Key Anatomical Landmarks for Middle Fossa Surgery: a Surgical Anatomy Study

Total Page:16

File Type:pdf, Size:1020Kb

Key Anatomical Landmarks for Middle Fossa Surgery: a Surgical Anatomy Study LABORATORY INVESTIGATION J Neurosurg 131:1561–1570, 2019 Key anatomical landmarks for middle fossa surgery: a surgical anatomy study Maria Peris-Celda, MD, PhD,1 Avital Perry, MD,1 Lucas P. Carlstrom, MD, PhD,1 Christopher S. Graffeo, MD,1 Colin L. W. Driscoll, MD,1,2 and Michael J. Link, MD1,2 Departments of 1Neurologic Surgery and 2Otolaryngology–Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota OBJECTIVE Middle fossa surgery is challenging, and reliable surgical landmarks are essential to perform accurate and safe surgery. Although many descriptions of the middle fossa components have been published, a clinically practical description of this very complex anatomical region is lacking. Small structure arrangements in this area are often not well visualized or accurately demarcated with neuronavigation systems. The objective is to describe a “roadmap” of key surgi- cal reference points and landmarks during middle fossa surgery to help the surgeon predict where critical structures will be located. METHODS The authors studied 40 dry skulls (80 sides) obtained from the anatomical board at their institution. Mea- surements of anatomical structures in the middle fossa were made with a digital caliper and a protractor, taking as refer- ence the middle point of the external auditory canal (MEAC). The results were statistically analyzed. RESULTS The petrous part of the temporal bone was found at a mean of 16 mm anterior and 24 mm posterior to the MEAC. In 87% and 99% of the sides, the foramen ovale and foramen spinosum, respectively, were encountered deep to the zygomatic root. The posterior aspect of the greater superficial petrosal nerve (GSPN) groove was a mean of 6 mm anterior and 25 mm medial to the MEAC, nearly parallel to the petrous ridge. The main axis of the IAC projected to the root of the zygoma in all cases. The internal auditory canal (IAC) porus was found 5.5 mm lateral and 4.5 mm deep to the lateral aspect of the trigeminal impression along the petrous ridge (mean measurement values). A projection from this point to the middle aspect of the root of the zygoma, being posterior to the GSPN groove, could estimate the orienta- tion of the IAC. CONCLUSIONS In middle fossa approaches, the external acoustic canal is a reliable reference before skin incision, whereas the zygomatic root becomes important after the skin incision. Deep structures can be related to these 2 ana- tomical structures. An easy method to predict the location of the IAC in surgery is described. Careful study of the preop- erative imaging is essential to adapt this knowledge to the individual anatomy of the patient. https://thejns.org/doi/abs/10.3171/2018.5.JNS1841 KEYWORDS arcuate eminence; greater petrosal nerve; internal auditory canal; middle fossa surgery; surgical anatomy HE middle cranial fossa encompasses one of the this region is lacking. The objective of this study is to de- most intriguing and complicated anatomical areas scribe a clear “roadmap” of surgical anatomical structures in skull base surgery. The middle fossa comprises in the middle fossa in order to aid the skull base surgeon Tthe area between the sphenoid ridge anteriorly and the precisely and accurately, particularly in identifying the in- petrous ridge posteriorly. Its concave shape is designed to ternal auditory canal (IAC). cradle the temporal lobe. Numerous neurovascular struc- tures pass through the middle fossa, and the anatomy is further complicated by the structures contained within Methods the temporal bone. Several anatomical studies have been Forty dry skulls (80 sides) from the anatomical board at performed in this region from the classical and surgical our institution were used for measurements. The study was standpoint.9,18,24,26 However, a clearly understandable study previously approved by the biospecimens subcommittee of of practical, anatomical references to guide the surgeon in our institutional review board. One side was excluded from ABBREVIATIONS AE = arcuate eminence; EAC = external auditory canal; FO = foramen ovale; FS = foramen spinosum; GSPN = greater superficial petrosal nerve; IAC = internal auditory canal; MEAC = middle point of the EAC. SUBMITTED January 6, 2018. ACCEPTED May 29, 2018. INCLUDE WHEN CITING Published online November 9, 2018; DOI: 10.3171/2018.5.JNS1841. ©AANS 2019, except where prohibited by US copyright law J Neurosurg Volume 131 • November 2019 1561 Unauthenticated | Downloaded 10/06/21 08:14 AM UTC Peris-Celda et al. measurements from the external auditory canal (EAC) TABLE 1. Measurements opening because of ear canal malformation. Measure- Measurement Mean (range) ments were taken with a digital caliper and a protractor. Measurements from the middle point of the EAC (MEAC) A* [A] 36.6 (27.1–43.9) opening to osseous references in the skulls were recorded. B† [B] 24 (11.9–38.1) Additionally, the lateral projections in the skull of the pe- C‡ [C] 39.6 (29 – 47.8) trous apex, posterior aspect of the greater superficial pe- D§ [D] 23.5 (18.9–27.1) trosal nerve (GSPN) groove, middle point of the foramen PPP–MEAC 24 (16.9–32.5) ovale (FO), middle point of the foramen spinosum (FS), APP–MEAC 15.8 (7.2–23.5) and middle point of the arcuate eminence (AE) were stud- ied in relationship with the MEAC. The distance between AE–MEAC 6.6 (2.4–11.6) the lateral aspect of the middle fossa (lateral aspect of the GSPN–MEAC [1] 6.3 (1.6–14) temporal bone squama) and these anatomical references FS–MEAC [2] 14.7 (5.8–20.9) was measured (Table 1, Fig. 1). The relationship between FO–MEAC [3] 20.6 (9.6–29) the EAC and the IAC, the angles between the IAC and the TRIG–IAC [4] 5.5 (2.2–10.6) GPSN, and the orientation of the main axis of the IAC in LAT–FO [5] 30.1 (24.4–39.8) relationship to the zygomatic root were studied. A straight 1-mm metallic probe was used to aid with the projections LAT–FS [6] 25.6 (17.8–33.1) and angle measurements involving the IAC and the EAC. LAT–GSPN [7] 25.4 (14.7–33.1) The IAC opening in the posterior fossa in relationship to LAT–AE [8] 20.2 (15–29) the trigeminal impression in the petrous ridge was stud- VERTICAL IAC [9] 4.5 (2.9–6.9) ied. Transillumination techniques were utilized to study LAT–IAC 34.5 (26.6–42.2) the tegmen tympani area. Two formalin-fixed specimens IAC-GSPN MIN [m] 39° (20°–60°) were used to illustrate the anatomy and the technique to IAC-GSPN MAX [M] 78.6° (45°–90°) find the IAC in the middle fossa. Descriptive statistics of the anatomical variables (mean and range) are reported. AZR–FO 2.9 (−6 to 12.4)¶ AZR–FS 8.8 (−1.3 to 16.2)¶ Results AZR–GSPN 17.3 (4.9–24.1) AZR–APP 7.7 (−2.2 to 15.9)¶ The middle fossa, between the anterior and posterior cranial fossae, is a concave structure formed by a medial AE = arcuate eminence; APP = anterior petrosal point; AZR = anterior point part and paired lateral parts. The medial part is centered of the zygomatic root; FO = foramen ovale; FS = foramen spinosum; GSPN = on the sella turcica. The lateral part has an anterior wall posterior aspect of the greater petrosal nerve groove; IAC = internal auditory canal; IAC-GSPN MAX = maximum angle between the IAC and the GSPN; and a floor. The anterior wall is formed by the sphenoid IAC-GSPN MIN = minimum angle between the IAC and the GSPN; LAT = ridge superiorly, which belongs to the lesser sphenoid lateral aspect of the craniotomy; PPP = posterior petrosal point; TRIG = lateral wing, and the anterior aspect of the greater sphenoid wing aspect of the trigeminal impression; VERTICAL IAC = vertical distance or inferiorly. The floor is an almost flat surface tilted ante- depth from the petrous ridge to the IAC. riorly and formed by part of the greater sphenoid wing, Values are in millimeters except for IAC-GSPN MIN and IAC-GSPN MAX, a portion of the temporal bone squama, and the superior which are in degrees, as indicated. The numbers and letters in brackets (e.g., aspect of the petrous part of the temporal bone. The pos- [A]) correspond to the references in green in Fig. 1. * Distance from the MEAC to the anterior aspect of the squamous suture. terior limit of the middle fossa is the petrous ridge, where † Distance from the MEAC to the projection of the posterior aspect of the the petrous temporal bone continues inferiorly at an ap- squamous suture. proximately 90° angle and forms the lateral border of the ‡ Distance from the superior aspect of the EAC to the superior aspect of the posterior fossa (Figs. 1 and 2). squamous suture. The zygomatic root forms part of the temporal bone § Distance from the MEAC to the anterior aspect of the zygomatic root. and is the posterior attachment of the zygoma. It is located ¶ Negative numbers mean that the structure was found anterior to the anterior immediately anterior to the EAC opening and has an ir- point of the zygomatic root. regular triangular shape seen from above, with its wide base attached to the squamous temporal bone. In all skulls studied, we found that if we drew a line between the IAC the petrous ridge, which has 3 important implications: it opening and the EAC opening, both openings could be is the limit between the middle and posterior fossa, the found in the same coronal plane. This means that if we location of the superior petrosal sinus, and the attachment could look into the EAC laterally through the tissue, we of the tentorium.
Recommended publications
  • MR Imaging of the Orbital Apex
    J Korean Radiol Soc 2000;4 :26 9-0 6 1 6 MR Imaging of the Orbital Apex: An a to m y and Pat h o l o g y 1 Ho Kyu Lee, M.D., Chang Jin Kim, M.D.2, Hyosook Ahn, M.D.3, Ji Hoon Shin, M.D., Choong Gon Choi, M.D., Dae Chul Suh, M.D. The apex of the orbit is basically formed by the optic canal, the superior orbital fis- su r e , and their contents. Space-occupying lesions in this area can result in clinical d- eficits caused by compression of the optic nerve or extraocular muscles. Even vas c u l a r changes in the cavernous sinus can produce a direct mass effect and affect the orbit ap e x. When pathologic changes in this region is suspected, contrast-enhanced MR imaging with fat saturation is very useful. According to the anatomic regions from which the lesions arise, they can be classi- fied as belonging to one of five groups; lesions of the optic nerve-sheath complex, of the conal and intraconal spaces, of the extraconal space and bony orbit, of the cav- ernous sinus or diffuse. The characteristic MR findings of various orbital lesions will be described in this paper. Index words : Orbit, diseases Orbit, MR The apex of the orbit is a complex region which con- tains many nerves, vessels, soft tissues, and bony struc- Anatomy of the orbital apex tures such as the superior orbital fissure and the optic canal (1-3), and is likely to be involved in various dis- The orbital apex region consists of the optic nerve- eases (3).
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Results Description of the SKULLS. the Overall Size of Both Skulls Was Considered to Be Within Normal Limits for Their Ethnic
    Ossification Defects and Craniofacial Morphology In Incomplete Forms of Mandibulofacial Dysostosis A Description of Two Dry Skulls ERIK DAHL, D.D.S., DR. ODONT. ARNE BJORK, D.D.S., ODONT. DR. Copenhagen, Denmark The morphology of two East Indian dry skulls exhibiting anomalies which were suggested to represent incomplete forms of mandibulofacial dysostosis is described. Obvious although minor ossification anomalies were found localized to the temporal, sphenoid, the zygomatic, the maxillary and the mandibular bones. The observations substantiate the concept of the regional and bilateral nature of this malformation syndrome. Bilateral orbital deviations, hypoplasia of the malar bones, and incomplete zygomatic arches appear to be hard tissue aberrations which may be helpful in exami- nation for subclinical carrier status. Changes in mandibular morphology seem to be less distinguishing features in incomplete or abortive types of mandibulofacial dysostosis. KEY WORDS craniofacial problems, mandible, mandibulofacial dysostosis, maxilla, sphenoid bone, temporal bone, zygomatic bone Mandibulofacial dysostosis (MFD) often roentgencephalometric examinations were results in the development of a characteristic made of the skulls, and tomograms were ob- facial disfigurement with considerable simi- tained of the internal and middle ear. Com- larity between affected individuals. However, parisons were made with normal adult skulls the symptoms may vary highly in respect to and with an adult skull exhibiting the char- type and degree, and both incomplete and acteristics of MFD. All of the skulls were from abortive forms of the syndrome have been the same ethnic group. ' reported in the literature (Franceschetti and Klein, 1949; Moss et al., 1964; Rogers, 1964). Results In previous papers, we have shown the DEsCRIPTION OF THE SKULLS.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • CT of Perineural Tumor Extension: Pterygopalatine Fossa
    731 CT of Perineural Tumor Extension: Pterygopalatine Fossa Hugh D. Curtin1.2 Tumors of the oral cavity and paranasal sinuses can spread along nerves to areas Richard Williams 1 apparently removed from the primary tumor. In tumors of the palate, sinuses, and face, Jonas Johnson3 this "perineural" spread usually involves the maxillary division of the trigeminal nerve. The pterygopalatine fossa is a pathway of the maxillary nerve and becomes a key landmark in the detection of neural metastasis by computed tomogaphy (CT). Oblitera­ tion of the fat in the fossa suggests pathology. Case material illustrating neural extension is presented and the CT findings are described. Perineural extension is possibly the most insidious form of tumor spread of head and neck malignancy. After invading a nerve, tumor follows the sheath to reach the deeper connections of the nerve, escaping the area of a planned resection. Thus, detection of this form of extension is important in treatment planning and estimation of prognosis. The pterygopalatine fossa (PPF) is a key crossroad in extension along cranial nerve V. The second branch of the trigeminal nerve passes from the gasserian ganglion through the foramen rotundum into the PPF. Here the nerve branches send communications to the palate, sinus, nasal cavity, and face. Tumor can follow any of these routes proximally into the PPF and eventually to the gasserian ganglion in the middle cranial fossa. The PPF contains enough fat to be an ideal subject for computed tomographic (CT) evaluation. Obliteration of this fat is an important indicator of pathology, including perineural tumor spread. Other signs of perineural extension include enlargement of foramina, increased enhancement in the region of Meckel cave (gasserian ganglion), and atrophy of the muscles innervated by the trigeminal nerve.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Metoptic Canal and Warwick's Foramen: Incidence And
    Eurasian J Med 2019; 51(1): 1-4 Original Article Metoptic Canal and Warwick’s Foramen: Incidence and Morphometric Analysis by Several Reference Points in the Human Orbit Arzu Hizay , Muzaffer Sindel ABSTRACT Objective: Several canals and foramens in the human orbit are well known in the literature. However, little is known about some minor canals or structures including metoptic canal and Warwick’s foramen. The aim of the present study was to make morphometric measurements and to determine the incidence of the metoptic canal and Warwick’s foramen in the Turkish population. Materials and Methods: Ninety-two dried human skulls were examined. All skulls were obtained from the Turkish population and collection of the Anatomy Department of the Akdeniz University. The metoptic canal and Warwick’s foramen were identified in the skulls. Incidence of these structures and diameters were determined. Morphometric measurements were made using various reference points in the orbit. Results: Of the 92 dry human skulls, the metoptic canal was detected in 20 of them. This canal was detected unilaterally. The metoptic canal was observed in 11 (11.9%) dry skulls in the right side, whereas it was ob- served in 9 (9.7%) dry skulls in the left side. There were no statistically significant differences according to the side for any of the measurements recorded (p>0.05). The Warwick’s foramen was observed in 12 (13.0%) skulls of all dry skulls. This foramen was also present unilaterally and was right sided in 7 (7.6%) skulls and left sided in 5 (5.4%) skulls.
    [Show full text]
  • Topographical Anatomy and Morphometry of the Temporal Bone of the Macaque
    Folia Morphol. Vol. 68, No. 1, pp. 13–22 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Topographical anatomy and morphometry of the temporal bone of the macaque J. Wysocki 1Clinic of Otolaryngology and Rehabilitation, II Medical Faculty, Warsaw Medical University, Poland, Kajetany, Nadarzyn, Poland 2Laboratory of Clinical Anatomy of the Head and Neck, Institute of Physiology and Pathology of Hearing, Poland, Kajetany, Nadarzyn, Poland [Received 7 July 2008; Accepted 10 October 2008] Based on the dissections of 24 bones of 12 macaques (Macaca mulatta), a systematic anatomical description was made and measurements of the cho- sen size parameters of the temporal bone as well as the skull were taken. Although there is a small mastoid process, the general arrangement of the macaque’s temporal bone structures is very close to that which is observed in humans. The main differences are a different model of pneumatisation and the presence of subarcuate fossa, which possesses considerable dimensions. The main air space in the middle ear is the mesotympanum, but there are also additional air cells: the epitympanic recess containing the head of malleus and body of incus, the mastoid cavity, and several air spaces on the floor of the tympanic cavity. The vicinity of the carotid canal is also very well pneuma- tised and the walls of the canal are very thin. The semicircular canals are relatively small, very regular in shape, and characterized by almost the same dimensions. The bony walls of the labyrinth are relatively thin.
    [Show full text]
  • Compact Bone Spongy Bone
    Spongy bone Compact bone © 2018 Pearson Education, Inc. 1 (b) Flat bone (sternum) (a) Long bone (humerus) (d) Irregular bone (vertebra), right lateral view (c) Short bone (talus) © 2018 Pearson Education, Inc. 2 Articular cartilage Proximal epiphysis Spongy bone Epiphyseal line Periosteum Compact bone Medullary cavity (lined by endosteum) Diaphysis Distal epiphysis (a) © 2018 Pearson Education, Inc. 3 Trabeculae of spongy bone Osteon (Haversian Perforating system) (Volkmann’s) canal Blood vessel continues into medullary cavity containing marrow Blood vessel Lamellae Compact bone Central (Haversian) canal Perforating (Sharpey’s) fibers Periosteum Periosteal blood vessel (a) © 2018 Pearson Education, Inc. 4 Lamella Osteocyte Canaliculus Lacuna Central Bone matrix (Haversian) canal (b) © 2018 Pearson Education, Inc. 5 Osteon Interstitial lamellae Lacuna Central (Haversian) canal (c) © 2018 Pearson Education, Inc. 6 Articular cartilage Hyaline Spongy cartilage bone New center of bone growth New bone Epiphyseal forming plate cartilage Growth Medullary in bone cavity width Bone starting Invading to replace Growth blood cartilage in bone vessels length New bone Bone collar forming Hyaline Epiphyseal cartilage plate cartilage model In an embryo In a fetus In a child © 2018 Pearson Education, Inc. 7 Bone growth Bone grows in length because: Articular cartilage 1 Cartilage grows here. Epiphyseal plate 2 Cartilage is replaced by bone here. 3 Cartilage grows here. © 2018 Pearson Education, Inc. 8 Bone remodeling Growing shaft is remodeled as: Articular cartilage Epiphyseal plate 1 Bone is resorbed by osteoclasts here. 2 Bone is added (appositional growth) by osteoblasts here. 3 Bone is resorbed by osteoclasts here. © 2018 Pearson Education, Inc. 9 Hematoma External Bony callus callus of spongy bone New Internal blood callus vessels Healed (fibrous fracture tissue and Spongy cartilage) bone trabecula 1 Hematoma 2 Fibrocartilage 3 Bony callus 4 Bone remodeling forms.
    [Show full text]
  • Metrical and Non-Metrical Study of Anterior Clinoid Proces in Adult Indian Skulls Swetha.S Saveetha Dental College and Hospital
    Swetha.S /J. Pharm. Sci. & Res. Vol. 7(9), 2015, 708-710 Metrical and Non-Metrical Study of Anterior Clinoid Proces in Adult Indian Skulls Swetha.S Saveetha dental college and hospital Abstract:- Background:-The complex architecture of the anterior clinoid process (ACP), which is usually removed during the surgical elimination of tumors or aneurysms of sellar region, has surgical importance. For effective clinoidectomy, a neurosurgeon must have the prior knowledge of anatmoical variations of ACP. Aim And Objective:- The purpose of this study was to investigate the dimensions and variation in the shape of ACP in dry adult skulls of Indian origin. Methods:- 30 dry adult Indian skulls will be observed .Basal width, length and thickness of ACP will be measured on both the sides using Vernier caliper. Non-metrical parameters such as shape, direction of ACP will be recorded. Reason:- Special attention should be paid to the anatomic landmarks indicating the relationship between the anterior clinoid process and adjacent structures. Beside that, pneumatization of the anterior clinoid process should be evaluated preoperatively with computed tomography to avoid complications. Keywords:- Anterior clinoid process, anatomical variations , sphenoid bone, anterior clinoidectomy INTRODUCTION:- A. Basal width- measured from lateral margin of optic The Sphenoid bone, an unpaired pneumatic bone form parts foramen to lateral margin of anterior clinoid process, on of anterior and middle cranial fossae of skull.It consists of a both right and left side.(AB line) central body,greater and lesser wings and two pterygoid B. Length of anterior clinoid process - perpendicular length processes.The lesser wings end medially to form eminences taken between apex and base.(CD line) termed as anterior clinoid processes(ACP) which are attached to the free margin of tentorium-cerebelli.(1) The anatomical relationships of the ACP, ON, chiasm, internal carotid artery (ICA), ophthalmic artery (OA) and falciform ligament (FL) are complex and represent important variations.
    [Show full text]
  • (Frontal Sinus, Coronal Suture) Parietal Bone
    Axial Skeleton Skull (cranium) Frontal Bone (frontal sinus, coronal suture) Parietal Bone (sagittal suture) Sphenoid Bone (sella turcica, sphenoid sinus) Temporal Bone (mastoid process, styloid process, external auditory meatus) malleus incus stapes Occipital Bone (occipital condyles, foramen magnum) Ethmoid Bone (nasal conchae, cribriform plate, crista galli, ethmoid sinus, perpendicular plate) Lacrimal Bone Zygomatic Bone Maxilla Bone (hard palate, palatine process, maxillary sinus) Palatine Bone Nasal Bone Vomer Bone Mandible Hyoid Bone Vertebral Column (general markings: body, vertebral foramen, transverse process, spinous process, superior and inferior articular processes) Cervical Vertebrae (transverse foramina) Atlas (absence of body, "yes" movement) Axis (dens, "no" movement) Thoracic Vertebrae (facets on body and transverse processes) Lumbar Vertebrae (largest) Sacral Vertebrae 5 fused vertebrae) Coccyx (3 to 5 vestigial vertebrae, body only on most) Bony Thorax Ribs (costal cartilage, true ribs, false ribs, floating ribs, facets) Sternum Manubrium Body Xiphoid Process Appendicular Skeleton Upper Limb Pectoral Girdle Scapula (acromion, coracoid process, glenoid cavity, spine) Clavicle Upper Arm Humerus (head, greater tubercle, lesser tubercle, olecranon fossa) Forearm Radius Ulna (olecranon process) Hand Carpals Metacarpals Phalanges Lower Limb Pelvic Girdle Os Coxae (sacroiliac joint, acetabulum, obturator foramen, false pelvis, difference between male and female pelvis) Ilium (iliac crest) Ischium (ischial tuberosity) Pubis (pubic symphysis) Thigh Femur (head, neck) Patella Lower Leg Tibia Fibula Foot Tarsals Metatarsals Phalanges.
    [Show full text]
  • The Sphenoid. Isn’T It the Most Interesting-Looking Bone You’Ve Ever Seen?
    The sphenoid. Isn’t it the most interesting-looking bone you’ve ever seen? It kind of looks like a Or a butterfly. bat, doesn’t it? The sphenoid articulates with 12 bones, both in the neurocranium and facial skeleton. The sphenoid is not just present in human skeletons, but also in mammalian ones. : A human has 1 Factoid sphenoid bone, but a dog has 8 bones that make up its sphenoid. The sphenoid is one of the 8 bones of the neurocranium (bones that protect the brain). It is the keystone* bone at the base of the skull. *In architecture, a keystone is the piece at the apex of an arch, locking all the other pieces together and bearing the weight of it all. The body of the sphenoid is the central part of the bone. It is a hollowed-out, cubical portion of the bone that forms the sphenoidal sinuses. The body is home to a deep depression known as the Sella turcica, which houses the pituitary gland. Factoid: sella turcica is Latin for “Turkish saddle” because of its resemblance to the saddles used by Turks, which had supports in the front and back. The greater wings of the sphenoid articulate with several bones, including the frontal, temporal, parietal, and zygomatic. They also serve as the attachment site for the temporalis muscles. The lesser wings are thin, triangular plates located above the greater wings. They, along with the body, form the optic canal. The optic nerve (II) passes through the optic canal to the eyes. The lateral and medial pterygoid plates project downward from the sphenoid body to give shape to the nasal cavity.
    [Show full text]