AR TICLE Draft Genome Sequences of Armillaria Fuscipes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Botanist Interior 43.1
2012 THE MICHIGAN BOTANIST 73 THE SUGAR MAPLE SAPSTREAK FUNGUS (CERATOCYSTIS VIRESCENS (Davidson) MOREAU, ASCOMYCOTA) IN THE HURON MOUNTAINS, MARQUETTE COUNTY, MICHIGAN Dana L. Richter School of Forest Resources & Environmental Science Michigan Technological University 1400 Townsend Drive Houghton, Michigan 49931 Phone: 906-487-2149 Email: [email protected] ABSTRACT Sugar maple sapstreak disease is caused by the native fungus Ceratocystis virescens (Davidson) Moreau, but is only a serious threat in disturbed areas or where soil conditions favor the disease. Three of 16 trees along roads, in logged areas or other disturbance that showed crown symptoms of sugar maple sapstreak disease in the Huron Mountains were confirmed or probable for the disease based on xylem condition and laboratory isolation of the fungus. Trees diagnosed with the disease had greater than 50% crown dieback, while all trees free of the disease had lesser degrees of crown dieback. Although the presence of sugar maple sapstreak disease was confirmed in the Huron Moun - tains the incidence was found to be low. Results suggest this pathogen exists at low levels in the Huron Mountain forests and is not an imminent threat to sugar maple there. Soil conditions and other factors contributing to a generally healthy forest may be responsible for low incidence and spread of the disease. KEYWORDS: sugar maple, sapstreak disease, Huron Mountains, Ceratocystis virescens , fungi INTRODUCTION Maple sapstreak is a disease of sugar maple trees ( Acer saccharum Marsh.) throughout the eastern United States and Canada caused by the fungus Cerato - cystis virescens (Davidson) Moreau (Houston and Fisher 1964, Houston 1993, Houston 1994). Previous names used for this fungus are Endoconidophora virescens and C. -
(GISD) 2021. Species Profile Ceratocystis Platani. Avail
FULL ACCOUNT FOR: Ceratocystis platani Ceratocystis platani System: Terrestrial Kingdom Phylum Class Order Family Fungi Ascomycota Sordariomycetes Microascales Ceratocystidacea e Common name canker-stain-of-plane-tree (English), canker stain (English) Synonym Ceratocystis fimbriata , f.sp. platani Endoconidiophora fimbriata , f. platani Similar species Summary Ceratocystis platani is a fungal pathogen that causes canker stain of plane trees in the genus Platanus. The fungus, thought to be native to south-eastern United States, was introduced to Italy in the 1940s. It rapidly infects plane trees, causing disruption of water movement, cankers and eventually death. It has since spread throughout Europe and threatens natural and planted populations of economically, ecologically and aesthetically important plane trees. view this species on IUCN Red List Species Description Ceratocystis platani is an ascomycete fungus that causes canker stain of plane tree, a serious disease of Platanus spp. in the United States and Europe. The fungus is a wound parasite, and can colonise even small wounds upon contact. After wound colonisation mycelium develops throughout the conducting tissues of the underlying sapwood. Colonisation can be 2.0-2.5 m/year from a single infection (Soulioti et al., 2008). \r\n The disease causes staining of the xylem, disruption of water movement, cankers and usually death of the tree. The most obvious disease symptom on oriental plane is sudden death of a portion of the crown. Cankers on the tree trunk, although not always visible through thick, rough bark, are characterised by necrosis of inner bark and bluish-black to reddish-brown discolouration of sapwood (Ocasio-Morales et al., 2007). -
Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae
Journal of Fungi Article Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae Mohammad Sayari 1,2,*, Magrieta A. van der Nest 1,3, Emma T. Steenkamp 1, Saleh Rahimlou 4 , Almuth Hammerbacher 1 and Brenda D. Wingfield 1 1 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; [email protected] (M.A.v.d.N.); [email protected] (E.T.S.); [email protected] (A.H.); brenda.wingfi[email protected] (B.D.W.) 2 Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada 3 Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa 4 Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia; [email protected] * Correspondence: [email protected]; Fax: +1-204-474-7528 Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using Citation: Sayari, M.; van der Nest, a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species M.A.; Steenkamp, E.T.; Rahimlou, S.; of the Ceratocystidaceae were identified. -
A Nomenclatural Study of Armillaria and Armillariella Species
A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Printed in Eko-trykk A/S, Førde, Norway Printing date: 1. August 1995 ISBN 82-90724-14-4 ISSN 0802-4966 A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway 6 Authors address: Center for Forest Mycology Research Forest Products Laboratory United States Department of Agriculture Forest Service One Gifford Pinchot Dr. Madison, WI 53705 USA ABSTRACT Once a taxonomic refugium for nearly any white-spored agaric with an annulus and attached gills, the concept of the genus Armillaria has been clarified with the neotypification of Armillaria mellea (Vahl:Fr.) Kummer and its acceptance as type species of Armillaria (Fr.:Fr.) Staude. Due to recognition of different type species over the years and an extremely variable generic concept, at least 274 species and varieties have been placed in Armillaria (or in Armillariella Karst., its obligate synonym). Only about forty species belong in the genus Armillaria sensu stricto, while the rest can be placed in forty-three other modem genera. This study is based on original descriptions in the literature, as well as studies of type specimens and generic and species concepts by other authors. This publication consists of an alphabetical listing of all epithets used in Armillaria or Armillariella, with their basionyms, currently accepted names, and other obligate and facultative synonyms. -
Summary Assessment of Ceratocystis Platani
Supplementary data on Ceratocystis platani Date: October 2020 What is the name of the pest? Taxon: Fungus (Ascomycota, Sordariomycetes, Microascaceae) Pest: Ceratocystis platani Common name: canker stain of plane, plane wilt Synonym: Ceratocystis fimbriata f. sp. platani What initiated this document? The UK has had a Protected Zone (PZ) for this pest since 2014. With the re-classification of Ceratocystis platani as a Union quarantine pest, protected zone designations have been revoked for this pest and the implications of this needed to be assessed. This paper provides an update to aspects of the UK PRA on Ceratocystis platani, (Woodhall, 2013). Background Ceratocystis platani is indigenous to eastern USA. The organism was introduced from the USA to several Southern European ports at the end of the Second World War and spread rapidly in Italy and more slowly in France. In 2019 the pest was reported for the first time in areas of northern France. Ceratocystis platani infects trees through existing wounds or other injuries made in the branches, trunk or in the roots. The natural spread between trees is thought to be slow, with spread of propagules and infected sawdust potentially being weather driven by wind and wind-driven rain. It is possible that it can also spread via root contact between trees 1 (root anastomosis) or via insects, birds and other animals moving from one wound to another, although no vector is directly associated with the pathogen (EFSA PLH Panel, 2016). Water courses are also implicated in the spread, as they can carry spores or infected wood or wood remains such as sawdust or insect frass, and if tree roots are injured, the infection can enter the tree. -
Ceratocystidaceae Exhibit High Levels of Recombination at the Mating-Type (MAT) Locus
Accepted Manuscript Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus Melissa C. Simpson, Martin P.A. Coetzee, Magriet A. van der Nest, Michael J. Wingfield, Brenda D. Wingfield PII: S1878-6146(18)30293-9 DOI: 10.1016/j.funbio.2018.09.003 Reference: FUNBIO 959 To appear in: Fungal Biology Received Date: 10 November 2017 Revised Date: 11 July 2018 Accepted Date: 12 September 2018 Please cite this article as: Simpson, M.C., Coetzee, M.P.A., van der Nest, M.A., Wingfield, M.J., Wingfield, B.D., Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus, Fungal Biology (2018), doi: https://doi.org/10.1016/j.funbio.2018.09.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Title 2 Ceratocystidaceae exhibit high levels of recombination at the mating-type ( MAT ) locus 3 4 Authors 5 Melissa C. Simpson 6 [email protected] 7 Martin P.A. Coetzee 8 [email protected] 9 Magriet A. van der Nest 10 [email protected] 11 Michael J. Wingfield 12 [email protected] 13 Brenda D. -
Patterns of Coevolution Between Ambrosia Beetle Mycangia and the Ceratocystidaceae, with Five New Fungal Genera and Seven New Species
Persoonia 44, 2020: 41–66 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.02 Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species C.G. Mayers1, T.C. Harrington1, H. Masuya2, B.H. Jordal 3, D.L. McNew1, H.-H. Shih4, F. Roets5, G.J. Kietzka5 Key words Abstract Ambrosia beetles farm specialised fungi in sapwood tunnels and use pocket-like organs called my- cangia to carry propagules of the fungal cultivars. Ambrosia fungi selectively grow in mycangia, which is central 14 new taxa to the symbiosis, but the history of coevolution between fungal cultivars and mycangia is poorly understood. The Microascales fungal family Ceratocystidaceae previously included three ambrosial genera (Ambrosiella, Meredithiella, and Phia Scolytinae lophoropsis), each farmed by one of three distantly related tribes of ambrosia beetles with unique and relatively symbiosis large mycangium types. Studies on the phylogenetic relationships and evolutionary histories of these three genera two new typifications were expanded with the previously unstudied ambrosia fungi associated with a fourth mycangium type, that of the tribe Scolytoplatypodini. Using ITS rDNA barcoding and a concatenated dataset of six loci (28S rDNA, 18S rDNA, tef1-α, tub, mcm7, and rpl1), a comprehensive phylogeny of the family Ceratocystidaceae was developed, including Inodoromyces interjectus gen. & sp. nov., a non-ambrosial species that is closely related to the family. Three minor morphological variants of the pronotal disk mycangium of the Scolytoplatypodini were associated with ambrosia fungi in three respective clades of Ceratocystidaceae: Wolfgangiella gen. -
Identification of the Armillaria Root Rot Pathogen in Ethiopian
For. Path. 34 (2004) 133–145 Ó 2004 Blackwell Verlag, Berlin ISSN 1437–4781 Identification of the Armillaria root rot pathogen in Ethiopian plantations By A. Gezahgne1, M. P. A. Coetzee2, B. D. Wingfield2, M. J. Wingfield1 and J. Roux1,3 Departments of 1Plant Pathology and Microbiology, and 2Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. 3E-mail: [email protected] (for correspondence) Summary Armillaria root rot is a well-known disease on a wide range of plants, world-wide. In Ethiopia, the disease has previously been reported on Pinus spp., Coffea arabica and on various native hardwoods. The causal agent of the disease has been attributed to Armillaria mellea, a species now known to represent a complex of many different taxa. The aim of this study was to determine the extent of Armillaria root rot and the identity of the Armillaria sp. in Ethiopian plantations. As part of a plantation disease survey in 2000 and 2001, samples were collected in plantations at and around Munessa Shashemene, Wondo Genet, Jima, Mizan and Bedele, in south and south-western Ethiopia. Basidiocarps were collected and their morphology studied. Morphological identification was confirmed by sequencing the intergenic spacer (IGS-1) region of the ribosomal rRNA operon and comparing data with published sequences of Armillaria spp. Armillaria isolates were collected from Acacia abyssinica, Pinus patula, Cedrela odorata and Cordia alliodora trees. Sporocarps were found on stumps of native Juniperus excelsa. Basidiocarp morphology and sequence data suggested that the fungus in Ethiopia is similar to that causing disease of Pinus spp. -
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS KENYA January 2007 Forest Resources Development Service Working Paper FBS/20E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Kenya. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Kenya TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases.................................................................................................................. -
Co-Adaptations Between Ceratocystidaceae Ambrosia Fungi and the Mycangia of Their Associated Ambrosia Beetles
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles Chase Gabriel Mayers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Biology Commons, Developmental Biology Commons, and the Evolution Commons Recommended Citation Mayers, Chase Gabriel, "Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles" (2018). Graduate Theses and Dissertations. 16731. https://lib.dr.iastate.edu/etd/16731 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Co-adaptations between Ceratocystidaceae ambrosia fungi and the mycangia of their associated ambrosia beetles by Chase Gabriel Mayers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Thomas C. Harrington, Major Professor Mark L. Gleason Larry J. Halverson Dennis V. Lavrov John D. Nason The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Chase Gabriel Mayers, 2018. -
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.