Kmtnet Nearby Galaxy Survey III. Deficient H $\Alpha $ Flux in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M . -
ATNF News Issue No
Galaxy Pair NGC 1512 / NGC 1510 ATNF News Issue No. 67, October 2009 ISSN 1323-6326 Questacon "astronaut" street performer and visitors at the Parkes Open Days 2009. Credit: Shaun Amy, CSIRO. Cover page image Cover Figure: Multi-wavelength color-composite image of the galaxy pair NGC 1512/1510 obtained using the Digitised Sky Survey R-band image (red), the Australia Telescope Compact Array HI distribution (green) and the Galaxy Evolution Explorer NUV -band image (blue). The Spitzer 24µm image was overlaid just in the center of the two galaxies. We note that in the outer disk the UV emission traces the regions of highest HI column density. See article (page 28) for more information. 2 ATNF News, Issue 67, October 2009 Contents From the Director ...................................................................................................................................................................................................4 CSIRO Medal Winners .........................................................................................................................................................................................5 CSIRO Astronomy and Space Science Unit Formed ........................................................................................................................6 ATNF Distinguished Visitors Program ........................................................................................................................................................6 ATNF Graduate Student Program ................................................................................................................................................................7 -
Structure, Properties and Formation Histories of S0 Galaxies
Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare Thesis Supervisor Prof. Ajit K. Kembhavi A thesis presented for the degree of Doctor of Philosophy to IUCAA & Jawaharlal Nehru University India July, 2015 Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare c 2015 All rights reserved. Certificate This is to certify that the thesis entitled Structure, Properties and Formation Histories of S0 Galaxies submitted by Mr. Kaustubh Vaghmare for the award of the degree of Doctor of Philosophy to Jawaharlal Nehru University, New Delhi is his original work. This has not been published or submitted to any other University for any other Degree or Diploma. Pune July 30th, 2015 Prof. Ajit K. Kembhavi (Thesis Advisor & Director, IUCAA) Declaration I hereby declare that the work reported in this thesis is entirely original. This thesis is composed independently by me at the Inter-University Centre for Astronomy and Astrophysics, Pune under the supervision of Prof. Ajit K. Kembhavi. I further declare that the subject matter presented in the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title of any University or Institution. Pune July 30th, 2015 Prof. Ajit K. Kembhavi Mr. Kaustubh Vaghmare (Thesis Advisor) (Ph.D. Candidate) 3 Dedicated to ... Prathama & Prakash (my parents, my Gods) Rahul (my brother, whose ever presence with my parents and unquestioning support allowed me to work in peace) & Sneha (my beloved) 5 Acknowledgements For all students and regular visitors, it is clear that Prof. Ajit Kembhavi is one of the busiest people with frequent meetings, visits abroad, directorial duties and several other responsibilities. -
Dwarf Galaxies
Europeon South.rn Ob.ervotory• ESO ML.2B~/~1 ~~t.· MAIN LIBRAKY ESO Libraries ,::;,q'-:;' ..-",("• .:: 114 ML l •I ~ -." "." I_I The First ESO/ESA Workshop on the Need for Coordinated Space and Ground-based Observations - DWARF GALAXIES Geneva, 12-13 May 1980 Report Edited by M. Tarenghi and K. Kjar - iii - INTRODUCTION The Space Telescope as a joint undertaking between NASA and ESA will provide the European community of astronomers with the opportunity to be active partners in a venture that, properly planned and performed, will mean a great leap forward in the science of astronomy and cosmology in our understanding of the universe. The European share, however,.of at least 15% of the observing time with this instrumentation, if spread over all the European astrono mers, does not give a large amount of observing time to each individual scientist. Also, only well-planned co ordinated ground-based observations can guarantee success in interpreting the data and, indeed, in obtaining observ ing time on the Space Telescope. For these reasons, care ful planning and cooperation between different European groups in preparing Space Telescope observing proposals would be very essential. For these reasons, ESO and ESA have initiated a series of workshops on "The Need for Coordinated Space and Ground based Observations", each of which will be centred on a specific subject. The present workshop is the first in this series and the subject we have chosen is "Dwarf Galaxies". It was our belief that the dwarf galaxies would be objects eminently suited for exploration with the Space Telescope, and I think this is amply confirmed in these proceedings of the workshop. -
Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
5 Aug 2004 22:35 AR AR222-AA42-15.tex AR222-AA42-15.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.astro.42.053102.134024 Annu. Rev. Astron. Astrophys. 2004. 42:603–83 doi: 10.1146/annurev.astro.42.053102.134024 Copyright c 2004 by Annual Reviews. All rights reserved First published! online as a Review in Advance on June 2, 2004 SECULAR EVOLUTION AND THE FORMATION OF PSEUDOBULGES IN DISK GALAXIES John Kormendy Department of Astronomy, University of Texas, Austin, Texas 78712; email: [email protected] Robert C. Kennicutt, Jr. Department of Astronomy, Steward Observatory, University of Arizona, Tucson, Arizona 85721; email: [email protected] KeyWords galaxy dynamics, galaxy structure, galaxy evolution I Abstract The Universe is in transition. At early times, galactic evolution was dominated by hierarchical clustering and merging, processes that are violent and rapid. In the far future, evolution will mostly be secular—the slow rearrangement of energy and mass that results from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. Both processes are important now. This review discusses internal secular evolution, concentrating on one important con- sequence, the buildup of dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. We begin with an “existence proof”—a review of how bars rearrange disk gas into outer rings, inner rings, and stuff dumped onto the center. The results of numerical sim- ulations correspond closely to the morphology of barred galaxies. -
An Investigation of the Dust Content in the Galaxy Pair NGC 1512/1510
An Investigation of the Dust Content in the Galaxy pair NGC 1512/1510 from Near-Infrared to Millimeter Wavelengths Guilin Liu1, Daniela Calzetti1, Min S. Yun1, Grant W. Wilson1 [email protected], [email protected], [email protected], [email protected] Bruce T. Draine2 [email protected] Kimberly Scott1 [email protected] Jason Austermann1,3 [email protected] Thushara Perera1 [email protected] David Hughes4, Itziar Aretxaga4 arXiv:1001.1764v1 [astro-ph.CO] 12 Jan 2010 [email protected], [email protected] Kotaro Kohno5,6 [email protected] Ryohei Kawabe7 and Hajime Ezawa7 [email protected], [email protected] –2– Accepted for Publication in Astronomical Journal 1Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA 2Department of Astrophysical Sciences, Princeton, NJ 08544, USA 3Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA 4Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Mexico 5Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 6Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan 7Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minami- maki, Minamisaku, Nagano 384-1305, Japan –3– ABSTRACT We combine new ASTE/AzTEC 1.1 mm maps of the galaxy pair NGC 1512/1510 with archival Spitzer IRAC and MIPS images covering the wavelength range 3.6–160 µm from the SINGS project. The availability of the 1.1 mm map enables us to measure the long–wavelength tail of the dust emission in each galaxy, and in sub–galactic regions in NGC 1512, and to derive accurate dust masses. -
Study of Star-Forming Regions in the Peculiar Galaxies NGC 660, NGC 1512, NGC 4395, and NGC 4618
Study of Star-Forming Regions in the Peculiar Galaxies NGC 660, NGC 1512, NGC 4395, and NGC 4618 K. I. Smirnova,1, ∗ D. S. Wiebe,2 A. V. Moiseev,3 and G. I. G J´ozsa4, 5, 6 1Ural Federal University, Yekaterinburg, Russia 2Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia 3Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, Russia 4South African Radio Astronomy Observatory, Cape Town, South Africa 5Department of Physics and Electronics, Rhodes University, Makhanda, South Africa 6Argelander-Institut f¨urAstronomie, Bonn, Germany The star-forming regions (SFRs) in the peculiar galaxies NGC 660, NGC 1512, NGC 4395 and NGC 4618 are studied. The relationships between such characteristics of star forming regions as UV, nearand far-IR fluxes, as well as in the Hα and HI lines, surface brightness in these ranges, and the scatter of the radial velocities of ionized and neutral hydrogen are considered. It is shown that in all the galaxies considered, the IR fluxes from SFRs are less than in the “normal” galaxies, but for different reasons: in the galaxies with signs of recent interaction NGC 660 and NGC 1512, this is due to the low surface brightness of SFRs; in the lopsided galaxies NGC 4395 and NGC 4618, the low brightness of SFRs in the infrared range is due to their compact size. These differences indicate that the star formation process depends not only on the morphological type of a galaxy, but also on many other factors. I. INTRODUCTION Modern space and ground-based instruments allow spatially resolved observations of in- terstellar matter in extragalactic star-forming regions (SFR), which opens up opportunities for studying the features of the star formation process in a significantly wider range of pa- rameters than is possible in our Galaxy. -
GALEX UV COLOR RELATIONS for NEARBY EARLY-TYPE GALAXIES Jose´ Donas,1 Jean-Michel Deharveng,1 R
The Astrophysical Journal Supplement Series, 173:597Y606, 2007 December # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALEX UV COLOR RELATIONS FOR NEARBY EARLY-TYPE GALAXIES Jose´ Donas,1 Jean-Michel Deharveng,1 R. Michael Rich,2 Sukyoung K. Yi,3 Young-Wook Lee,3 Alessandro Boselli,1 Armando Gil de Paz,4 Samuel Boissier,1 Ste´phane Charlot,5 Samir Salim,2 Luciana Bianchi,6 Tom A. Barlow,7 Karl Forster,7 Peter G. Friedman,7 Timothy M. Heckman,8 Barry F. Madore,9 D. Christopher Martin,7 Bruno Milliard,1 Patrick Morrissey,7 Susan G. Neff,10 David Schiminovich,11 Mark Seibert,7 Todd Small,7 Alex S. Szalay,8 Barry Y. Welsh,12 and Ted K. Wyder7 Received 2006 May 4; accepted 2006 July 20 ABSTRACT We use GALEX/optical photometry to construct color-color relationships for early-type galaxies sorted by mor- phological type. We have matched objects in the GALEX GR1 public release and the first IR1.1 internal release, with the RC3 early-type galaxies having a morphological type À5:5 T < À1:5, with mean error on T < 1:5 and mean error on (B À V )T < 0:05. After visual inspection of each match, we are left with 130 galaxies with reliable GALEX pipeline photometry in the far-UVand near-UV bands. This sample is divided into ellipticals (À5:5 T < À3:5) and lenticulars (À3:5 T < À1:5). After correction for Galactic extinction, the color-color diagrams FUV À NUV versus (B À V )Tc are plotted for the two subsamples. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
XMM-Newton Study of the Interacting Galaxies NGC 1512 and NGC 1510 L
XMM-Newton study of the interacting galaxies NGC 1512 and NGC 1510 L. Ducci1,2, P. J. Kavanagh1, M. Sasaki1, B. S. Koribalski3 1Institut für Astronomie und Astrophysik, Eberhard Karls Universität, Sand 1, 72076 Tübingen, Germany; 2ISDC, Data Center for Astrophysics of the University of Geneva, Chemin d’Ecogia, 16 1290 Versoix Switzerland; 3Australia Telescope National Facility, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia Abstract XMM-Newton (0.2-12 keV)68 Swift/UVOT 60 36 93 58 We present an analysis of an XMM-Newton observation 49 4138 18 34 84 32 13 of the interacting galaxies NGC 1512 and NGC 1510 with 20 101 91 the aim of gaining information on the population of X-ray 92 86 66 56 102 50 15 sources diffuse emission. Spectral analysis, hardness 95 46 11 5 97 31 70 1 59 33 2322 ratios, X-ray variability, and cross-correlations with 30 17 105104 67 42 catalogues in other wavelengths, allowed us to identify 100 78 55 3 90 69 43 103 99 45 12 and classify the observed sources as X-ray binaries in the 5453 8 98 51 2825 2 106 827471 6257 NGC 1512/1510 system, background objects and 88 73 63 44 24 75 3729 6 foreground stars. We detected 106 sources in the energy 8381 5248 19 94 65 2116 89 85 79 range 0.2 − 12 keV, 15 within the D25 ellipses of NGC 47 35 77 14 7 1512 and NGC 1510. The properties of the most 87 72 40 96 80 61 26 interesting sources are discussed. -
End UTC Sl.No Proposal ID Target No Source Name Start UTC Stare Time
Target Start UTC End UTC sta Req Typ Ob Princi Accept Stare Sl.No Proposal ID Source name no Date Time Date Time tus uest e of s pal Int ed time 1 A02_174 Mrk 766 (184.61035, 29.812819) 31/12/2016 19:43:01 1/2/2017 15:02:09 sxt -43.3189 -155,948 2 A02_075 NGC3319 (159.789408, 41.68668) 02/01/2017 15:10:08 1/2/2017 17:54:59 uvit1 -2.7475 -9,891 3 G06_168 SDSSJ1204+1201 (181.1725, 12.019861) 02/01/2017 18:04:35 1/2/2017 21:29:23 uvit2 -3.41333 -12,288 4 G06_135 NGC 5474 (211.256667, 53.662194) 02/01/2017 21:40:24 1/3/2017 2:19:51 uvit1 -4.6575 -16,767 5 G06_164 HD 68988 (124.592417, 61.4607) 03/01/2017 2:30:22 1/3/2017 13:20:55 uvit1 -10.8425 -39,033 6 A02_005 Mrk421 (166.113808, 38.20883) 03/01/2017 13:31:34 1/8/2017 8:35:39 sxt -115.068 -414,245 7 A02_103 NGC 3227 (155.877375, 19.865083) 08/01/2017 8:43:45 1/9/2017 13:57:06 laxpc1 -29.2225 -105,201 8 A02_165 mrk 721 (155.8859, 10.95972) 09/01/2017 14:04:14 1/9/2017 16:28:44 uvit1 8670 9 A02_111 Cen X-3 (170.315792, -60.623) 09/01/2017 16:43:01 1/10/2017 1:41:50 laxpc1 -8.98028 -32,329 10 A02_090 Blank Sky (183.48, 22.8) 10/01/2017 1:57:18 1/11/2017 22:32:40 czt1 -44.5894 -160,522 11 G06_026 1E 1048.1-593 (162.537208, -59.888861) 11/01/2017 22:48:17 1/12/2017 0:00:00 laxpc1 -1.19528 -4,303 12 T01_151 ngc1275 (49.950667, 41.511695) 12/01/2017 0:18:22 1/13/2017 16:50:28 sxt -40.535 -145,926 13 G06_026 1E 1048.1-593 (162.537208, -59.888861) 13/01/2017 17:13:44 1/14/2017 17:44:37 laxpc1 -24.5147 -88,253 14 G06_029 Crab (83.633083, 22.0145) 14/01/2017 18:05:16 1/16/2017 13:00:16 czt1 154,500 -
TABLE 1 Explanation of CVRHS Symbols A
TABLE 1 Explanation of CVRHS Symbols a Symbol Description 1 2 General Terms ETG An early-type galaxy, collectively referring to a galaxy in the range of types E to Sa ITG An intermediate-type galaxy, taken to be in the range Sab to Sbc LTG A late-type galaxy, collectively referring to a galaxy in the range of types Sc to Im ETS An early-type spiral, taken to be in the range S0/a to Sa ITS An intermediate-type spiral, taken to be in the range Sab to Sbc LTS A late-type spiral, taken to be in the range Sc to Scd XLTS An extreme late-type spiral, taken to be in the range Sd to Sm classical bulge A galaxy bulge that likely formed from early mergers of smaller galaxies (Kormendy & Kennicutt 2004; Athanassoula 2005) pseudobulge A galaxy bulge made of disk material that has secularly collected into the central regions of a barred galaxy (Kormendy 2012) PDG A pure disk galaxy, a galaxy lacking a classical bulge and often also lacking a pseudobulge Stage stage The characteristic of galaxy morphology that recognizes development of structure, the widespread distribution of star formation, and the relative importance of a bulge component along a sequence that correlates well with basic characteristics such as integrated color, average surface brightness, and HI mass-to-blue luminosity ratio Elliptical Galaxies E galaxy A galaxy having a smoothly declining brightness distribution with little or no evidence of a disk component and no inflections (such as lenses) in the luminosity distribution (examples: NGC 1052, 3193, 4472) En An elliptical galaxy