Chemical Visualization of Latent Prints

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Visualization of Latent Prints The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Chemical Visualization of Latent Prints Author: Evan Durnal Document No.: 238008 Date Received: March 2012 Award Number: 2008-NI-CX-K012 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Chemical Visualization of Latent Prints Grant # 2008-NI-CX-K012 Final Report For National Institute of Justice Office of Justice Programs U.S. Department of Justice MRI Project No. 110636 July 30, 2010 i Preface The primary author of this report was Mr. Evan Durnal. The report was reviewed by Dr. James Egan and Mr. Tim Lanigan. This document was created in fulfillment of cooperative agreement contract # 2008-NI-CX-K012 Latent Print Chemical Visualization. This document was revised from the DRAFT final report based upon comments provided by The National Institute of Justice review panel. The period of performance for this contract was October 1, 2008 thru July 30, 2010. For technical questions or clarifications regarding this document, contact Dr. James Egan. MIDWEST RESEARCH INSTITUTE //s// Mr. Evan Durnal NIJ Technical Lead Approved: //s// Dr. James Egan NIJ Principal Investigator July 30, 2010 ii Contents Preface ................................................................................................................................. ii Tables ................................................................................................................................. iv Figures................................................................................................................................ iv Section 1. Executive Summary ..........................................................................................1 Section 2. Acronyms ..........................................................................................................4 Section 3. Introduction .......................................................................................................5 Section 4. Experimental Approach ....................................................................................7 4.1 Initial Solution Evaluation ........................................................................7 4.2 Porous & Non-Porous Substrate Evaluation ...........................................11 4.3 Volunteer Enrollment .............................................................................15 4.4 Fingerprint Stability Experiments ...........................................................16 4.5 Blind Study .............................................................................................17 Section 5. Results .............................................................................................................19 5.1 Porous & Non-Porous Substrate Results ................................................19 5.2 Stability Study Results ............................................................................27 5.3 Blind Study Results ................................................................................29 5.4 Blind Study Results ................................................................................30 Section 6. Conclusions and Path Forward .......................................................................34 6.1 Conclusions .............................................................................................34 6.2 Path Forward ...........................................................................................34 Appendix A ................................................................................................................... A - 1 Appendix B ....................................................................................................................B - 1 Appendix C ....................................................................................................................C - 1 Attachment I................................................................................................. Attachment I- 1 Attachment II ............................................................................................. Attachment II - 1 Attachment III ........................................................................................... Attachment III - 1 iii Tables Table 1. List of Acronyms ...................................................................................................4 Table 2. COTS Products Investigated ..................................................................................7 Table 3. Chemical Developers Investigated ........................................................................8 Table 4. Solvent Effects on Latent Prints ..........................................................................10 Table 5. Sample Matrix for Stability Study .......................................................................17 Table 6. Sample Matrix for Blind Study ............................................................................18 Table 7. Stability Study Sample Naming Scheme .............................................................28 Table 8. Non-Porous Stability Study Images Successfully Enrolled at Each Time Point and Environmental Condition .........................................................................28 Table 9. Blind Study Sample Naming Scheme ..................................................................31 Table 10. Blind Study Results ...........................................................................................33 Figures Figure 1. Phenolic resin developed with (A) blue-colored Leuco dye solution and (B) yellow-colored Leuco dye solution visualized under blue excitation wavelength ........................................................................................................1 Figure 2. Glass beaker treated with alcoholic phenolic resin solution followed by exposure to fluorescent Leuco dye. ..................................................................1 Figure 3. Microscopic digital image examining the bare metal protected by fingerprint oils versus acid-vapor corroded bare material ..................................................2 Figure 4. Digital photographs (A) before and (B) after exposure to iron salt solution. ......3 Figure 5. Unaltered photographs showing solvent impact on latent prints deposited on slides ...............................................................................................................10 Figure 6. Dip & Spray Set-up of Select Dye Solutions .....................................................11 Figure 7. Emission profile of blue LED measured by Horiba Jobin Yvon FluoroMax-3 fluorimeter ......................................................................................................13 Figure 8. The chemical structures for the lawsone and juglone isomers ...........................14 Figure 9. IRISCard Pro 4 business card scanner ................................................................15 Figure 10. DigitalPersona fingerprint scanner ...................................................................15 Figure 11. VeriFinger software graphical interface with actual image on left side and the extracted minutiae depicted on the right (in green) ........................................16 Figure 12. A stainless steel plate handled by fingersis placed within an inverted glass beaker. A small amount of Tek GelTM is placed in the vicinity of the metal surface for 24 hours. .......................................................................................19 Figure 13. Fingerprint ridge detail photographed after being treated for 24 hours with Tek GelTM; (A) finger coated with oils from forehead swipe and (B) finger not coated with oils. ..............................................................................................20 Figure 14. Latent prints developed with phenolic resin on glass slide (left image) and aluminum can (right image) with blue LED excitation ..................................21 iv Figure 15. Pictorial representation of phenolic resin dusting and development: latent deposition (top left); phenolic resin application (top right); excess resin removal (bottom left); and Leuco dye exposure (bottom right). ....................21 Figure 16. Phenolic resin dissolution in organic solvent vapors occurs extremely rapidly. The small image is phenolic resin particles dusted onto calibrated oil lines ..22 Figure 17. Digital photograph of individual print from beaker in Figure 1 .......................23 Figure 18. Latent print developed with modified Nile Blue solution on glazed ceramic (left image) and white copier paper (right image) ..........................................25 Figure 19. Digital photographs of juglone-treated white copier paper: (A) water exposure, (B) zoomed-in photo of A, and (C) after iron mordant process .....................26 Figure 20. Ridge detail enhanced by fluorescence after background paper fiber fluorescence quenched by mordant process ...................................................27 Figure 21. Day 0 Stability Print after Photoshop Enhancement ........................................29
Recommended publications
  • New Nile Blue Derivatives As NIR Fluorescent Probes and Antifungal Agents †
    Proceedings New Nile Blue Derivatives as NIR Fluorescent Probes † and Antifungal Agents Rui P. C. L. Sousa 1,2, João C. C. Ferreira 1,2, Maria João M. F. Sousa 2 and M. Sameiro T. Gonçalves 1,* 1 Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal 2 Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal * Correspondence: [email protected] † Presented at the 22nd International Electronic Conference on Synthetic Organic Chemistry, 15 November– 15 December 2018; Available Online: https://sciforum.net/conference/ecsoc-22. Published: 14 November 2018 Abstract: The synthesis of four new Nile Blue derivatives with hydrogen, propyl and/or aminopropyl groups as substituents of the amines of 5- and 9-positions is described. Photophysical properties were evaluated in acidified ethanol and aqueous solution at physiological pH. Antifungal activity is also studied through the obtention of MIC values. Keywords: benzo[a]phenoxazines; Nile Blue derivatives; NIR fluorescent probes; antifungal agents 1. Introduction The development of new near-Infrared (NIR) fluorescent probes is a very important issue due to the wide range of applications [1–4]. These probes are an excellent choice to label biological material since its emission will not interfere with the natural fluorescence of biological compounds. Benzo[a]phenoxazinium salts, with Nile Blue being the best known, display fluorescence at around 600 nm and have been used as covalent and non-covalent fluorescent probes for amino acids, proteins and DNA, among other biological material [5–10]. In addition, applications as sensors or agents for photodynamic therapy (PDT) have been described [11,12].
    [Show full text]
  • Exploring the Efficacy of Nile Red in Microplastic Quantification
    Letter Cite This: Environ. Sci. Technol. Lett. XXXX, XXX, XXX−XXX pubs.acs.org/journal/estlcu Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach Thomas Stanton,*,†,§ Matthew Johnson,† Paul Nathanail,‡ Rachel L. Gomes,§ Teresa Needham,† and Amanda Burson† †School of Geography, University of Nottingham, NG7 2RD Nottingham, United Kingdom ‡Land Quality Management Ltd, University of Nottingham Innovation Park, NG7 2TU Nottingham, United Kingdom §Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD Nottingham, United Kingdom *S Supporting Information ABSTRACT: The presence of microplastic particles (<5 mm) in the environment has generated considerable concern across public, political, and scientific platforms. However, the diversity of microplastics that persist in the environment poses complex analytical challenges for our understanding of their prevalence. The use of the dye Nile red to quantify microplastics is increasingly common. However, its use in microplastic analysis rarely accounts for its affinity with the breadth of particles that occur in environmental samples. Here, we examine Nile red’s ability to stain a variety of microplastic particles and common natural and anthropogenic particles found in environmental samples. To better constrain microplastic estimates using Nile red, we test the coapplication of a second stain that binds to biological material, 4′,6- diamidino-2-phenylindole (DAPI). We test the potential inflation of microplastic estimates using Nile red alone by applying this costaining approach to samples of drinking water and freshwater. The use of Nile red dye alone resulted in a maximum 100% overestimation of microplastic particles. These findings are of particular significance for the public dissemination of findings from an emotive field of study.
    [Show full text]
  • Determining Lipid Content in Embryos Using Nile Red Fluorescence
    Laboratory Procedures, PJ Hansen Laboratory - University of Florida Determining Lipid Content in Embryos using Nile Red Fluorescence Luciano Bonilla and Peter J. Hansen Dept. of Animal Sciences, University of Florida The following protocol is derived from the protocol described by Genicot et al. (Theriogenology 63: 1181- 1194, 2005) and is based on the fluorescence emitted by Nile Red when in association with lipid (see Fowler and Greenspan, J Histochem Cytochem 33: 833-836, 1985). Equipments and Reagents o 96 Well plate: BD Falcon®,cat. # 353912, or equivalent o Nile Red: Invitrogen Molecular Probles, cat. # N-1142 o Hoescht 33342: Sigma-Aldrich, cat. # B2261 o ProLong® Gold antifage reagent: Invitrogen Molecular Probes, cat. # P36934 o Fluorescence microscope: Fluorescent microscope configured with excitation 400-500 nm and emission 515 nm Solutions o 100 mM PO4, pH7.4 (Stock solution) To prepare 100 mM PO4 pH 7.4, add sodium phosphate monobasic (1a) to 300 ml sodium phosphate dibasic until the pH reaches 7.4. Approximately, 100 ml of monobasic solution will be added. 1a. 100 mM sodium phosphate monobasic (NaH2PO4.2H2O) 13.8 g NaH2PO4 1 L double–distilled (dd) ddH2O 1b. 100 mM sodium phosphate dibasic (Na2HPO4) 14.2g Na2HPO4.2H2O 1 L ddH2O o 10 mM PBS/PVP (Work solution) Dilute 100 mM PO4, pH 7.4 with 800 ml ddH2O, add 9 g of NaCl and 1.0 g polyvinylpyrollidone (PVP), and bring volume to 1000 ml with water. Check pH. o 4% Paraformaldahyde Fixative - add 500 mL 8% (w/v) paraformaldehyde to 500 mL PBS- PVP (1:1 dilution) o Nile Red Stock Solution (1 mg/mL) - dissolve 25 mg of Nile Red (Invitrogen N-1142) in 25 mL of DMSO; Store at room temperature in the dark indefinitely.
    [Show full text]
  • Spectroscopic Studies of Nile Red in Organic Solvents and Polymers
    ,loerllof AND Pl-loitll:lltg.IX~ A: CHI'~[ISTiiY ELSEVIER Journal of Photochemistry and Photobiology A: Chemistry 93 ( 199b.~ 57-64 Spectroscopic studies of nile red in organic solvents and polymers Ashim Kumar Dutta, Kenji Kamada, Koji Ohta * Photonic Chemistry Section, Department of Optical Materiolv, Osaka National Research h~stitute, AIST. Ikeda, Osaka 563, Japan Received 20 March 1995; accepted 14 June 1995 Abstract We have studied tile spectroscopic properties of nile red (NR), a highly fluorescent laser dye, ill organic solvents, binary solvent mixtures and polymers. Spectroscopic studies reveal remarkable changes in the absorption and emission band positions and intensities as a function of the polarity of the medium, Such large dmnges have been attributed to the twisted intramolecular charge transfer (TICT) state of the molecule in polar ntedium. Experimental results show that the molecule is sensitive to the polarity of its microenvironment and is an excellent probe for systems presenting restricted geometries. We have incorporated NR into thin films of poly ( melhyl methacrylate) (PMMA) and poly ( vinyl alcohol) (PVA); it is Ibund that the micropolarity in PVA is greater than that in PMMA; in pv ~., the micropolarity corresponds to that of a binary mixture of acetonitrile and water, whereas in PMMA, the micropolarity corresponds ctosely to that of pure acetonitrile. Keywords: Nile red; Twisted intratnolecular charge transfer (TICT) states; Steady state fluorescence; Time-resolved fluorescence; Aggregation-induced dual fluorescence 1. Introduction films [ 13,14], microparticles [ 15,16] and zeolites [ 17,18], have provided information on the role of the topology of these systems in controlling the photophysical properties of Organic polymers have largely replaced conventional the probe molecules.
    [Show full text]
  • Nile Blue Is a Basic Dye of the Oxazine Group, Which Has Been Used in Several Microscopic and Histochemical Techniques (4, 6)
    ACTA HISTOCHEM. CYTOCHEM. Vol. 16, No. 3, 1983 LETTER TO THE EDITOR NILE BLUE SULFATE STAINING FOR DEMONSTRATION OF LIPIDS IN FLUORESCENCE MICROSCOPY Nile blue is a basic dye of the oxazine group, which has been used in several microscopic and histochemical techniques (4, 6) . A staining method based on application of Nile blue sulfate was introduced early for the cytochemical demon- stration of lipids (3, 8, 9), showing neutral fats and fatty acids in red and blue, respectively. There is evidence (1, 10) that aqueous solutions of Nile blue sulfate contain the blue cation of the dye, a red oxidation product (Nile red), and the orange-red imino base. According to this view, phospholipids and fatty acids stain blue because they react with the Nile blue cation, meanwhile neutral fats appear in red color. Other observations seem to be in disagreement with this staining mecha- nism (5, 6) . A fluorescence reaction in tissues after staining with Nile blue sulfate and brilliant cresyl blue has been found by Bozzo and Campos Vidal (2). During the course of investigations by using oxazine dyes we have observed that Nile blue sulfate produces a strong fluorescence reaction in lipid droplets. The fat body of Drosophila larvae is a continuous tissue mass which has been chosen as test material because of its abundance in lipidic inclusions. Drosophila hydei testes, surrounded by the fat body, were fixed in 5 % formaldehyde for 1-24 hr, washed, and then immersed in 0.1 mg/ml aqueous Nile blue sulfate (Fluka) for 30 min. After staining, the material was briefly washed and mounted with a drop of water.
    [Show full text]
  • Study of Wood Pitch Emulsions – Interactions with Nile Red and Influence of Ph Master of Science Thesis in Chemistry and Bioscience
    Study of wood pitch emulsions – interactions with Nile red and influence of pH Master of Science Thesis in Chemistry and Bioscience ANNA PALME Department of Chemical and Biological Engineering Division of Applied Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2011 Study of wood pitch emulsions – interactions with Nile red and influence of pH ANNA PALME Supervisors: Ron Lai and Daniel Persson Examiner: Krister Holmberg Department of Chemical and Biological Engineering Division of Applied Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2011 Study of wood pitch emulsions – interactions with Nile red and influence of pH. Anna Palme. © Anna Palme, 2011 Department of Chemical and Biological Engineering Division of Applied Chemistry Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31 772 1000 This work was carried out at Eka Chemicals in Bohus (Sweden). Cover: Left: A density plot from a measurement of Nile red in model pitch emulsion with flow cytometry, showing the red fluorescence intensity versus the forward scattering intensity. Right: The fluorescent probe Nile red. Göteborg, Sweden 2011 Acknowledgements I would like to express my gratitude toward the following people: Ron Lai and Daniel Persson, my supervisors at Eka Chemicals, for their support and engagement in this project. Krister Holmberg for his engagement in the project and for applying a surface chemistry perspective on pitch deposition. The staff at Eka Chemicals for practical assistance in the lab and good company. Anna Palme, Gothenburg, June 2011 Abstract Deposition of wood pitch causes detrimental effects both on the paper and on the paper machine. In this project, it was investigated how a model pitch emulsion is affected by changing the pH from 4 to 8 and back to 4.
    [Show full text]
  • Dna Revealed
    Staining DNA on electrophoresis gels dna revealed Ethidium bromide, a potent mutagen Staining DNA on the move Concentrated In research laboratories, ethidium bromide and similar Recently, several commercial products have emerged that DNA Stain Dil e ute wi volum o th an equal f di use stilled water before fluorescent compounds are normally used to visualise DNA enable the DNA to be seen as it moves across the gel. Sto . re eze N at 4 °C. Do not fre AT N IO IO NA AT L C DUC ENTR GY E E FOR BIOTECHNOLO T HE U ING on a gel. Unfortunately, ethidium bromide and its breakdown Suppliers seldom reveal their composition, but several of NIVERSITY OF READ products are potent mutagens and carcinogens and therefore these stains contain Nile blue sulphate (also known as they should not be used in schools. Such dyes are often flat Nile blue A), a dye which had not previously been noted molecules with similar dimensions to DNA base pairs. When for its ability to stain DNA. Adkins and Burmeister (1996) ethidium bromide binds to DNA, it slips between adjacent give useful guidance as to its use as well as hints for identifying base pairs and stretches the double helix. This explains the other dyes which may be useful for visualising DNA. resources Methylene blue dye’s mutagenic effect — the ‘extra bases’ cause errors when the DNA replicates. In addition, short-wavelength UV light All of the dyes used for staining ‘mobile’ DNA are cationic Yung-Sharp, D. and (which itself is harmful) is required for ethidium bromide — that is, they are positively charged in the gel buffer, at Kumar, R.
    [Show full text]
  • Overcoming Cloning Problems by Staining Agarose Gels with Crystal Violet Instead of Ethidium Bromide in Lactate Dehydrogenase Ge
    Acta Biologica Hungarica 56 (3–4), pp. 389–397 (2005) OVERCOMING CLONING PROBLEMS BY STAINING AGAROSE GELS WITH CRYSTAL VIOLET INSTEAD OF ETHIDIUM BROMIDE IN LACTATE DEHYDROGENASE GENE FROM PLASMODIUM VIVAX AND PLASMODIUM FALCIPARUM D. TURGUT-BALIK,1* V. ÇELIK,1 KATH MORETON2 and R. L. BRADY2 1 Department of Biology, Faculty of Arts and Sciences, University of F°rat, Elaz°=, Turkey 2 Department of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K. (Received: August 9, 2004; accepted: November 9, 2004) In this study, lactate dehydrogenase gene from Plasmodium vivax has been tried to subclone into an expression vector. Some of the Plasmodium falciparum lactate dehydrogenase mutant genes have also been tried to clone and subclone into a vector, but we failed to clone or subclone either of the genes. DNA visualisation in electrophoretic gels typically requires UV radiation and the fluorecent dye ethidium bro- mide. A crystal violet-stained gel was run instead of an ethidium bromide gel and so avoided the use of UV radiation. This enabled us to clone or subclone both Plasmodium vivax lactate dehydrogenase gene and Plasmodium falciparum lactate dehydrogenase mutant genes into any desired vector. Keywords: Plasmodium vivax – Plasmodium falciparum – lactate dehydrogenase – crystal violet – ethid- ium bromide INTRODUCTION Drug resistance of Plasmodium to currently available antimalarials is increasing throughout the world. Discovery of a new, effective, safe, permanent and inexpen- sive antimalarial is essential to overcome this problem. The enzyme lactate dehydrogenase (LDH) has been targeted for the design of a novel antimalarial drug. It is a vital enzyme for the malarial parasite.
    [Show full text]
  • A Consideration of the Term Gloeocystidium
    April 1976 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN 28(1): 123-130 A CONSIDERATION OF THE TERM GLOEOCYSTIDIUM MICHAEL J. LARSEN AND HAROLD H. BURDSALL, JR. Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, U. S. Department of Agriculture, Madison, WI 53705 Structures termed “gloeocystidia” occur in diverse genera throughout the major groups of Homobasidiomycetes and have been variously defined: Ainsworth et al. (1971) state that it is a cystidium “that is thin-walled, usually irregular and with highly refractive hyaline or yellowish contents.” Snell and Dick ( 197 1) list the variant spelling “gleocystidium” with the definition, “A special form of cystidium in Hymenomycetes, of gelatinous or horny consistency and with oily, resinous, or granular contents.” Talbot (1954) and Price (1975) have provided comprehensive statements on the concept of gloeocystidia. We present a condensed version here of Talbot’s (1954, p. 288) definition. Sterile organs, with thin walls; lack of sculpturing and encrustation; contents hyaline to brownish, highly refractive, homogeneous, granular, or oily; aris­ ing from subhymenial and contextual tissues; staining deeply in phloxine and eosine in KOH mounts and becoming brown in iodine solutions. In 1944, Romagnesi proposed the term “macrocystide” for a cystidial form in the “Lactario-russulés,” and these cystidia (macrocystidia) were described as “trés longue . fusiform ou claviforme, souvent terminée par une pointe ou un appendice variable; son pédicule est très long et souvent en connexion avec laticifères de la trame,” and secondly “très souvent, mais non toujours, devient gris-bleu ou noirâtre . au contact de la sulfovanilline. .” Romagnesi’s ( 1944) interpretation of macrocystidia is apparently based primarily on form, and secondarily on the chemical reaction with sulfovanillin.
    [Show full text]
  • Analysis of Polyhydroxyalkanoates Granules in Haloferax Mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy
    polymers Article Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy Verónica Cánovas 1,2,* , Salvador Garcia-Chumillas 1,2, Fuensanta Monzó 1, Lorena Simó-Cabrera 3,4 , Carmen Fernández-Ayuso 1, Carmen Pire 3,4 and Rosa María Martínez-Espinosa 3,4,* 1 Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, 30840 Alhama de Murcia, Spain; [email protected] (S.G.-C.); [email protected] (F.M.); [email protected] (C.F.-A.) 2 Cetec Biotechnology, Avda, Europa 4-5, 30840 Alhama de Murcia, Spain 3 Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690 Alicante, Spain; [email protected] (L.S.-C.); [email protected] (C.P.) 4 Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, 03080 Alicante, Spain * Correspondence: [email protected] (V.C.); [email protected] (R.M.M.-E.); Tel.: +34-968-662-200 (V.C.); +34-965-903-400 (ext. 1258) (R.M.M.-E.) Abstract: Haloferax mediterranei is a haloarchaeon of high interest in biotechnology because it produces Citation: Cánovas, V.; and mobilizes intracellular polyhydroxyalkanoate (PHA) granules during growth under stress Garcia-Chumillas, S.; Monzó, F.; conditions (limitation of phosphorous in the culture media), among other interesting metabolites Simó-Cabrera, L.; Fernández-Ayuso, (enzymes, carotenoids, etc.). The capability of PHA production by microbes can be monitored with C.; Pire, C.; Martínez-Espinosa, R.M.
    [Show full text]
  • 1 High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids 1 Exposed to Per- and Polyfluoroalkyl Substances
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341362; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High-throughput transcriptomic analysis of human primary hepatocyte spheroids 2 exposed to per- and polyfluoroalkyl substances (PFAS) as a platform for relative 3 potency characterization 4 A. Rowan-Carroll1, A. Reardon1, K. Leingartner1, R. Gagné1, A. Williams1, M.J. Meier1, 5 B. Kuo 1, J. Bourdon-Lacombe2, I. Moffat2, R. Carrier2, A. Nong1, L. Lorusso3, S.S. 6 Ferguson4, E. Atlas1 *, C. Yauk5,1* 7 1Environmental Health Science and Research Bureau, Healthy Environments and 8 Consumer Safety Branch (HECSB), Health Canada, 2Water and Air Quality Bureau, 9 HECSB, Health Canada, 3Chemicals and Environmental Health Management Bureau, 10 HECSB, Health Canada, 4US National Institute of Environmental Health Sciences, 11 5Dept. of Biology, University of Ottawa. 12 13 For submission to Toxicological Sciences 14 * To Whom correspondence should be addressed: [email protected] and 15 [email protected] 16 17 Keywords: TempO-Seq, PFAS, liver spheroids, benchmark concentration, new 18 approach methodology, bioactivity exposure ratio 19 This entire data set is publicly available at: at 20 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144775 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341362; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells1
    [CANCER RESEARCH 51, 2710-2719, May 15, 1991] Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells1 Chi-Wei Lin,2 Janine R. Shulok, Sandra D. Kirley, Louis Cincotta, and James W. Foley Urology Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 [C-W. L., J. R. S., S. D. KJ, and Rowland Institute for Science, Cambridge, Massachusetts 02142 ¡L,C., J. W. F.] ABSTRACT tosensitizers with high tumor selectivity will enable effective treatment of multiple, infiltratili!*, and invisible tumors, thus Nile blue derivatives have been shown to be potentially effective expanding the utility of PDT as a useful tool in cancer therapy photosensitizers for photodynamic therapy of malignant tumors. Results with intent to cure. Active research is under way to search for of a previous study suggested that the high accumulation of these dyes more tumor-selective sensitizers (4-6) and to improve the sen- in cells may be the result of dye aggregation, partition in membrane lipids, and/or sequestration in subcellular organelles. In this report, sitizer delivery system for better tumor targeting (7-10). results of studies are presented from an investigation of the subcellular Several early studies with animal tumor models have shown localization and mechanism of accumulation of these dyes in cells in that benzophenoxazines, including several Nile blue analogues, vitro. A video-enhanced fluorescence microscopy was used, and a punctate constitute a special class of dyes that are selectively localized in pattern of fluorescence was seen, most of which was localized in the tumors (11-15).
    [Show full text]