Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells1

Total Page:16

File Type:pdf, Size:1020Kb

Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells1 [CANCER RESEARCH 51, 2710-2719, May 15, 1991] Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells1 Chi-Wei Lin,2 Janine R. Shulok, Sandra D. Kirley, Louis Cincotta, and James W. Foley Urology Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 [C-W. L., J. R. S., S. D. KJ, and Rowland Institute for Science, Cambridge, Massachusetts 02142 ¡L,C., J. W. F.] ABSTRACT tosensitizers with high tumor selectivity will enable effective treatment of multiple, infiltratili!*, and invisible tumors, thus Nile blue derivatives have been shown to be potentially effective expanding the utility of PDT as a useful tool in cancer therapy photosensitizers for photodynamic therapy of malignant tumors. Results with intent to cure. Active research is under way to search for of a previous study suggested that the high accumulation of these dyes more tumor-selective sensitizers (4-6) and to improve the sen- in cells may be the result of dye aggregation, partition in membrane lipids, and/or sequestration in subcellular organelles. In this report, sitizer delivery system for better tumor targeting (7-10). results of studies are presented from an investigation of the subcellular Several early studies with animal tumor models have shown localization and mechanism of accumulation of these dyes in cells in that benzophenoxazines, including several Nile blue analogues, vitro. A video-enhanced fluorescence microscopy was used, and a punctate constitute a special class of dyes that are selectively localized in pattern of fluorescence was seen, most of which was localized in the tumors (11-15). Results of recent work have demonstrated that perinuclear region with extracellular dye concentrations between 1 to 100 Nile blue A can be converted to derivatives with substantially UM.These particles resembled characteristic particles identified by stand increased photoactivity (16-18). Furthermore, structural mod ard lysosomal dyes. At higher dye concentrations (1 pM or above), ifications of the parent dye can result in analogues having fluorescence in the perinuclear region was too intense to resolve into substantially altered pKa values and hydrophobicities, proper discrete cellular structures, while fluorescence in other cellular structures including mitochondria and cytomembranes was visible. At even higher ties which may be significant in dye localization in tumors. In dye concentrations (10-100 MM).Nile blue derivatives were seen with a a previous study (19, 20), we showed that Nile blue derivatives having high "O^ yields are effective in mediating photocytotox- light microscope as blue particles, the size and location of which resem icity in vitro. Derivatives with "O2 quantum yields of 35-80% bled the punctate fluorescence described above. Results which further suggest that the lysosome is the main site of dye localization include (a) can mediate a 90% in vitro photocytotoxicity with extracellular histochemical staining of dye-loaded cells with the lysosomal marker dye concentrations as low as 5 x 10~8M. This is about 3 orders enzyme acid phosphatase, which showed similar localization of the lower than with hematoporphyrin derivative. The finding thus enzyme-staining and dye-containing particles, (b) phototreatment of dye- suggests that these compounds are potentially effective photo loaded cells which obliterated the majority of the acid phosphatase- sensitizers for PDT. The cellular uptake of Nile blue derivatives stained particles, and (c) treatments with agents affecting the membrane is rapid, highly concentrative, and directly proportional to the pH gradient reduced the uptake and enhanced the efflux of dyes, while extracellular dye concentration. The uptake can proceed at agents that alter cellular membrane potentials had no effect on dye temperatures below 2°C,thus excluding endocytosis or a car accumulation. The uptake of the dyes was partially inhibited by inhibitors rier-mediated mechanism for the uptake. The overall results of oxidative phosphorylation indicating that at least part of the process is energy dependent. These findings, together with previous results show suggest that high cellular accumulation of these dyes may result ing that the cellular uptake of these dyes is highly concentrative and from dye aggregation, partition in membrane lipids, and/or proportional to the extracellular dye concentration over a wide range, are sequestration in certain intracellular organelles (20). consistent with the hypothesis that the dyes are mainly localized in the In the present study, the intracellular localization of Nile lysosomes via an ion-trapping mechanism. Results of the present study blue derivatives and the mechanism of their accumulation in also suggest that the lysosomes may be an intracellular target for pho human bladder carcinoma cells were examined. Findings from todynamic killing of tumor cells mediated by Nile blue photosensitizers this study suggest that the lysosome is the main site of localiza and that lysosomotropic photosensitization may be a strategy for effective tion and ion trapping is likely the process by which Nile blue and selective destruction of tumor cells. dyes are accumulated in cells. INTRODUCTION MATERIALS AND METHODS PDT' is an investigational treatment procedure for malignant Nile Blue Derivatives. Previous reports (16-18) indicated that struc tumors (1-3). The effectiveness of the treatment relies, to a tural modifications of Nile blue A yielded derivatives with enhanced great extent, on the tumor selectivity of the photosensitizer photoactivity as well as different photochemical properties. The six Nile blue derivatives used in this study and their designations are shown which, upon photoactivation, imparts a photodynamic action in Table 1. The photochemical properties of these derivatives have been for cytotoxicity and tumor destruction. The availability of pho- described previously (16-20). All six derivatives were examined in subcellular localization studies using fluorescence and light microscopy. Reccived 12/19/90; accepted 3/6/91. The costs of publication of this article were defrayed in part by the payment In studies involving uptake and sequestering mechanisms, derivatives of page charges. This article must therefore be hereby marked advertisement in NBA and NBA-6I were used to represent derivatives with different pK. accordance with 18 U.S.C. Section 1734 solely to indicate this fact. values and hydrophobicities. In studies involving photodynamic treat 1This work was supported by grants from the National Cancer Institute (CA ment of the cell, derivatives with moderate photoactivity, NBA-6I and 32259), the Beinecke Foundation, the Thomas Anthony Pappas Charitable Foun NBS-6I, were used. dation, and the Rowland Institute for Science. 2To whom requests for reprints should be addressed, at Urology Research Tumor Cells. The cell line used for this study, MGH-U1, is a Laboratory, Massachusetts General Hospital, Boston, MA 02114. subculture of I 24. a well established human bladder carcinoma cell 3The abbreviations used are: PDT, photodynamic therapy; PBS. phosphate- line (21). The cells were grown routinely in McCoy's 5A medium buffered saline at pH 7.4: DPBS. Dulbecco's phosphate-buffered saline at pH 7.4; 'Oi. singlet oxygen; SIT, silicon-intensified-target; TPP, tetraphenyl-phos- supplemented with 5% fetal calf serum. phonium: FCCP.p-trifluoromethoxyphenyl hydrazone; 2,4-DNP, 2,4-dinitrophe- Microscopic Observations of Nile Blue Derivatives in Cells. Both nol. The designations of the Nile blue derivatives are listed in Table 1. fluorescence and light microscopies were used to examine the subcel- 2710 Downloaded from cancerres.aacrjournals.org on September 23, 2021. © 1991 American Association for Cancer Research. LYSOSOMAL LOCALIZATION OF NILE BLUE PHOTOSENS1TIZERS Table 1 Structures and designation of Nile blue derivatives used in this study examining dye localizations in cells (22), subconfluent cells grown on with their absorption maxima, pK,, and partition coefficients" coverslips were incubated for 30 min at 37°Cwith 10 ml of dye Designation Structure , (nm) pK* P/ solutions; dye concentrations ranging from 10 MMto 0.1 nM were used. At the end of the incubation, the cells were removed from the dye NBA (C2H5)2N 623 10.0 173 solution, washed with DPBS, mounted on Lab-Tek chambers, and observed under the fluorescence microscope with the aid of a Hama- matsu C2400 SIT camera connected to a high resolution color monitor and a Sony UP-5000 video printer. At dye concentrations >10 MM,Nile blue dyes in ceils can be directly NBA-6I (C2H5)2N 642 6.6 5625 seen under the light microscope. This was performed by incubating subconfluent cells, grown on glass slides, in 100 mm culture dishes with 10 ml of various dye solutions at 20 MM,at 37°Cfor 10-30 min to permit dye uptake. Cells were rinsed to remove residual dye solution, mounted with dye-free medium, and observed immediately under the NBS 645 10.0 356 microscope. In experiments designed to examine the intracellular trans- location of the dyes under conditions of short uptake times and rela tively high dye concentration, cells grown on 22-mm coverslips were incubated with 100 /il of 10-100 MMdye solutions at 37°Cfor 5 min. Cells were rinsed twice to remove residual dye, placed in dye-free NBS-6I 660 6.5 5027 medium, and returned to the incubator for specified times before microscopic observation. Acid Phosphatase Staining. To verify that the blue stained
Recommended publications
  • New Nile Blue Derivatives As NIR Fluorescent Probes and Antifungal Agents †
    Proceedings New Nile Blue Derivatives as NIR Fluorescent Probes † and Antifungal Agents Rui P. C. L. Sousa 1,2, João C. C. Ferreira 1,2, Maria João M. F. Sousa 2 and M. Sameiro T. Gonçalves 1,* 1 Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal 2 Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal * Correspondence: [email protected] † Presented at the 22nd International Electronic Conference on Synthetic Organic Chemistry, 15 November– 15 December 2018; Available Online: https://sciforum.net/conference/ecsoc-22. Published: 14 November 2018 Abstract: The synthesis of four new Nile Blue derivatives with hydrogen, propyl and/or aminopropyl groups as substituents of the amines of 5- and 9-positions is described. Photophysical properties were evaluated in acidified ethanol and aqueous solution at physiological pH. Antifungal activity is also studied through the obtention of MIC values. Keywords: benzo[a]phenoxazines; Nile Blue derivatives; NIR fluorescent probes; antifungal agents 1. Introduction The development of new near-Infrared (NIR) fluorescent probes is a very important issue due to the wide range of applications [1–4]. These probes are an excellent choice to label biological material since its emission will not interfere with the natural fluorescence of biological compounds. Benzo[a]phenoxazinium salts, with Nile Blue being the best known, display fluorescence at around 600 nm and have been used as covalent and non-covalent fluorescent probes for amino acids, proteins and DNA, among other biological material [5–10]. In addition, applications as sensors or agents for photodynamic therapy (PDT) have been described [11,12].
    [Show full text]
  • Nile Blue Is a Basic Dye of the Oxazine Group, Which Has Been Used in Several Microscopic and Histochemical Techniques (4, 6)
    ACTA HISTOCHEM. CYTOCHEM. Vol. 16, No. 3, 1983 LETTER TO THE EDITOR NILE BLUE SULFATE STAINING FOR DEMONSTRATION OF LIPIDS IN FLUORESCENCE MICROSCOPY Nile blue is a basic dye of the oxazine group, which has been used in several microscopic and histochemical techniques (4, 6) . A staining method based on application of Nile blue sulfate was introduced early for the cytochemical demon- stration of lipids (3, 8, 9), showing neutral fats and fatty acids in red and blue, respectively. There is evidence (1, 10) that aqueous solutions of Nile blue sulfate contain the blue cation of the dye, a red oxidation product (Nile red), and the orange-red imino base. According to this view, phospholipids and fatty acids stain blue because they react with the Nile blue cation, meanwhile neutral fats appear in red color. Other observations seem to be in disagreement with this staining mecha- nism (5, 6) . A fluorescence reaction in tissues after staining with Nile blue sulfate and brilliant cresyl blue has been found by Bozzo and Campos Vidal (2). During the course of investigations by using oxazine dyes we have observed that Nile blue sulfate produces a strong fluorescence reaction in lipid droplets. The fat body of Drosophila larvae is a continuous tissue mass which has been chosen as test material because of its abundance in lipidic inclusions. Drosophila hydei testes, surrounded by the fat body, were fixed in 5 % formaldehyde for 1-24 hr, washed, and then immersed in 0.1 mg/ml aqueous Nile blue sulfate (Fluka) for 30 min. After staining, the material was briefly washed and mounted with a drop of water.
    [Show full text]
  • Dna Revealed
    Staining DNA on electrophoresis gels dna revealed Ethidium bromide, a potent mutagen Staining DNA on the move Concentrated In research laboratories, ethidium bromide and similar Recently, several commercial products have emerged that DNA Stain Dil e ute wi volum o th an equal f di use stilled water before fluorescent compounds are normally used to visualise DNA enable the DNA to be seen as it moves across the gel. Sto . re eze N at 4 °C. Do not fre AT N IO IO NA AT L C DUC ENTR GY E E FOR BIOTECHNOLO T HE U ING on a gel. Unfortunately, ethidium bromide and its breakdown Suppliers seldom reveal their composition, but several of NIVERSITY OF READ products are potent mutagens and carcinogens and therefore these stains contain Nile blue sulphate (also known as they should not be used in schools. Such dyes are often flat Nile blue A), a dye which had not previously been noted molecules with similar dimensions to DNA base pairs. When for its ability to stain DNA. Adkins and Burmeister (1996) ethidium bromide binds to DNA, it slips between adjacent give useful guidance as to its use as well as hints for identifying base pairs and stretches the double helix. This explains the other dyes which may be useful for visualising DNA. resources Methylene blue dye’s mutagenic effect — the ‘extra bases’ cause errors when the DNA replicates. In addition, short-wavelength UV light All of the dyes used for staining ‘mobile’ DNA are cationic Yung-Sharp, D. and (which itself is harmful) is required for ethidium bromide — that is, they are positively charged in the gel buffer, at Kumar, R.
    [Show full text]
  • Overcoming Cloning Problems by Staining Agarose Gels with Crystal Violet Instead of Ethidium Bromide in Lactate Dehydrogenase Ge
    Acta Biologica Hungarica 56 (3–4), pp. 389–397 (2005) OVERCOMING CLONING PROBLEMS BY STAINING AGAROSE GELS WITH CRYSTAL VIOLET INSTEAD OF ETHIDIUM BROMIDE IN LACTATE DEHYDROGENASE GENE FROM PLASMODIUM VIVAX AND PLASMODIUM FALCIPARUM D. TURGUT-BALIK,1* V. ÇELIK,1 KATH MORETON2 and R. L. BRADY2 1 Department of Biology, Faculty of Arts and Sciences, University of F°rat, Elaz°=, Turkey 2 Department of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K. (Received: August 9, 2004; accepted: November 9, 2004) In this study, lactate dehydrogenase gene from Plasmodium vivax has been tried to subclone into an expression vector. Some of the Plasmodium falciparum lactate dehydrogenase mutant genes have also been tried to clone and subclone into a vector, but we failed to clone or subclone either of the genes. DNA visualisation in electrophoretic gels typically requires UV radiation and the fluorecent dye ethidium bro- mide. A crystal violet-stained gel was run instead of an ethidium bromide gel and so avoided the use of UV radiation. This enabled us to clone or subclone both Plasmodium vivax lactate dehydrogenase gene and Plasmodium falciparum lactate dehydrogenase mutant genes into any desired vector. Keywords: Plasmodium vivax – Plasmodium falciparum – lactate dehydrogenase – crystal violet – ethid- ium bromide INTRODUCTION Drug resistance of Plasmodium to currently available antimalarials is increasing throughout the world. Discovery of a new, effective, safe, permanent and inexpen- sive antimalarial is essential to overcome this problem. The enzyme lactate dehydrogenase (LDH) has been targeted for the design of a novel antimalarial drug. It is a vital enzyme for the malarial parasite.
    [Show full text]
  • A Consideration of the Term Gloeocystidium
    April 1976 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN 28(1): 123-130 A CONSIDERATION OF THE TERM GLOEOCYSTIDIUM MICHAEL J. LARSEN AND HAROLD H. BURDSALL, JR. Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, U. S. Department of Agriculture, Madison, WI 53705 Structures termed “gloeocystidia” occur in diverse genera throughout the major groups of Homobasidiomycetes and have been variously defined: Ainsworth et al. (1971) state that it is a cystidium “that is thin-walled, usually irregular and with highly refractive hyaline or yellowish contents.” Snell and Dick ( 197 1) list the variant spelling “gleocystidium” with the definition, “A special form of cystidium in Hymenomycetes, of gelatinous or horny consistency and with oily, resinous, or granular contents.” Talbot (1954) and Price (1975) have provided comprehensive statements on the concept of gloeocystidia. We present a condensed version here of Talbot’s (1954, p. 288) definition. Sterile organs, with thin walls; lack of sculpturing and encrustation; contents hyaline to brownish, highly refractive, homogeneous, granular, or oily; aris­ ing from subhymenial and contextual tissues; staining deeply in phloxine and eosine in KOH mounts and becoming brown in iodine solutions. In 1944, Romagnesi proposed the term “macrocystide” for a cystidial form in the “Lactario-russulés,” and these cystidia (macrocystidia) were described as “trés longue . fusiform ou claviforme, souvent terminée par une pointe ou un appendice variable; son pédicule est très long et souvent en connexion avec laticifères de la trame,” and secondly “très souvent, mais non toujours, devient gris-bleu ou noirâtre . au contact de la sulfovanilline. .” Romagnesi’s ( 1944) interpretation of macrocystidia is apparently based primarily on form, and secondarily on the chemical reaction with sulfovanillin.
    [Show full text]
  • Analysis of Polyhydroxyalkanoates Granules in Haloferax Mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy
    polymers Article Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy Verónica Cánovas 1,2,* , Salvador Garcia-Chumillas 1,2, Fuensanta Monzó 1, Lorena Simó-Cabrera 3,4 , Carmen Fernández-Ayuso 1, Carmen Pire 3,4 and Rosa María Martínez-Espinosa 3,4,* 1 Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, 30840 Alhama de Murcia, Spain; [email protected] (S.G.-C.); [email protected] (F.M.); [email protected] (C.F.-A.) 2 Cetec Biotechnology, Avda, Europa 4-5, 30840 Alhama de Murcia, Spain 3 Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690 Alicante, Spain; [email protected] (L.S.-C.); [email protected] (C.P.) 4 Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, 03080 Alicante, Spain * Correspondence: [email protected] (V.C.); [email protected] (R.M.M.-E.); Tel.: +34-968-662-200 (V.C.); +34-965-903-400 (ext. 1258) (R.M.M.-E.) Abstract: Haloferax mediterranei is a haloarchaeon of high interest in biotechnology because it produces Citation: Cánovas, V.; and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress Garcia-Chumillas, S.; Monzó, F.; conditions (limitation of phosphorous in the culture media), among other interesting metabolites Simó-Cabrera, L.; Fernández-Ayuso, (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with C.; Pire, C.; Martínez-Espinosa, R.M.
    [Show full text]
  • Handbook of Biological Dyes and Stains Synthesis and Industrial Applications
    HANDBOOK OF BIOLOGICAL DYES AND STAINS SYNTHESIS AND INDUSTRIAL APPLICATIONS R. W. SABNIS Pfizer Inc. Madison, NJ HANDBOOK OF BIOLOGICAL DYES AND STAINS HANDBOOK OF BIOLOGICAL DYES AND STAINS SYNTHESIS AND INDUSTRIAL APPLICATIONS R. W. SABNIS Pfizer Inc. Madison, NJ Copyright Ó 2010 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, exckpt as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization though payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 kver Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
    [Show full text]
  • Supporting Information a Nile Blue Based Infrared Fluorescent Probe
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014 Supporting information A Nile Blue Based Infrared Fluorescent Probe: Imaging tumors that over-express Cyclooxygenase-2 Benhua Wanga, Jiangli Fan*a, Xianwu Wangb, Hao Zhua, Jingyun Wang*b, Huiying Mua, Xiaojun Penga a State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, China. b Department School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, China. E-mail: [email protected], [email protected]. Content Materials and methods.....................................................................................................................S2 Synthesis of Compounds.................................................................................................................S2 Scheme S1. Synthetic procedures of Niblue-C6-IMC and its intermediates.................................S2 Photophysical properties of Niblue-C6-IMC.................................................................................S3 Cell incubation and staining with Niblue-C6-IMC........................................................................S4 Native-PAGE...................................................................................................................................S4 Fluorescence image of live cell stained with NBD C6-ceramide....................................................S4
    [Show full text]
  • Nile Blue 690 Perchlorate
    PO Box 31126 Dayton, OH 45437 Tel: 937.252.2989 Fax: 937.258.3937 E-mail: [email protected] www.exciton.com NILE BLUE 690 PERCHLORATE Synonym: 5-amino-9-(diethylamino)-benzo[a]phenoxazin-7-ium perchlorate Catalog No.: 06900 CAS No.: 53340-16-2 Chemical Formula: C20H20N3O.CIO4 MW: 417.85 Appearance: Dark green crystals Structure: + (H5C2)2N O NH2 ClO - N 4 Lasing Wavelength Max. Range Pump Source Concentration Abs Fl (nm) (nm) (nm) Solvent (molar) λ-max λ-max _________________________________________________________________________________________________ 705 FL3 Methanol 624e 660m 717 689-750 FL11a Methanol 628e 722 FL Methanol 678 656-719 XeCl(308)110 Methanol 7 x 10-4 710 696-740 XeCl(308)114 Methanol 2.3 x 10-3 698 680-723 XeF(351)154 Ethanol 8 x 10-4(NB690)+ 3.8 x 10-3(R610) 681 662-710 Nd:YAG(532)58 683 Nd:YAG→CV670(647)33 Methanol 2x10-4 109 -3 698 682-715 Nd:YAG(355) MeOH/H2O,3/2 1.5 x 10 (NB690), 1.5 x 10-4(R640) 111 -4 670 657-692 N2(337) Ethanol 4 x 10 (NB690), 1.9 x 10-3(R610) 114 -3 695 683-751 N2(337) Ethanol 1.1 x 10 5 -3 696 683-710 N2(337) Ethanol 3.8 x 10 (R610), 8 x 10-4(NB690) 90 729 688-783 N2(337) Ethanol 730 692-782 Kr(cw)14 EG 750 710-790 Kr(647)17 EG 1 x 10-3 695 682-730 Cu(511,578)175 Methanol 2 x 10-3 EG = Ethylene glycol; MeOH/H2O = Methanol/water; e = ethanol; m = methanol PO Box 31126 Dayton, OH 45437 Tel: 937.252.2989 Fax: 937.258.3937 E-mail: [email protected] www.exciton.com NILE BLUE 690 PERCHLORATE REFERENCES: 3.
    [Show full text]
  • Nile Blue-Based Nano-Sized Ph Sensors for Simultaneous Far- Red and Near-Infrared Live Bioimaging
    Nile blue-based nano-sized pH sensors for simultaneous far- red and near-infrared live bioimaging Jeppe Madsen, Irene Canton, Nicholas J. Warren, Efrosyni Themistou, Adam Blanazs, Burcin Ustbas, Xiaohe Tian, Russell Pearson, Giuseppe Battaglia, Andrew L. Lewis and Steven P. Armes* 1. Table of Contents 1. Table of Contents .......................................................................................................... 1 2. Tables ............................................................................................................................ 2 3. Figures ........................................................................................................................... 2 4. Materials ........................................................................................................................ 3 5. Synthesis of NBM monomer ......................................................................................... 4 6. Synthesis of NBC monomer .......................................................................................... 4 7. Reverse-phase HPLC analysis of Nile Blue monomers ................................................ 5 8. Dye purification ............................................................................................................. 5 9. Synthesis of PMPC macro-CTA via RAFT polymerization ......................................... 5 10. ATRP of PMPC with Nile Blue dye present throughout the polymerization ............ 6 11. ATRP of MPC with Nile Blue dye added at high MPC
    [Show full text]
  • Safety Data Sheet Packet
    Date of Issue: 23 March 2016 SAFETY DATA SHEET PACKET Product Identifier SRM Number: 1934 SRM Name: Fluorescent Dyes for Quantitative Flow Cytometry (Visible Spectral Range) SRM Description: This Standard Reference Material (SRM) is intended for use in assigning fluorescence intensity values to calibration standards for quantitative flow cytometry in the visible spectral range. A unit of SRM 1934 consists of four amber ampoules, each containing 2 mL of a different fluorophore solution or suspension. The solutions include Part A: Fluorescein Solution (60 μM aqueous borate buffer solution); Part B: Nile Red Solution (60 μM acetonitrile solution); Part C: Coumarin 30 Solution (acetonitrile solution); and Part D: APC Suspension (Allophycocyanin fluorescent protein in aqueous buffer solution, 100 µL). SRM 1934 Parts: Part A: Fluorescein Solution Part B: Nile Red Solution Part C: Coumarin 30 Solution Part D: APC Suspension Company Information National Institute of Standards and Technology Standard Reference Materials Program 100 Bureau Drive, Stop 2300 Gaithersburg, Maryland 20899-2300 Telephone: 301-975-2200 Emergency Telephone ChemTrec: FAX: 301-948-3730 1-800-424-9300 (North America) E-mail: [email protected] +1-703-527-3887 (International) Website: http://www.nist.gov/srm This page intentionally left blank. DATE: 23 March 2016 Product Identifier SRM Number: 1934 SRM Name: Fluorescent Dyes for Quantitative Flow Cytometry (Visible Spectral Range) SRM Part: Part A: Fluorescein Solution Under the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) 29 CFR 1910.1200, this Standard Reference Material (SRM) is NOT classified as a physical hazard or a health hazard, a simple asphyxiant, combustible dust, pyrophoric gas, or hazard not otherwise classified.
    [Show full text]
  • Chemical Visualization of Latent Prints
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Chemical Visualization of Latent Prints Author: Evan Durnal Document No.: 238008 Date Received: March 2012 Award Number: 2008-NI-CX-K012 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Chemical Visualization of Latent Prints Grant # 2008-NI-CX-K012 Final Report For National Institute of Justice Office of Justice Programs U.S. Department of Justice MRI Project No. 110636 July 30, 2010 i Preface The primary author of this report was Mr. Evan Durnal. The report was reviewed by Dr. James Egan and Mr. Tim Lanigan. This document was created in fulfillment of cooperative agreement contract # 2008-NI-CX-K012 Latent Print Chemical Visualization. This document was revised from the DRAFT final report based upon comments provided by The National Institute of Justice review panel. The period of performance for this contract was October 1, 2008 thru July 30, 2010. For technical questions or clarifications regarding this document, contact Dr. James Egan. MIDWEST RESEARCH INSTITUTE //s// Mr. Evan Durnal NIJ Technical Lead Approved: //s// Dr. James Egan NIJ Principal Investigator July 30, 2010 ii Contents Preface ................................................................................................................................. ii Tables ................................................................................................................................. iv Figures...............................................................................................................................
    [Show full text]