.18 AZCyg Sep 15/16 1800 4.70 BCCyg Sep 10/11 3600 4.67 WCep Sep 10/11 1800 11.61 SWCep Sep 10/11 3600 5.07 \i Cep Sep 10/11 60 6.10 a Her Sep 10/11 10 3.67 a Her Sep 10/11 10 3.67 U Lac Sep 16/17 3600 5.56 SPer Sep 11/12 5400 4.26 T Per Sep 11/12 4200 6.05 WPer Sep 14/15 2900 4.93 RS Per Sep 15/16 1800 4.22 SUPer Sep 15/16 1800 5.81 XX Per Sep 16/17 900 6.15 AD Per Sep 16/17 1200 5.37 FZ Per Sep 16/17 1200 5.86 FG Vul Sep 16/17 1800 3.48

408 D.1.6 2010

Detector: SITe-5 Grating: 2131 B Wavelength Range: 3750-5240 Dispersion: 1.5 A/pixel

Table D.6: 2010 Observing Lo;y Star Date Exp (s) S/N SS And Oct 18/19 1200 2.61 UX Aur Oct 13/14 1200 3.19 PZ Cas Oct 18/19 900 3.52 WCep Oct 18/19 300 7.44 SWCep Oct 18/19 1500 4.54 WCep Oct 18/19 90 8.29 H Cep Oct 18/19 10 4.99 RWCyg Oct 12/13 600 3.70 AZCyg Oct 18/19 600 4.21 BCCyg Oct 16/17 1200 3.81 TV Gem Oct 19/20 240 6.26 U Lac Oct 18/19 800 5.04 YLyn Oct 13/14 400 2.85 SPer Oct 13/14 600 3.83 T Per Oct 12/13 600 5.06 WPer Oct 13/14 800 4.79 RS Per Oct 13/14 800 3.50 SUPer Oct 12/13 600 4.15 AD Per Oct 12/13 600 3.91 BUPer Oct 12/13 800 4.65 FZ Per Oct 12/13 600 5.54 XX Per Oct 12/13 600 5.33 V411 Per Oct 13/14 1600 4.41 CETau Oct 13/14 60 5.14 WTri Oct 13/14 600 3.71 FG Vul Oct 18/19 1200 3.05

409 D.2 Scanned DAO Photographic Spectra

The scanned photographic spectra were taken from IlaO plates observed with the 1.2-m telescope in the 1960s and 1970s. Wavelength calibration was done using FeAr arc lamp spectra. The following table lists the spectra in chronological order and gives the star name, date (HJD can be found in individual star sections in chapter 4), exposure time in seconds, wavelength range, dispersion of the scanned spectrum, airmass, and signal-to-noise calculated using IRAF's SPLOT package.

Table D.7: Scanned DAO Photographic Spectra Star Date Exp (s) A Range (A) Dispersion Airmass S/N (A/pixel) a Her Jun 16, 1966 300 3600-4925 0.01 1.39 10.19 a Her Jun 16, 1966 300 3600-4925 0.01 1.32 4.76 a Ori Apr 1, 1971 300 3700-4900 0.01 1.52 5.70 a Ori Apr 1, 1971 300 3700-4900 0.01 1.56 7.36 a Her Apr 5, 1971 300 3700-4874 0.01 1.28 6.61 a Her Apr 12, 1971 300 3700-4874 0.01 1.21 5.19 a Ori Jun 29, 1971 300 3700-4900 0.01 1.03 7.01 a Ori Oct 8, 1971 300 3700-4868 0.01 1.35 5.99 a Ori Feb 14, 1975 300 3700-4238 0.05 1.69 7.41 a Her Apr 10, 1975 300 3700-4868 0.01 1.31 4.75 a Ori Feb 10, 1976 300 3700-4876 0.01 1.39 5.66 RSCnc May 1, 1978 300 3700-5200 0.05 1.20 6.57 RSCnc May 1, 1978 300 3700-4876 0.01 1.20 4.93

410