Fern Gazette V19 P2 V8 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Equisetum Giganteum</I>
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2009 Ecophysiology and Biomechanics of Equisetum Giganteum in South America Chad Eric Husby Florida International University, [email protected] DOI: 10.25148/etd.FI10022522 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Husby, Chad Eric, "Ecophysiology and Biomechanics of Equisetum Giganteum in South America" (2009). FIU Electronic Theses and Dissertations. 200. https://digitalcommons.fiu.edu/etd/200 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida ECOPHYSIOLOGY AND BIOMECHANICS OF EQUISETUM GIGANTEUM IN SOUTH AMERICA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Chad Eric Husby 2009 To: Dean Kenneth Furton choose the name of dean of your college/school College of Arts and Sciences choose the name of your college/school This dissertation, written by Chad Eric Husby, and entitled Ecophysiology and Biomechanics of Equisetum Giganteum in South America, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Bradley C. Bennett _______________________________________ Jack B. Fisher _______________________________________ David W. Lee _______________________________________ Leonel Da Silveira Lobo O'Reilly Sternberg _______________________________________ Steven F. Oberbauer, Major Professor Date of Defense: March 24, 2009 The dissertation of Chad Eric Husby is approved. -
Equisetaceae – Horsetail Family
EQUISETACEAE – HORSETAIL FAMILY Plant: Stem: jointed, with nodes Root: Leaves: small, whorled, reduced and fused into sheaths with free tips (usually termed teeth) Flowers: no true flowers; spores (all alike) from sporphylls on sporangia located on cones (strobilus), spores usually green except in hybrids; male and female gametophytes green, male smaller than female Fruit: spores Other: worldwide; Division Equisetophyta, Horsetail Group Genera: 1 genus – Equisetum (horsetails or scouring rush), 15+ species WARNING – family descriptions are only a layman’s guide and should not be used as definitive EQUISETACEAE – HORSETAIL FAMILY Field Horsetail; Equisetum arvense L. [Common] Scouring Rush Horsetail; Equisetum hyemale L. var. affine (Engelm.) A.A. Eaton Field Horsetail USDA Equisetum arvense L. Equisetaceae (Horsetail Family) Oak Openings Metropark, Lucas County, Ohio Notes: Dimorphic (fertile and vegetative stems); fertile stems non-green, usually brownish, lacking stomata (pores), non-branching, shorter than veg. stems, sheath teeth dark, usually 14 or less, dies back after spores released; vegetative stems hollow and green, branched in whorls, branches solid with 3-4 ridges; spring [V Max Brown, 2008] [Common] Scouring Rush USDA Horsetail Equisetum hyemale L. var. affine (Engelm.) A.A. Eaton Equisetaceae (Horsetail Family) Alley Springs, Shannon County, Missouri Notes: medium to tall plant, up to 220 cm, unbranched stem (or with a few scattered branches), usually persists more than one year (perennial), with 14 to 50 ridges, stomatal lines single, often rough to the touch; sheaths dark at most nodes (often 2 dark bands separated by a white band), 14 or more teeth; apex of cone fairly sharp or pointed; spores green and spherical; often found on banks of streams, ponds, and margins of lakes as well as along ditches, roadsides, etc.; spring to summer [V Max Brown, 2008]. -
Ferns of the National Forests in Alaska
Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p. -
Sobre Los Equisetum × Trachyodon Y Equisetum Variegatum De La Val D´Aiguamòg (Valle De Arán)
Flora Montiberica 62: 37-42 (I-2016). ISSN: 1138-5952, edic. digital: 1988-799X SOBRE LOS EQUISETUM × TRACHYODON Y EQUISETUM VARIEGATUM DE LA VAL D´AIGUAMÒG (VALLE DE ARÁN) Juan A. ALEJANDRE SÁENZ1, María Josefa ESCALANTE RUIZ1 2 & José Vicente FERRÁNDEZ PALACIO 1C/ Txalaparta, 3, 1º izda. 01006-VITORIA 2C/ Segura, 73. Monzón. 22400-HUESCA RESUMEN: Se aportan testimonios de herbario que contribuyen a con- firmar la presencia actual de Equisetum variegatum Schleich. ex F. Weber & D. Mohr y de una población clonal de Equisetum × trachyodon A. Braun en la zo- na media-alta de la Val d´Aiguamòg (Valle de Arán, Pirineo catalán). Palabras clave: Flora, Equisetum, Pirineo catalán, España. ABSTRACT: Some voucher specimens which contribute to confirm the current presence of Equisetum variegatum Schleich. ex F. Weber & D. Mohr and a clonal population of Equisetum × trachyodon A. Braun in the middle- upper zone of Val d´Aiguamòg (Valle de Arán, Lérida, N Spain) are provided. Keywords: Flora, Equisetum, Catalan Pyrenees, Spain. INTRODUCCIÓN ros en los que observar el contenido esporangial –elemento probatorio de pri- Según lo que se afirma en AYME- mera magnitud en el género Equisetum–. RICH & SÁEZ (2013: 181), los datos com- En una venturosa excursión a esa zona probados con los que se cuenta hasta el que nosotros hicimos el 11 de julio de presente sobre la presencia actual de 2011, con la intención de comparar nues- Equisetum variegatum A. Braun y de tras recolecciones de Equisetum, princi- E. × trachyodon Schleich., en la Val palmente del E. × trachyodon, proce- d´Aiguamòg no llegan a despejar algu- dentes del macizo del Castro Valnera nas dudas sobre la existencia del prime- (Cordillera Cantábrica entre Burgos y ro de ellos en esa zona ni totalmente Cantabria), tuvimos la fortuna de locali- sobre la identidad de los testimonios que zar una población dispersa de E. -
Scouring-Rush Horsetail Scientific Name: Equisetum Hyemale Order
Common Name: Scouring-rush Horsetail Scientific Name: Equisetum hyemale Order: Equisetales Family: Equisetaceae Wetland Plant Status: Facultative Ecology & Description Scouring-rush horsetail is an evergreen, perennial plant that completes a growing season in two years. At maturity, scouring-rush horsetail usually averages 3 feet in height but can be range anywhere from 2 to 5 feet. It can survive in a variety of environments. One single plant can spread 6 feet in diameter. It has cylindrical stems that averages a third of an inch in diameter. Noticeably spotted are the jointed unions that are located down the plant. The stems are hollow and don’t branch off into additional stems. Also, scouring- rush horsetail has rough ridges that run longitudinal along the stem. Although not covered in leaves, tiny leaves are joined together around the stem which then forms a black or green band, or sheath at each individual joint on the stem. This plant has an enormous root system that can reach 6 feet deep and propagates in two ways: rhizomes and spores. Incredibly, due to the fact that this plant is not full of leaves, it is forced to photosynthesize through the stem rather than leaves. Habitat Scouring-rush horsetail is highly tolerant of tough conditions. It can survive and thrive in full sun or part shade and can successfully grow in a variety of soil types. It can also grow in moderate to wet soils, and can survive in up to 4 inches of water. Distribution Scouring-rush horsetail can be found throughout the United States, Eurasia, and Canada. -
Native Plant List, Pdf Format
Appendix A: City of Bellingham Native Plant List December 2020 The City of Bellingham Native Plant List (Figure 1) includes plant species that are native to Bellingham watersheds (Figure 2). The native plant list applies to all habitat types, including riparian, upland, and wetland areas. The list was developed using specimen records from the Consortium of Pacific Northwest Herbaria and Bellingham plant checklists curated by Don Knoke, a volunteer at the University of Washington Herbarium. To improve plant establishment and protect the genetic resources of our local plant populations, the City recommends using native plants that were grown from seeds or cuttings collected from the Puget Trough Ecoregion (Figure 3). Obtaining native plants grown from material collected from the Puget Trough Ecoregion will help ensure the plants are adapted to the unique environmental conditions of Bellingham watersheds and are genetically similar to our local plant populations. A more thorough discussion of the rational and selection process is provided in the City of Bellingham Public Works Department Native Plant Materials Selection Guidelines, December 2020. Figure 1. City of Bellingham Native Plant List Ferns Common Name Scientific Name Family Bracken fern Pteridium aquilinum var. pubescens Dennstaedtiaceae Bristle-like quillwort Isoetes tenella Isoetaceae Common horsetail Equisetum arvense Equisetaceae Deer fern Struthiopteris spicant (Blechnum spicant) Blechnaceae Dream fern Aspidotis densa Pteridaceae Giant horsetail Equisetum telmateia ssp. braunii -
Molecular Phylogeny of Horsetails (Equisetum) Including Chloroplast Atpb Sequences
J Plant Res DOI 10.1007/s10265-007-0088-x SHORT COMMUNICATION Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences Jean-Michel Guillon Received: 9 November 2006 / Accepted: 21 March 2007 Ó The Botanical Society of Japan and Springer 2007 Abstract Equisetum is a genus of 15 extant species that dependent on vegetative reproduction for persistence and are the sole surviving representatives of the class Sphen- growth. The 15 species of Equisetum are grouped in two opsida. The generally accepted taxonomy of Equisetum subgenera based on morphological characters such as the recognizes two subgenera: Equisetum and Hippochaete. position of stomata: superficial in subgenus Equisetum (E. Two recent phylogenetical studies have independently arvense, E. bogotense, E. diffusum, E. fluviatile, E. pa- questioned the monophyly of subgenus Equisetum. Here, I lustre, E. pratense, E. sylvaticum, and E. telmateia), use original (atpB) and published (rbcL, trnL-trnF, rps4) sunken below the epidermal surface in subgenus Hippo- sequence data to investigate the phylogeny of the genus. chaete (E. giganteum, E. hyemale, E. laevigatum, Analyses of atpB sequences give an unusual topology, with E. myriochaetum, E. ramosissimum, E. scirpoides, and E. bogotense branching within Hippochaete. A Bayesian E. variegatum). A barrier seems to prevent hybridization analysis based on all available sequences yields a tree with between plants of the subgenera Equisetum and Hippo- increased resolution, favoring the sister relationships of chaete (Duckett 1979). E. bogotense with subgenus Hippochaete. Because characters found in the fossil record, such as large stems and persistent sheath teeth, are present in the Keywords Equisetum Á Evolution Á Horsetail Á Phylogeny sole E. -
M., 2019 Floristic Study of a Protected Wetland from Borsaros-Sancraieni, Harghita County, Romania
Floristic study of a protected wetland from Borsaros-Sancraieni, Harghita County, Romania 1Emilian Pricop, 2Paul N. Filip, 3Bogdan-Mihai Negrea 1 Natural Sciences Museum of Piatra Neamţ - Neamţ County Museum Complex, Piatra Neamţ, Neamţ, Romania; 2 Faculty of Biology, “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania; 3 ”Danube Delta” National Institute for Research and Development, Department of Ecological Restoration and Species Recovery, Tulcea, Romania. Corresponding author: E. Pricop, [email protected] Abstract. In this paper we intend to present a brief floristic survey and the old literature data over an interesting area in the Harghita County, Romania, Borsaros-Sancraieni swamp reserve, area protected since the beginning of 1939. Important personal scientific observations are highlighted. This paper was written specially to reveal the diversity of vascular flora from this area and the surroundings, and the risks which treat this bog. We confirm the presence of main characteristic species of this swamp type and complete the vascular flora species list. This area was mentioned as an important refuge of some rare glacial relict plant species of main conservation importance as: Betula humilis Schrank, Drosera anglica Hudson, Ligularia sibirica L. and Saxifraga hirculus L. Also, we would like to signal a significant change of the initial habitat, for which the area was designated a protected area, due in particular to the anthropic activity but also the lack of involvement in the conservation of nature at local and regional level. Key Words: vascular flora, swamp reserve, Betula humilis Schrank, Drosera anglica Hudson, Ligularia sibirica L., Saxifraga hirculus L., species list, habitat loss, adventive species. -
Subclase Equisetidae ¿Tienes Alguna Duda, Sugerencia O Corrección Acerca De Este Taxón? Envíanosla Y Con Gusto La Atenderemos
subclase Equisetidae ¿Tienes alguna duda, sugerencia o corrección acerca de este taxón? Envíanosla y con gusto la atenderemos. Ver todas las fotos etiquetadas con Equisetidae en Banco de Imagénes » Descripción de WIKIPEDIAES Ver en Wikipedia (español) → Ver Pteridophyta para una introducción a las plantas Equisetos vasculares sin semilla Rango temporal: Devónico-Holoceno PreЄ Є O S D C P T J K Pg N Los equisetos , llamados Equisetidae en la moderna clasificación de Christenhusz et al. 2011,[1] [2] [3] o también Equisetopsida o Equisetophyta, y en paleobotánica es más común Sphenopsida, son plantas vasculares afines a los helechos que aparecieron en el Devónico, pero que actualmente sobrevive únicamente el género Equisetum, si bien hay representantes de órdenes extintos que se verán en este artículo. Este grupo es monofilético, aun con sus representantes extintos, debido a su morfología distintiva. Son plantas pequeñas, aunque en el pasado una variedad de calamitácea alcanzó los 15 metros durante el pérmico.[4] Índice 1 Filogenia 1.1 Ecología y evolución 2 Taxonomía 2.1 Sinonimia Variedades de Equisetum 2.2 Sistema de Christenhusz et al. 2011 Taxonomía 2.3 Clasificación sensu Smith et al. 2006 2.4 Otras clasificaciones Reino: Plantae 3 Caracteres Viridiplantae 4 Véase también Streptophyta 5 Referencias Streptophytina 6 Bibliografía Embryophyta (sin rango) 7 Enlaces externos Tracheophyta Euphyllophyta Monilophyta Filogenia[editar] Equisetopsida o Sphenopsida Introducción teórica en Filogenia Clase: C.Agardh 1825 / Engler 1924 Equisetidae Los análisis moleculares y genéticos de filogenia solo Subclase: se pueden hacer sobre representantes vivientes, Warm. 1883 como circunscripto según Smith et al. (2006) (ver la Órdenes ficha), al menos Equisetales es monofilético (Pryer et Equisetales (DC. -
SCOURING RUSH Franklin County Noxious Noxious Weed EQUISETUM SSP
Franklin County SCOURING RUSH Franklin County Noxious Noxious Weed EQUISETUM SSP. Weed Control Board Control Board The FCWB educates property owners on identification, im- Visit our website! Options for Control pacts and control methods for state-listed noxious weeds and www.fcweedboard.com helps out with the identification and control options of the oc- casional nuisance weed. It is also our job to locate noxious weed infestations that are not being effectively controlled. To achieve this, the program con- ducts annual surveys and fol- low-up checks on existing nox- ious weed locations. Program staff provides the landowner with information on how to identify and control noxious weeds on their prop- erty. If requested, we will meet with the owner or prop- erty manager to review the weed locations and discuss site-specific noxious weed control plans. For more information, contact the FCWB at 509-545-3847 or [email protected]. Physical: 502 Boeing St. Mailing: 1016 N 4th Pasco, WA 99301 509-545-3847 [email protected] www.fcweedboard.com Scouring Rush items such as cooking pots or rhizomes, manual or mechanical control should be drinking mugs. In Japan field done as soon after emergence as possible. horsetail (E. hymale) is still Because of it’s hard, waxy cuticle, high silica content, Scouring rush (Equisetum hyemale) is a nuisance boiled and then dried to be used for final polishing on and aggressive rhizomes, horsetail is very difficult to plant invading landscaping, yards, irrigated ditches, control with herbicides. Herbicide applications are and irrigated farmland in Franklin County. -
Expansion of Scouringrush (Equisetum Spp. L.): Crop Interference and Control Options in Winter Wheat (Triticum Aestivum L.) and Chemical Fallow Cropping Systems
AN ABSTRACT OF THE THESIS OF Blake D. Kerbs for the degree of Master of Science in Crop Science presented on November 17, 2016 Title: EXPANSION OF SCOURINGRUSH (EQUISETUM SPP. L.): CROP INTERFERENCE AND CONTROL OPTIONS IN WINTER WHEAT (TRITICUM AESTIVUM L.) AND CHEMICAL FALLOW CROPPING SYSTEMS Abstract approved: Andrew G. Hulting Scouringrushes (Equisetum hyemale L.; E. xferrissii Clute; E. laevigatum L.) are ancient perennial seedless vascular plants historically associated with wetlands, low-lying roadsides or field margins with more plant available water. There has been little research conducted on scouringrush species in the context of agricultural production because traditional farming practices confined them to field margins and roadside depressions. An increasing amount of dryland winter wheat (Triticum aestivum L.) hectares in the inland Pacific Northwest have replaced summer tilled-fallow rotations with chemical fallow. Where chemical fallow rotations have become the standard practice, scouringrush has expanded out of its historical habitat into production fields and established at high enough densities to cause concern from growers. Research was conducted to identify control options that fit chemical fallow cropping systems, evaluate the magnitude of crop interference by scouringrush, and address how soil pH affects scouringrush growth and establishment, as soil acidification is another agronomic issue caused by intensive wheat production in the Pacific Northwest. Field studies located in Reardan, WA, and near The Dalles, OR, were established in commercial wheat production fields that evaluated 10 herbicide treatments for efficacy on scouringrush. An additional factor in the trials was to determine if pre-herbicide mowing affected herbicide efficacy. At both locations pre-herbicide mowing had no effect on efficacy and only chlorsulfuron plus MCPA-ester controlled scouringrush though the subsequent winter wheat rotation. -
Roles of Silica and Lignin in Horsetail (Equisetum Hyemale)
Roles of silica and lignin in horsetail (Equisetum hyemale), with special reference to mechanical properties Shigeru Yamanaka, Kanna Sato, Fuyu Ito, Satoshi Komatsubara, Hiroshi Ohata et al. Citation: J. Appl. Phys. 111, 044703 (2012); doi: 10.1063/1.3688253 View online: http://dx.doi.org/10.1063/1.3688253 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v111/i4 Published by the American Institute of Physics. Related Articles Failure tolerance of spike phase synchronization in coupled neural networks Chaos 21, 033126 (2011) On the dynamic behavior of three readily available soft tissue simulants J. Appl. Phys. 109, 084701 (2011) Mucosal wrinkling in animal antra induced by volumetric growth Appl. Phys. Lett. 98, 153701 (2011) A comparison of two-dimensional techniques for converting magnetocardiogram maps into effective current source distributions Rev. Sci. Instrum. 82, 014302 (2011) The shock response of a rendered porcine fat J. Appl. Phys. 108, 093527 (2010) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 05 Mar 2012 to 200.130.19.157. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 111, 044703 (2012) Roles of silica and lignin in horsetail (Equisetum hyemale), with special reference to mechanical properties Shigeru Yamanaka,1,a)