The Cryosphere, 8, 977–989, 2014 www.the-cryosphere.net/8/977/2014/ doi:10.5194/tc-8-977-2014 © Author(s) 2014. CC Attribution 3.0 License. Glacier changes in the Karakoram region mapped by multimission satellite imagery M. Rankl1, C. Kienholz2, and M. Braun1 1Institute of Geography, University of Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany 2Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7320, USA Correspondence to: M. Rankl (
[email protected]) Received: 30 June 2013 – Published in The Cryosphere Discuss.: 13 August 2013 Revised: 27 March 2014 – Accepted: 11 April 2014 – Published: 23 May 2014 Abstract. Positive glacier-mass balances in the Karakoram 1 Introduction region during the last decade have fostered stable and ad- vancing glacier termini positions, while glaciers in the ad- jacent mountain ranges have been affected by glacier reces- Meltwater from snow cover and glaciers in high mountain ar- sion and thinning. In addition to fluctuations induced solely eas is a major source for downstream water resources (Gard- by climate, the Karakoram is known for a large number of ner et al., 2013; Kaser et al., 2010). Glaciers in the Karako- surge-type glaciers. The present study provides an updated ram and western Himalaya contribute to the discharge of and extended inventory on advancing, stable, retreating, and the Indus River and its tributaries, which account for 90 % surge-type glaciers using Landsat imagery from 1976 to of Pakistan’s food production and 13 GW of hydroelectric- 2012. Out of 1219 glaciers the vast majority showed a sta- ity (Cook et al., 2013; Qureshi, 2011).