Opposing Motor Activities Are Required for the Organization of the Mammalian Mitotic Spindle Pole Tirso Gaglio,* Alejandro Saredi,* James B

Total Page:16

File Type:pdf, Size:1020Kb

Opposing Motor Activities Are Required for the Organization of the Mammalian Mitotic Spindle Pole Tirso Gaglio,* Alejandro Saredi,* James B Opposing Motor Activities Are Required for the Organization of the Mammalian Mitotic Spindle Pole Tirso Gaglio,* Alejandro Saredi,* James B. Bingham,* M. Josh Hasbani,* Steven R. Gill,* Trina A. Schroer,* and Duane A. Compton* *Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755; and*Department of Biology, 220A Mudd Hall, The Johns Hopkins University, Baltimore, Maryland 21218 Abstract. We use both in vitro and in vivo approaches in cultured cells results in the complete lack of organi- to examine the roles of Eg5 (kinesin-related protein), zation of microtubules and the failure to efficiently con- cytoplasmic dynein, and dynactin in the organization of centrate the NuMA protein despite its association with the microtubules and the localization of NuMA (Nu- the microtubules. Simultaneous immunodepletion of clear protein that associates with the Mitotic A__ppara- these proteins from the cell free system for mitotic aster tus) at the polar ends of the mammalian mitotic spindle. assembly indicates that the plus end--directed activity of Perturbation of the function of Eg5 through either im- Eg5 antagonizes the minus end--directed activity of cy- munodepletion from a cell free system for assembly of toplasmic dynein and a minus end--directed activity as- mitotic asters or antibody microinjection into cultured sociated with NuMA during the organization of the mi- cells leads to organized astral microtubule arrays with crotubules into a morphologic pole. Taken together, expanded polar regions in which the minus ends of the these results demonstrate that the unique organization microtubules emanate from a ring-like structure that of the minus ends of microtubules and the localization contains NuMA. Conversely, perturbation of the func- of NuMA at the polar ends of the mammalian mitotic tion of cytoplasmic dynein or dynactin through either spindle can be accomplished in a centrosome-indepen- specific immunodepletion from the cell free system or dent manner by the opposing activities of plus end- and expression of a dominant negative subunit of dynactin minus end-directed motors. HE mitotic spindle is a complex microtubule-based 1990; Holy and Leibler, 1994). In addition to microtubule structure that is responsible for chromosome segre- dynamics, forces exerted by both plus end- and minus T gation during cell division (Mclntosh and Koonce, end-directed microtubule-dependent motors are required 1989; Mitchison, 1989a; Rieder, 1991; Hyman and Kar- for normal assembly of the mitotic spindle. The antagonis- senti, 1996). It is assembled in a spatially and temporally tic nature of these oppositely acting motors has been ele- regulated manner during the cell cycle, and the organiza- gantly explored in Saccharomyces cerevisiae (Saunders tion of the microtubules and the movement and position- and Hoyt, 1992; Hoyt, 1994; Saunders et al., 1995). Prevail- ing of the chromosomes within the mitotic spindle are ing evidence indicates that the counteractive forces gener- achieved through a complex set of forces exerted through ated by both microtubule dynamics and microtubule mo- the microtubule lattice. These forces derive from both the tors are placing the entire mitotic spindle under tension, dynamics of microtubule polymerization (Inoue and Salmon, and the tension created by these counteracting forces ap- 1995) and the actions of microtubule-dependent motor pears to be necessary for the inactivation of a spindle- proteins (Fuller and Wilson, 1992; Barton and Goldstein, dependent cell cycle checkpoint (Rieder et al., 1994; Li 1996). Changes in microtubule polymerization occur pri- and Nicklas, 1995; Murray, 1995; Nicklas et al., 1995). marily at the plus ends of the microtubules, and these The mitotic spindle must be organized in such a way as changes have been postulated to exert force on the chro- to support dynamic changes at the microtubule ends while mosomes in a number of ways, including chromosome simultaneously integrating the forces exerted by microtu- movement mediated by the kinetochore (Koshland et al., bule-dependent motor proteins. Indeed, the observation 1988; Coue et al., 1991), the polar wind (Rieder and of poleward microtubule flux (Mitchison, 1989b; Sawin Salmon, 1994), and chromosome capture (Hayden et al., and Mitchison, 1991) demonstrates that the microtubules within the mitotic spindle are arranged in a configuration Address all correspondence to Duane Compton, Department of Biochem- that is sufficiently stable to perform chromosome move- istry, Dartmouth Medical School, Hanover, NH 03755. Tel,: (603) 650- ments while both the plus and minus ends are available to 1990. Fax: (603) 650-1128. E-mail: [email protected] exchange tubulin subunits. To accomplish this organiza- © The Rockefeller University Press, 0021-9525196/101399/16 $2.00 The Journal of Cell Biology, Volume 135, Number 2, October 1996 399~,14 399 tional task, cells have devised two distinct structural com- tained in DME containing 10% FCS, 2 mM glutamine, 100 IU/ml penicil- plexes that coordinate the dynamics at microtubule ends lin, and 0.1 ~g/ml streptomycin. Cells were grown at 37°C in a humidified with motor-dependent force production (Desai and Mitch- incubator with a 5% CO2 atmosphere. ison, 1995). The best characterized of these is the kineto- chore (Earnshaw and Tomkiel, 1992; Pluta et al., 1995). Antibodies Kinetochores are located at the chromosome centromeres NuMA was detected with either a human-specific mouse mAb (mAblF1; and are responsible for both the attachment of microtu- Compton et al., 1991), a human autoimmune serum (courtesy of Dr. D. bule plus ends to chromosomes and force production dur- Pettijohn, University of Colorado, Boulder, CO), or the rabbit polyclonal ing chromosome movements (Koshland et al., 1988; Nick- antibody (Gaglio et al., 1995). Tubulin was detected using the mAb DMlct (Blose et al., 1984). Eg5 was detected using an affinity purified rabbit las, 1989; Rieder et al., 1990; Coue et al., 1991; Hyman and polyclonal antibody (Sawin et al., 1992a). Dynactin was detected using ei- Mitchison, 1991). Thus, kinetochores must not only serve ther an mAb directed against the Arpl subunit (mAb45A; Schafer et al., as the sites for the localization (and function) of the mo- 1994) or an mAb specific for the pl50B subunit (mAbl50B; Gill, S.R., and tors that power chromosome movement, but they must T.A. Schroer, unpublished results). Cytoplasmic dynein was detected us- ing an mAb specific for IC74 intermediate chain (mAb70.1; Steuer et al., also serve to maintain the attachment of microtubule plus 1991). Finally, pericentrin was detected using a rabbit polyclonal antibody ends with the chromosomes as the microtubules convert generated against the purified recombinant pericentrin protein (Doxsey between growing and shrinking states. et al., 1994). The minus ends of microtubules focused at the spindle pole must also be organized by a unique structural com- Immunological Techniques plex. This putative complex would maintain the organiza- tion of microtubule minus ends in a morphologic pole Indirect immunofluorcscence microscopy was performed on cultured cells while permitting them to release from the centrosome and by immersion in microtubule stabilization buffer (MTSB; 4 M glycerol, 100 mM Pipes, pH 6.9, 1 mM EGTA, and 5 mM MgCl2) for I rain at room allow for tubulin subunit exchange during poleward mi- temperature, extraction in MTSB + 0.5% Triton X-100 for 2 rain, fol- crotubule flux. The identity of the proteins contained lowed by MTSB for 2 rain. Cells were then fixed in -20°C methanol for 10 within this hypothetical mitotic spindle pole organizing rain. Indirect immunofluorescence microscopy on mitotic asters assem- complex are currently unknown, although there is substan- bled in the cell free mitotic extract was performed by dilution of 5 }xl of the extract into 25 ~l of KHM buffer (78 mM KC1, 50 mM Hepes, pH 7.0, tial experimental evidence indicating that a key compo- 4 mM MgCI2, 2 mM EGTA, 1 mM DTT; Burke and Gerace, 1986). The nent is the NuMA protein N(_~_clear protein that associates diluted sample was then spotted onto a poly-L-lysine--coated glass cover- with the Mitotic A_pparatus) 1 (for reviews see Compton slip and fixed by immersion in -20°C methanol. Both the fixed ceils and and Cleveland, 1994; Cleveland, 1995). NuMA is localized mitotic asters were rehydrated in TBS (10 mM Tris-HC1, pH 7.5, 150 mM in the nucleus during interphase but concentrates at the NaCI) containing 1% albumin and all antibody incubations and washes were performed in TBS + 1% albumin. Each primary antibody was incu- polar ends of the mitotic spindle during mitosis (Lyderson bated on the coverslip for 30 min followed by 5-min washes in TBS + 1% and Pettijohn, 1980; Kallajoki et al., 1991; Maekawa et al., albumin, and the bound antibodies were detected using either fluorescein- 1991; Tousson et al., 1991; Compton et al., 1992; Yang et al., or Texas red-conjugated species-specific secondary antibodies at dilutions 1992). Both in vitro and in vivo experiments indicate that of 1:500 (Vector Labs, Inc., Burlingame, CA). The DNA was detected us- ing 4',6-diamidino-2-phenylindole (DAPI) at 0.4 p,g/ml (Sigma Chemical NuMA is required for the organization of the mitotic spin- Co., St. Louis, MOO. After a final wash, the coverslips were mounted in dle (Kallajoki et al., 1991, 1992, 1993; Yang and Snyder, FITC-guard mounting medium (Testog, Inc., Chicago, IL) and observed 1992; Compton and Cleveland, 1993; Compton and Luo, on a microscope equipped for epifluorescence (model Optiphot; Nikon 1995; Gaglio et al., 1995); however, it is unclear if NuMA Inc., Melville, NY). Proteins from the mitotic extracts were solubilized directly with SDS- interacts with any of the microtubule-dependent motors PAGE sample buffer. The proteins were then separated by size using involved in the organization of the microtubules at the mi- SDS-PAGE (Laemmli, 1970) and transferred to polyvinylidene fluoride totic spindle poles or how it becomes concentrated at the (PVDF) membrane (Millipore Corp., Bedford, MA).
Recommended publications
  • Josephine Bay Paul Center for Comparative Molecular Biology And
    OCTOBER 2, 2014 CONTACT US DIRECTIONS TO MBL HOME ABOUT MBL EDUCATION RESEARCH GIVING MBL NEWS HOME Josephine Bay Paul Center for Comparative Molecular Biology and Evolution RESOURCES HIGHLIGHTS RESEARCH Josephine Bay Paul Center for Comparative Molecular Biology and Evolution Eugene Bell Center for Regenerative Biology & Tissue Engineering Cellular Dynamics Program The Ecosystems Center Program in Sensory Physiology and Behavior Whitman Center for Research and Discovery EDUCATION MBLWHOI LIBRARY GIFTS PEOPLE In the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, scientists explore the evolution and interaction of genomes of diverse organisms with significant roles in environmental biology and human health. Bay Paul Center scientists integrate the powerful tools of genome science, molecular phylogenetics, and molecular ecology to advance our understanding of how living organisms are related to each other, to provide the tools to quantify and assess biodiversity, and to identify genes and metabolic processes of ecological and biomedical importance. Publications | Staff List © 1996-2014, The Marine Biological Laboratory MARINE BIOLOGICAL LABORATORY, MBL, and the Join the MBL community: 1888 logo are registered trademarks and service marks of The Marine Biological Laboratory. OCTOBER 2, 2014 CONTACT US DIRECTIONS TO MBL HOME ABOUT MBL EDUCATION RESEARCH GIVING MBL NEWS HOME Bay Paul Center Publications RESOURCES Akerman, NH; Butterfield, DA; and Huber, JA. 2013. Phylogenetic Diversity and Functional Gene Patterns of Sulfur- oxidizing Subseafloor Epsilonproteobacteria in Diffuse Hydrothermal Vent Fluids. Front Microbiol. 4, 185. HIGHLIGHTS RESEARCH Alliegro, MC; and Alliegro, MA. 2013. Localization of rRNA Transcribed Spacer Domains in the Nucleolinus and Maternal Procentrosomes of Surf Clam (Spisula) Oocytes.” RNA Biol.
    [Show full text]
  • Machine-Learning Based Classification of Textual Stimuli To
    MACHINE-LEARNING BASED CLASSIFICATION OF TEXTUAL STIMULI TO PROMOTE IDEATION IN BIOINSPIRED DESIGN A Dissertation by MICHAEL W. GLIER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Daniel A. McAdams Co-Chair of Committee, Julie S. Linsey Committee Members, Richard J Malak Tracy A. Hammond Head of Department, Andreas Polycarpou August 2013 Major Subject: Mechanical Engineering Copyright 2013 Michael W. Glier ABSTRACT Bioinspired design uses biological systems to inspire engineering designs. One of bioinspired design’s challenges is identifying relevant information sources in biology for an engineering design task. Currently information can be retrieved by searching biology texts or journals using biology-focused keywords that map to engineering functions. However, this search technique can overwhelm designers with unusable results. This work explores the use of text classification tools to identify relevant biology passages for design. Further, this research examines the effects of using biology passages as stimuli during idea generation. Four human-subjects studies are examined in this work. Two surveys are performed in which participants evaluate sentences from a biology corpus and indicate whether each sentence prompts an idea for solving a specific design problem. The surveys are used to develop and evaluate text classification tools. Two idea generation studies are performed in which participants generate and record solutions for designing a corn shucker using either different sets of biology passages as design stimuli, or no stimuli. Based 286 sentences from the surveys, a k Nearest Neighbor classifier is developed that is able to identify helpful sentences relating to the function “separate” with a precision of 0.62 and recall of 0.48.
    [Show full text]
  • A Study of the Cell Biology of Motility in Eimeria Tenella Sporozoites
    A STUDY OF THE CELL BIOLOGY OF MOTILITY IN Eimeria tenella SPOROZOITES by David Robert Bruce Department of Biology University College London A thesis presented for the degree of Doctor of Philosophy in the University of London 2000 ProQuest Number: U643145 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643145 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT A study on the cell biology of motility inEimeria tenella sporozoites Eimeria tenella is an obligate intracellular parasite within the phylum Apicomplexa. It is the causative agent of coccidiosis in domesticated chickens and under modem farming conditions can have a considerable economic impact. Motility is employed by the sporozoite to effect release from the sporocyst and enable invasion of appropriate host cells and occurs at an average speed of 16.7 ± 6 pms'\ Frame by frame video analysis of gliding motility shows it to be an erratic non­ substrate specific process and this observation was confirmed by studies of bead translocation across the cell surface occurring at an average speed of 16.9 ± 7.6 pms'^ Incubation with cytochalasin D, 2,3-butanedione monoxime and colchicine, known inhibitors of the motility associated proteins actin, myosin and tubulin respectively, indicated that it is an actomyosin complex which generates the force to power sporozoite motility.
    [Show full text]
  • Spatial Organization of Large Cells
    Spatial Organization of Large Cells A dissertation presented by Martin Helmut Wuehr to The Committee on Higher Degrees in Systems Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Systems Biology Harvard University Cambridge, Massachusetts March 2010 i © 2010 – Martin H. Wuehr All rights reserved. ii Timothy John Mitchison Martin Helmut Wuehr Spatial Organization of Large Cells Abstract The rationale for my research was to investigate unusually large cells, fertilized frog and fish eggs, to obtain a unique perspective on a cell’s spatial organization with a focus on cell division. First, we investigated how spindle size changes during cleavage stages while cell size changes by orders of magnitude. To do so we improved techniques for immunofluorescence in amphibian embryos and generated a transgenic fish line with fluorescently labeled microtubules. We show that in smaller cells spindle length scales with cell length, but in very large cells spindle length approaches an upper limit and seems uncoupled from cell size. Furthermore, we were able to assemble mitotic spindles in embryonic extract that had similar size as in vivo spindles. This indicates that spindle size is set by a mechanism that is intrinsic to the spindle and not downstream of cell size. Second we investigated how relatively small spindles in large cells are positioned, and oriented for symmetric cell division. We show that the localization and orientation of these spindles are determined by location and iii orientation of sister centrosomes set by the anaphase-telophase aster of the previous cycle. Third we researched the mechanism by which asters center and align centrosomes relative to the longest axis.
    [Show full text]
  • Cell Biology Annual Meeting Program
    Cell Biology Annual Meeting Program Shirley Tilghman, President Julie Theriot, Program Chair Karen Oegema, Local Organizer ascb.org/2015meeting Search Your Smartphone App Store for ASCB2015 Submit Your Research Committed to Excellence, Rigor, and Breadth eNeuro has joined JNeurosci in the PubMed Central database. Learn more at SfN.org DON’T MISS OUT ON ANOTHER ISSUE! SUBSCRIBE Sign up now to receive FOR FREE* the monthly print magazine. TODAY! Each issue contains feature articles on hot new trends in science, profiles of top-notch researchers, reviews of the latest tools and technologies, and much, much more. * Only available for a limited time. Not all requests qualify for a free subscription. www.the-scientist.com/subscribe The Company of Biologists is a UK based charity and not-for-profit publisher run by biologists for biologists. The Company aims to promote research and study across all branches of biology through the publication of its five journals. Development Advances in developmental biology and stem cells dev.biologists.org Journal of Cell Science The science of cells jcs.biologists.org The Journal of Experimental Biology At the forefront of comparative physiology and integrative biology jeb.biologists.org Disease Models & Mechanisms Basic research with translational impact dmm.biologists.org Biology Open Facilitating rapid peer review for accessible research bio.biologists.org In addition to publishing, The Company makes an important contribution to the scientific community, providing grants, travelling fellowships and sponsorship
    [Show full text]
  • Measuring Mitotic Spindle Dynamics in Budding Yeast
    Measuring mitotic spindle dynamics in budding yeast Kemp Plumb B.Sc. Department of Physics McGill University Montreal,Qu´ ebec´ July, 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science c Kemp Plumb, 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-66191-8 Our file Notre référence ISBN: 978-0-494-66191-8 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • October- 2018 Journal.Pmd
    Current Trends in Biotechnology and Pharmacy ISSN 0973-8916 (Print), 2230-7303 (Online) Editors Prof.K.R.S. Sambasiva Rao, India Prof. Karnam S. Murthy, USA [email protected] [email protected] Editorial Board Prof. Anil Kumar, India Dr.P. Ananda Kumar, India Prof. P.Appa Rao, India Prof. Aswani Kumar, India Prof. Bhaskara R.Jasti, USA Prof. Carola Severi, Italy Prof. Chellu S. Chetty, USA Prof. K.P.R. Chowdary, India Dr. S.J.S. Flora, India Dr. Govinder S. Flora, USA Prof. H.M. Heise, Germany Prof. Huangxian Ju, China Prof. Jian-Jiang Zhong, China Dr. K.S.Jagannatha Rao, Panama Prof. Kanyaratt Supaibulwatana, Thailand Prof.Juergen Backhaus, Germany Prof. Jamila K. Adam, South Africa Prof. P.B.Kavi Kishor, India Prof. P.Kondaiah, India Prof. M.Krishnan, India Prof. Madhavan P.N. Nair, USA Prof. M.Lakshmi Narasu, India Prof. Mohammed Alzoghaibi, Saudi Arabia Prof.Mahendra Rai, India Prof. Milan Franek, Czech Republic Prof.T.V.Narayana, India Prof. Nelson Duran, Brazil Dr. Prasada Rao S.Kodavanti, USA Prof. Mulchand S. Patel, USA Dr. C.N.Ramchand, India Dr. R.K. Patel, India Prof. P.Reddanna, India Prof. G.Raja Rami Reddy, India Dr. Samuel J.K. Abraham, Japan Dr. Ramanjulu Sunkar, USA Dr. Shaji T. George, USA Prof. B.J. Rao, India Prof. Sehamuddin Galadari, UAE Prof. Roman R. Ganta, USA Prof. B.Srinivasulu, India Prof. Sham S. Kakar, USA Prof. B. Suresh, India Dr. N.Sreenivasulu, Germany Prof. Swami Mruthinti, USA Prof.Sung Soo Kim, Korea Prof. Urmila Kodavanti, USA Prof. N. Udupa, India Assistant Editors Dr.Giridhar Mudduluru, Germany Dr.
    [Show full text]
  • Philipp M. Niethammer Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065, USA
    Philipp M. Niethammer Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, NY 10065, USA. Box: 278, Phone: 212-639-5332 (office), 617-910-7167 (cell), [email protected] ORCID: https://orcid.org/0000-0003-4175-4012 Curriculum Vitae PERSONAL STATEMENT I am an experimental biologist with a background in biochemistry, cell biology, and advanced imaging techniques. For my PhD and postdoc, I trained with Eric Karsenti, Philippe Bastiaens (EMBL Heidelberg, Germany), and Tim Mitchison (Harvard Medical School, Boston, USA), using frogs and zebrafish as experimental systems. My general biological interest is to understand the biochemical and biophysical basis of morphogenesis in cells, tissues, and organisms. I am interested in the question of how biochemical signaling circuits generate and process spatiotemporal information to spatially guide morphogenetic events and how this warrants the specificity of a morphogenetic response. One of my primary research directions, past and future, has been the development of new probes and microscopy-based methods to image these circuits inside living cells, tissues, and organisms. This approach was exemplified by my development of novel optical probes for microtubule regulation during my PhD and the first implementation of a ge- netically encoded H2O2 sensor in a vertebrate animal during my postdoc. My PhD and postdoctoral training in the Department of Cell Biology and Biophysics at EMBL Heidelberg and the Department of Systems Biology at Harvard Medical School have minted me with a physical perspective on biological problems. In my lab, I have further developed quantitative intravitral imaging approaches to decipher the early regulation of inflammation and healing after tissue damage in zebrafish.
    [Show full text]
  • The Role of GCP8 in Microtubule Nucleation and Cell Cicle Progression
    The role of GCP8 in microtubule nucleation and cell cicle progression Artur Ezquerra Gonzalez ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • A Decade of Molecular Cell Biology: Achievements and Challenges
    PERSPECTIVES a reaction–diffusion mechanism. I attribute 10-YEAR ANNIVERSARY SERIES — VIEWPOINT this concept to Eric Karsenti, who mooted the idea in the mid 1980s for signals dif- A decade of molecular cell biology: fusing away from DNA in eggs. However, it wasn’t proven until the development of fluorescence resonance energy transfer achievements and challenges (FRET)-based activity biosensors in the past decade2,3. In general, fluorescence sensors Asifa Akhtar, Elaine Fuchs, Tim Mitchison, Reuben J. Shaw, Daniel St Johnston, of biochemical activity are a very important Andreas Strasser, Susan Taylor, Claire Walczak and Marino Zerial development. Abstract | Nature Reviews Molecular Cell Biology celebrated its 10‑year anniversary Reuben J. Shaw. One area close to our own during this past year with a series of specially commissioned articles. work is the unexpected re-emergence of To complement this, here we have asked researchers from across the field for their metabolism and its relationship to growth insights into how molecular cell biology research has evolved during this past control and cancer. Advances in autophagy decade, the key concepts that have emerged and the most promising interfaces continue to amaze me in terms of how little basic information we actually have on how a that have developed. Their comments highlight the broad impact that particular cell works. Autophagy regulators are highly advances have had, some of the basic understanding that we still require, and the conserved proteins in a central cell biologi- collaborative approaches that will be essential for driving the field forward. cal process that is deregulated in common human diseases, yet much of the biochemi- cal framework for this process has been What do you feel have been the Takahashi were paradigm-shifting.
    [Show full text]
  • Signature Redacted Author
    Single-molecule studies of protein degradation ARCHE and kinesin-8 motility MASS^C I STTUTE by by L~oEAPR 15 2015 Yongdae Shin B.S., Seoul National University (2007) LIBRARIES S.M., Massachusetts Institute of Technology (2009) Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2015 Massachusetts Institute of Technology 2015. All rights reserved. Signature redacted Author ..................... Department of Mechanical Engineering October 6, 2014 Certified by.redacted Matthew J. Lang Associate Professor of Chemical and Biomolecular Engineering, Vanderbilt University Signature redacted Thesis Supervisor C ertified by ....... ................................. Roger D. Kamm Professor of Mechanical Engineering Signature redacted Chair, Thesis Committee A ccepted by ........... ......................... David E. Hardt Professor of Mechanical Engineering Chairman, Department Committee on Graduate Studies I Single-molecule studies of protein degradation and kinesin-8 motility by Yongdae Shin Submitted to the Department of Mechanical Engineering on October 6, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Abstract Molecular machines drive living organisms out of equilibrium and perform critical functions in almost every aspect of cellular processes. They are mechanical enzymes transducing free energy stored in chemical forms to generate motions and forces useful in cell. How these tiny machines operate in the presence of thermal agitation has been studied for a few model systems but still largely elusive. Especially, mechanisms of how molecular machines that were evolved from common ancestors diversified their machine actions to fit specific cellular requirements need to be answered.
    [Show full text]
  • On the Role of Microtubules in Cell Polarity a Reconstituted Minimal System Vendel, K.J.A
    Delft University of Technology On the role of microtubules in cell polarity A reconstituted minimal system Vendel, K.J.A. DOI 10.4233/uuid:34f174d5-f8ad-4bf2-86f7-47660a84fe64 Publication date 2020 Document Version Final published version Citation (APA) Vendel, K. J. A. (2020). On the role of microtubules in cell polarity: A reconstituted minimal system. https://doi.org/10.4233/uuid:34f174d5-f8ad-4bf2-86f7-47660a84fe64 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. ON THE ROLE OF MICROTUBULES IN CELL POLARITY A RECONSTITUTED MINIMAL SYSTEM ON THE ROLE OF MICROTUBULES IN CELL POLARITY A RECONSTITUTED MINIMAL SYSTEM Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. T. H. J. J. van der Hagen, voorzitter van het College voor Promoties, in het openbaar te verdedigen op 21 september 2020 om 12:30 uur door Kim Jikke Anna VENDEL Master in physics, Universiteit Leiden, Nederland geboren te Amsterdam, Nederland.
    [Show full text]