The Ancestor of Extant Japanese Fancy Mice Contributed to the Mosaic Genomes of Classical Inbred Strains
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VU Research Portal
VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Genetic architecture and behavioral analysis of attention and impulsivity Maarten Loos 1 About the thesis The work described in this thesis was performed at the Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. This work was in part funded by the Dutch Neuro-Bsik Mouse Phenomics consortium. The Neuro-Bsik Mouse Phenomics consortium was supported by grant BSIK 03053 from SenterNovem (The Netherlands). -
Identification of Ovarian Cancer Gene Expression Patterns Associated
ORIG I NAL AR TI CLE JOURNALSECTION IdentifiCATION OF Ovarian Cancer Gene Expression PATTERNS Associated WITH Disease Progression AND Mortality Md. Ali Hossain1,2 | Sheikh Muhammad Saiful Islam3 | Julian Quinn4 | Fazlul Huq5 | Mohammad Ali Moni4,5 1Dept OF CSE, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh Ovarian CANCER (OC) IS A COMMON CAUSE OF DEATH FROM can- 2Dept OF CSE, Jahangirnagar UnivERSITY, CER AMONG WOMEN worldwide, SO THERE IS A PRESSING NEED SaVAR, Dhaka, Bangladesh TO IDENTIFY FACTORS INflUENCING MORTALITY. Much OC PATIENT 3Dept. OF Pharmacy, ManarAT International UnivERSITY, Dhaka-1212, Bangladesh CLINICAL DATA IS NOW PUBLICALLY ACCESSIBLE (including PATIENT 4Bone BIOLOGY divisions, Garvan Institute OF age, CANCER SITE STAGE AND SUBTYPE), AS ARE LARGE DATASETS OF Medical Research, SyDNEY, NSW 2010, OC GENE TRANSCRIPTION PROfiles. These HAVE ENABLED STUDIES AustrALIA CORRELATING OC PATIENT SURVIVAL WITH CLINICAL VARIABLES AND 5The UnivERSITY OF SyDNEY, SyDNEY Medical School, School OF Medical Science, WITH GENE EXPRESSION BUT IT IS NOT WELL UNDERSTOOD HOW THESE Discipline OF Biomedical Sciences, NSW TWO ASPECTS INTERACT TO INflUENCE MORTALITY. TO STUDY THIS 1825, AustrALIA WE INTEGRATED CLINICAL AND TISSUE TRANSCRIPTOME DATA FROM Correspondence THE SAME PATIENTS AVAILABLE FROM THE Broad Institute Cancer Dept OF CSE, Jahangirnagar UnivERSITY, Dhaka, Bangladesh Genome Atlas (TCGA) portal. WE INVESTIGATED OC mRNA The UnivERSITY OF SyDNEY, SyDNEY Medical EXPRESSION LEVELS (relativE TO NORMAL PATIENT TISSUE) OF 26 School, School OF Medical Science, Discipline OF Biomedical Sciences, NSW GENES ALREADY STRONGLY IMPLICATED IN OC, ASSESSED HOW THEIR 1825, AustrALIA EXPRESSION IN OC TISSUE PREDICTS PATIENT SURVIVAL THEN em- Email: al i :hossai n@manarat :ac:bd , mohammad :moni @sydney :eduau PLOYED CoX Proportional Hazard REGRESSION MODELS TO anal- YSE BOTH CLINICAL FACTORS AND TRANSCRIPTOMIC INFORMATION TO FUNDING INFORMATION DETERMINE RELATIVE RISK OF DEATH ASSOCIATED WITH EACH FACTOR. -
Fancy Mice, Their Varieties and Management As Pets Or for Show, Including the Latest Scientific Information As to Breeding for C
.S o p^ ^-» ^ o0) C/5 g •H o E - o TO C o •H (ii Q OJ OS 'Lf\ r-i fc VN XjA C\J CTn CO _3 S O (-1 2yC:J.Davies -\V ONE & ALL SEEDS, 5 FANCY MICE. Cornell University Library The original of tliis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31 924001 01 3246 : FANCY MICE Their Varieties and Management as Pets or for Show. Including the latest Scientific Information as to Breeding for Colour. Fifth Edition, Completely Revised, By C. J. DAVIES. ILLUSTRATED. LONDON L. UPCOTT GILL, Bazaar Buildings, Drury Lane, W.C. 1912. Books for Fanciers. Each Is. net, by post Is. 2d. The Management of Rabbits. Third edition, revised and enlarged by Meredith ^^ Fradd. DOMESTrC AND FANCY CATS; including the Points of Show Varieties, Preparing for Exhibition and Treatment for ; the Diseases and Parasites. By John Jennings. English and Welsh Terriers. Their Uses, Points, and Show Preparation. By J Maxtee. Scotch and Irish Terriers. With chapters on the Housing, Training, and minor Diseases of Terriers in general. A companion handbook to the above. Diseases of Dogs, a very practical handbook which every Dog-Owner should have at hand. Fourth edition, revised by A. C. PiESSE, M.R.C.V.S. Pet Monkeys, a complete and excellent book by Arthur H. Patterson, A.M.B.A. Second edition. Pigeon-Keeping for Amateurs. Describing practically all varieties of Pigeons. By James C. -
Robles JTO Supplemental Digital Content 1
Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC. -
Genetic Analysis of Substrain Divergence in NOD Mice
bioRxiv preprint doi: https://doi.org/10.1101/013037; this version posted December 20, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic Analysis of Substrain Divergence in NOD Mice Petr Simecek*, Gary A. Churchill*, Hyuna Yang§, Lucy B. Rowe*, Lieselotte Herberg†, David V. Serreze*, Edward H. Leiter* * The Jackson Laboratory, Bar Harbor, ME 04609 USA § Exploratory Statistics, DSS, AbbVie, North Chicago, IL 60064, USA † Diabetes Research Institute, Düsseldorf, Germany Sequence Read Archive accession: SRP045183 1 bioRxiv preprint doi: https://doi.org/10.1101/013037; this version posted December 20, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Running title: Genetic Analysis of NOD Divergence Keywords: type I diabetes, NOD mice, substrain divergence, exome capture, Icam2 Correspondence to: Petr Simecek The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA Tel: +1 207-288-6715 Email: [email protected] 2 bioRxiv preprint doi: https://doi.org/10.1101/013037; this version posted December 20, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Is Responsible for Congenital Hypotrichosis in Belted Galloway Cattle
G C A T T A C G G C A T genes Article A Nonsense Variant in Hephaestin Like 1 (HEPHL1) Is Responsible for Congenital Hypotrichosis in Belted Galloway Cattle Thibaud Kuca 1,† , Brandy M. Marron 2,†, Joana G. P. Jacinto 3,4,† , Julia M. Paris 4,†, Christian Gerspach 1, Jonathan E. Beever 2,5,‡ and Cord Drögemüller 4,*,‡ 1 Department of Farm Animals, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland; [email protected] (T.K.); [email protected] (C.G.) 2 Laboratory of Molecular Genetics, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected] (B.M.M.); [email protected] (J.E.B.) 3 Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; [email protected] 4 Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; [email protected] 5 UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA * Correspondence: [email protected]; Tel.: +41-31-684-2529 † These authors contributed equally. ‡ These authors jointly supervised this work. Abstract: Genodermatosis such as hair disorders mostly follow a monogenic mode of inheritance. Congenital hypotrichosis (HY) belong to this group of disorders and is characterized by abnormally Citation: Kuca, T.; Marron, B.M.; reduced hair since birth. The purpose of this study was to characterize the clinical phenotype of a Jacinto, J.G.P.; Paris, J.M.; Gerspach, breed-specific non-syndromic form of HY in Belted Galloway cattle and to identify the causative C.; Beever, J.E.; Drögemüller, C. -
VU Research Portal
VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Chapter 5 Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains Maarten Loos, Jorn Staal, Tommy Pattij, Neuro-BSIK Mouse Phenomics consortium, August B. Smit, Sabine Spijker Genes Brain and Behavior, In Press 87 88 Sensorimotor gating and attention Abstract A startle reflex in response to an intense acoustic stimulus is inhibited when a barely detectable pulse precedes the startle stimulus by 30 – 500 ms. -
MANXMOUSE by Paul Gallico Produced by Theatergroep Kwatta
2017-2018 Resource Guide Directed by Josee Hussaarts Based on the Novel MANXMOUSE by Paul Gallico Produced by Theatergroep Kwatta Thursday, May 3, 2018 VICTORIA THEATRE ASSOCIATION VICTORIA • SCHUSTER • MAC/LOFT • ARTS ANNEX • ARTS GARAGE 9:30 & 11:30 a.m. Curriculum Connections You will find these icons listed in the resource guide next to the activities that indicate curricular connections. Teachers and parents are encouraged to adapt all of the activities included in an appropriate way for your students’ age and abilities. MANXMOUSE: THE MOUSE WHO KNEW NO FEAR fulfills the following Ohio and National Education Standards and Benchmarks for Grades elcome to the 2017-2018 Kindergarten through Grade 5: Discovery Series at Victoria Ohio’s English/ Language Arts Learning Standards: WTheatre Association. We are Kindergarten- CCSS.ELA-Literacy.RL.K.3, CCSS.ELA-Literacy.RL.K.9 very excited to be your education Grade 1- CCSS.ELA-Literacy.RL.1.2, CCSS.ELA-Literacy.RL.1.3, CCSS.ELA-Literacy.RL.1.6, CCSS.ELA- partner in providing professional arts Literacy.RL.1.9 experiences to you and your students! Grade 2- CCSS.ELA-Literacy.RL.2.1, CCSS.ELA-Literacy.RL.2.2, CCSS.ELA-Literacy.RL.2.3, CCSS.ELA- Literacy.RL2.4, CCSS.ELA-Literacy.RL2.5, CCSS.ELA-Literacy.RL2.6 I was first introduced to MANXMOUSE Grade 3- CCSS.ELA-Literacy.RL.3.2, CCSS.ELA-Literacy.RL.3.3, CCSS., CCSS.ELA-Literacy.RL.3.6 three years ago, and I am so excited Grade 4- CCSS.ELA-Literacy.RL.4.2, CCSS.ELA-Literacy.RL.4.3, CCSS.ELA-Literacy.RL.4.4, CCSS.ELA- that we can bring this delightful play Literacy.RL.4.5, CCSS.ELA-Literacy.RL.4.6, CCSS.ELA-Literacy.RL.4.7, CCSS.ELA-Literacy.RL.4.9 to Dayton. -
Gnomad Lof Supplement
1 gnomAD supplement gnomAD supplement 1 Data processing 4 Alignment and read processing 4 Variant Calling 4 Coverage information 5 Data processing 5 Sample QC 7 Hard filters 7 Supplementary Table 1 | Sample counts before and after hard and release filters 8 Supplementary Table 2 | Counts by data type and hard filter 9 Platform imputation for exomes 9 Supplementary Table 3 | Exome platform assignments 10 Supplementary Table 4 | Confusion matrix for exome samples with Known platform labels 11 Relatedness filters 11 Supplementary Table 5 | Pair counts by degree of relatedness 12 Supplementary Table 6 | Sample counts by relatedness status 13 Population and subpopulation inference 13 Supplementary Figure 1 | Continental ancestry principal components. 14 Supplementary Table 7 | Population and subpopulation counts 16 Population- and platform-specific filters 16 Supplementary Table 8 | Summary of outliers per population and platform grouping 17 Finalizing samples in the gnomAD v2.1 release 18 Supplementary Table 9 | Sample counts by filtering stage 18 Supplementary Table 10 | Sample counts for genomes and exomes in gnomAD subsets 19 Variant QC 20 Hard filters 20 Random Forest model 20 Features 21 Supplementary Table 11 | Features used in final random forest model 21 Training 22 Supplementary Table 12 | Random forest training examples 22 Evaluation and threshold selection 22 Final variant counts 24 Supplementary Table 13 | Variant counts by filtering status 25 Comparison of whole-exome and whole-genome coverage in coding regions 25 Variant annotation 30 Frequency and context annotation 30 2 Functional annotation 31 Supplementary Table 14 | Variants observed by category in 125,748 exomes 32 Supplementary Figure 5 | Percent observed by methylation. -
Analyzing the Mirna-Gene Networks to Mine the Important Mirnas Under Skin of Human and Mouse
Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 5469371, 9 pages http://dx.doi.org/10.1155/2016/5469371 Research Article Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse Jianghong Wu,1,2,3,4,5 Husile Gong,1,2 Yongsheng Bai,5,6 and Wenguang Zhang1 1 College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China 2Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China 3Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot 010031, China 4State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 5Department of Biology, Indiana State University, Terre Haute, IN 47809, USA 6The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA Correspondence should be addressed to Yongsheng Bai; [email protected] and Wenguang Zhang; [email protected] Received 11 April 2016; Revised 15 July 2016; Accepted 27 July 2016 Academic Editor: Nicola Cirillo Copyright © 2016 Jianghong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. -
The Ancestor of Extant Japanese Fancy Mice Contributed to the Mosaic Genomes of Classical Inbred Strains
Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains Toyoyuki Takada,1,2 Toshinobu Ebata,3,4 Hideki Noguchi,4 Thomas M. Keane,5 David J. Adams,5 Takanori Narita,3 Tadasu Shin-I,3,4 Hironori Fujisawa,2,6 Atsushi Toyoda,4 Kuniya Abe,7 Yuichi Obata,7 Yoshiyuki Sakaki,8,9 Kazuo Moriwaki,7 Asao Fujiyama,4 Yuji Kohara,3 and Toshihiko Shiroishi1,2,10 1Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; 2Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo 105-0001, Japan; 3Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; 4Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; 5The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom; 6The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan; 7RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan; 8Genome Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan Commonly used classical inbred mouse strains have mosaic genomes with sequences from different subspecific origins. Their genomes are derived predominantly from the Western European subspecies Mus musculus domesticus, with the remaining sequences derived mostly from the Japanese subspecies Mus musculus molossinus. However, it remains unknown how this intersubspecific genome introgression occurred during the establishment of classical inbred strains. In this study, we resequenced the genomes of two M. m. molossinus–derived inbred strains, MSM/Ms and JF1/Ms. -
Ideas for Pocket Pets Learning Activities Advanced Level
OHIO STATE UNIVERSITY EXTENSION Ideas for Pocket Pets Learning Activities Advanced Level Need more ideas for your pocket pet project? There are hundreds of things you can do! You are being asked to complete at least five activities each year. Use this list, the Pocket Pets Resource Handbook, and your imagination, and then write your ideas in your Pocket Pets Project and Record Book. Have fun! For all pocket pets • Learn the scientific classification for your pocket pet. • Draw the dental structure of a rodent. • Describe the kinds of food omnivorous rodents eat, and compare and contrast omnivorous with granivorous and herbivorous. • Define cellulose and describe its purpose in rodent nutrition. • Create a blog about your pocket pet 4-H project and update it throughout your project year. • Join a pocket pet organization (some are listed on page 67 of your Pocket Pets Resource Handbook). • Subscribe to a pocket pet organization’s newsletter/magazine, either online or by US mail. • Visit the Ohio State University College of Veterinary Medicine. • Watch a video on responsible pet ownership and report what you learned to your 4-H club members. • Read a book about pocket pets from your local library. Compare and contrast information in the book with information in your handbook. • Visit a pet shop and a breeder to learn about their pocket pets. Compare and contrast what you learn including health, care, tameness, and prices of the animals. • Join an online discussion group to discuss your pet with other pocket pet fanciers. • Learn where sanctioned pocket pet shows are throughout the United States.