Bit Manipulation.Pptx

Total Page:16

File Type:pdf, Size:1020Kb

Bit Manipulation.Pptx 9/27/17 What can we do at the bit level? Bit Manipula+on • (bit level) Boolean operations (NOT, CS 203 OR, AND, XOR) Fall 2017 • Shift left • Shift right 1 2 What sorts of things can we do with bit manipula+on? Boolean Algebra: TruthTables • Multiply/divide False True 0 1 • NOT (~) • Mask True False 1 0 • Swap • 0 1 AND (&) 0 0 0 1 0 1 Where: 0 = False; 1 = True 3 4 Boolean algebra and binary manipulation: Boolean Algebra: Truth Tables Bitwise application of Boolean algebra X = [xn-1 xn-2 … x2 x1 x0] 0 1 • OR (|) Y = [y y … y y y ] 0 0 1 n-1 n-2 2 1 0 ---------------------------------------------------------- 1 1 1 ~X = [~x ~x … ~x ~x ~x ] 0 1 n-1 n-2 2 1 0 • XOR (^) 0 0 1 X&Y = [(xn-1&yn-1) (xn-2&yn-2) … (x1&y1) (x0&y0)] 1 1 0 X|Y = [(xn-1|yn-1) (xn-2|yn-2) … (x1|y1) (x0|y0)] X^Y = [(xn-1^yn-1) (xn-2^yn-2) … (x1^y1) (x0^y0)] Where: 0 = False; 1 = True 5 6 1 9/27/17 Boolean algebra and binary manipulation: Boolean algebra and binary manipulation: Bitwise application of Boolean algebra Bitwise application of Boolean algebra • Given X = [00101111]; Y = [10111000] • Given X = [00101111];Y = [10111000] • ~X = ? • X&Y = ? • ~X = [11010000] X&Y = [00101000] • X|Y = ? • X^Y = ? • X|Y =[10111111] X^Y = [10010111] 7 8 Subtracting by adding: 2’s Using 2’s complement to complement subtract by adding • X – Y = X + (-Y) make use of this fact!!! • 5 – 3 • 1’s complement --- flip the bits [00000101] – [00000011] • 2’s complement of a number is the 1’s complement + 1 = [00000101] + 2’s complement ([00000011]) = [00000101] + ([11111100] + [00000001]) [00000000] = [00000101] + [11111101] 1’s complement [11111111] = [00000010] = 2 2’s complement [00000000] 10 When using 2’s complement, do not have the 2- zero issue 9 10 What can we do?: What can we do?: XOR as a programmable inverter Masking • Given a bit a; how you set it determines whether • A series of bits (word, half-word, etc.) can act as a another bit b is inverted (flipped) or left mask unchanged. • Given a mask M, M&x = x’ such that the bits of x’ are 1 iff the same place bit of M and of x are • EXAMPLES: both 1 • a = 0, then a^b = b (a leaves b unchanged) • EXAMPLE • a = 1, then a^b = ~b (a as inverter) M = [11000100] x = [01001010] • Try it!!!! x’ = [01000000] • Used for bits; used for signals 11 12 2 9/27/17 Valuable use of masking Valuable use of masking • LEGv8: Instruction format for I (indirect) • LEGv8: Instruction format for I (indirect) ALU opcode ALU immediate Rn Rd opcode Rn Rd immediate 31 22 21 10 9 5 4 0 31 22 21 10 9 5 4 0 What is the result of applying a mask of: What is the result of applying a mask of: • 0000001F ? • 0000001F gives Rd • 000003E0 ? • 000003E0 gives Rn • 003FFC00 ? • 003FFC00 gives ALU immediate • FFC00000 ? 13 • FFC00000 gives opcode 14 Another use of masking Shifting bits • Syntax • X << k shift x left k times • Sub-net masking X = [00101101] • “pick off” parts of an IP address X << 4 = [11010000] • X >> k shift x right k times X >> 4 = [00000010] 15 16 Shift right – logical or arithmetic? Logical or Arithmetic Shift? • X = [00101101] Y = [11001010] • NO STANDARD • Logical shift (zero fill): • Most C compilers use arithmetic X >> 4 = [00000010] right shifts for signed data • Y >> 4 = [00001100] ALL use logical right shifts for unsigned data • Arithmetic shift (msb fill): X >> 4 = [00000010] QUESTION: Y >> 4 = [11111100] Can you posit a guess as to why? 17 18 3 9/27/17 Shifting … what we can do Use for shifting Example: 2 0 X = 510 = [00000101] = 2 + 2 Example continued: 2 0 3 8 * 5: X = 510 = [00000101] = 2 + 2 ; 8 = 2 3 5 3 8 * X = 2 * 5 = 4010 = [00101000] = 2 + 2 3 8*X = 2 *5 = 4010 = [00101000] = [00101000] = 3210 +810 = X << 3 What did you notice? 19 20 Multiplication (and division) Multiplication by any number • 2k * X = X << k • Shift and add • Multiply by a power of 2 by shifting left the • How it was done before the days of hardware exponent of 2 number of times multiplication • Example: • Divide by a power of 2 by shifting right 1310*510 = 6510 • But need to handle remainder (unless int) 13 * 5 = (8*5) + (4*5) + (1*5) • Need to know if signed or unsigned (and whether = (23 * 5) + (22 * 5) + (20 * 5) logical or arithmetic shift is used for signed) = (5 << 3) + (5 << 2) + 5 21 22 Shift and add Shifting example – c and LEGv8 Claim: (5 << 3) + (5 << 2) + 5 = 13 * 5 • Problem: multiply the number 5 by 4 In C 5 = 00000101 int x = 5; x = x<<2; 5 << 3 = 00101000 fprintf(stderr, “ %i\n”,x); 5 << 2 = 00101000 In assembler 01010000 = 26+24 = 32+16 = 40 10 LDUR X1,#5 LSL X1,X1,#2 23 24 4 9/27/17 Swapping Swapping • In 3 steps --- Proof • In 3 steps • Recall that for any z, z^z = 0 Given X = a, Y = b 1. Y = X^X 1. Y = a ^ b 2. X = X^Y 2. X = a ^ (a ^ b) = (a ^ a) ^ b = 0 ^ b = b 3. Y = X^Y 3. Y = b ^ (a ^ b) = a ^ (b ^ b) = a ^ 0 = a QED nb: no temp variable is needed 25 26 Underflow: What to do? Overflow: What to do? • A shift right requires assigning values to • A “carry” occurs from some arithmetic operation the bits to the left of the shift • If it is an operation on a register, a flag in the ALU can be set to indicate overflow • Use the arithmetic or logical shift paradigm • If it is an operation on 2-registers; the discussed earlier flag can be used as input to the next word being processed. n.b. assembly language programmers MUST pay attention to n.b. assembly language programmers MUST pay attention to this. this. 27 28 So What? Coming to a CS203 class near you: Circuits!! 29 5 .
Recommended publications
  • ADSP-21065L SHARC User's Manual; Chapter 2, Computation
    &20387$7,2181,76 Figure 2-0. Table 2-0. Listing 2-0. The processor’s computation units provide the numeric processing power for performing DSP algorithms, performing operations on both fixed-point and floating-point numbers. Each computation unit executes instructions in a single cycle. The processor contains three computation units: • An arithmetic/logic unit (ALU) Performs a standard set of arithmetic and logic operations in both fixed-point and floating-point formats. • A multiplier Performs floating-point and fixed-point multiplication as well as fixed-point dual multiply/add or multiply/subtract operations. •A shifter Performs logical and arithmetic shifts, bit manipulation, field deposit and extraction operations on 32-bit operands and can derive exponents as well. ADSP-21065L SHARC User’s Manual 2-1 PM Data Bus DM Data Bus Register File Multiplier Shifter ALU 16 × 40-bit MR2 MR1 MR0 Figure 2-1. Computation units block diagram The computation units are architecturally arranged in parallel, as shown in Figure 2-1. The output from any computation unit can be input to any computation unit on the next cycle. The computation units store input operands and results locally in a ten-port register file. The Register File is accessible to the processor’s pro- gram memory data (PMD) bus and its data memory data (DMD) bus. Both of these buses transfer data between the computation units and internal memory, external memory, or other parts of the processor. This chapter covers these topics: • Data formats • Register File data storage and transfers
    [Show full text]
  • Most Computer Instructions Can Be Classified Into Three Categories
    Introduction: Data Transfer and Manipulation Most computer instructions can be classified into three categories: 1) Data transfer, 2) Data manipulation, 3) Program control instructions » Data transfer instruction cause transfer of data from one location to another » Data manipulation performs arithmatic, logic and shift operations. » Program control instructions provide decision making capabilities and change the path taken by the program when executed in computer. Data Transfer Instruction Typical Data Transfer Instruction : LD » Load : transfer from memory to a processor register, usually an AC (memory read) ST » Store : transfer from a processor register into memory (memory write) MOV » Move : transfer from one register to another register XCH » Exchange : swap information between two registers or a register and a memory word IN/OUT » Input/Output : transfer data among processor registers and input/output device PUSH/POP » Push/Pop : transfer data between processor registers and a memory stack MODE ASSEMBLY REGISTER TRANSFER CONVENTION Direct Address LD ADR ACM[ADR] Indirect Address LD @ADR ACM[M[ADR]] Relative Address LD $ADR ACM[PC+ADR] Immediate Address LD #NBR ACNBR Index Address LD ADR(X) ACM[ADR+XR] Register LD R1 ACR1 Register Indirect LD (R1) ACM[R1] Autoincrement LD (R1)+ ACM[R1], R1R1+1 8 Addressing Mode for the LOAD Instruction Data Manipulation Instruction 1) Arithmetic, 2) Logical and bit manipulation, 3) Shift Instruction Arithmetic Instructions : NAME MNEMONIC Increment INC Decrement DEC Add ADD Subtract SUB Multiply
    [Show full text]
  • Designing PCI Cards and Drivers for Power Macintosh Computers
    Designing PCI Cards and Drivers for Power Macintosh Computers Revised Edition Revised 3/26/99 Technical Publications © Apple Computer, Inc. 1999 Apple Computer, Inc. Adobe, Acrobat, and PostScript are Even though Apple has reviewed this © 1995, 1996 , 1999 Apple Computer, trademarks of Adobe Systems manual, APPLE MAKES NO Inc. All rights reserved. Incorporated or its subsidiaries and WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH No part of this publication may be may be registered in certain RESPECT TO THIS MANUAL, ITS reproduced, stored in a retrieval jurisdictions. QUALITY, ACCURACY, system, or transmitted, in any form America Online is a service mark of MERCHANTABILITY, OR FITNESS or by any means, mechanical, Quantum Computer Services, Inc. FOR A PARTICULAR PURPOSE. AS A electronic, photocopying, recording, Code Warrior is a trademark of RESULT, THIS MANUAL IS SOLD “AS or otherwise, without prior written Metrowerks. IS,” AND YOU, THE PURCHASER, ARE permission of Apple Computer, Inc., CompuServe is a registered ASSUMING THE ENTIRE RISK AS TO except to make a backup copy of any trademark of CompuServe, Inc. ITS QUALITY AND ACCURACY. documentation provided on Ethernet is a registered trademark of CD-ROM. IN NO EVENT WILL APPLE BE LIABLE Xerox Corporation. The Apple logo is a trademark of FOR DIRECT, INDIRECT, SPECIAL, FrameMaker is a registered Apple Computer, Inc. INCIDENTAL, OR CONSEQUENTIAL trademark of Frame Technology Use of the “keyboard” Apple logo DAMAGES RESULTING FROM ANY Corporation. (Option-Shift-K) for commercial DEFECT OR INACCURACY IN THIS purposes without the prior written Helvetica and Palatino are registered MANUAL, even if advised of the consent of Apple may constitute trademarks of Linotype-Hell AG possibility of such damages.
    [Show full text]
  • Faster Base64 Encoding and Decoding Using AVX2 Instructions
    Faster Base64 Encoding and Decoding using AVX2 Instructions WOJCIECH MUŁA, DANIEL LEMIRE, Universite´ du Quebec´ (TELUQ) Web developers use base64 formats to include images, fonts, sounds and other resources directly inside HTML, JavaScript, JSON and XML files. We estimate that billions of base64 messages are decoded every day. We are motivated to improve the efficiency of base64 encoding and decoding. Compared to state-of-the-art implementations, we multiply the speeds of both the encoding (≈ 10×) and the decoding (≈ 7×). We achieve these good results by using the single-instruction-multiple-data (SIMD) instructions available on recent Intel processors (AVX2). Our accelerated software abides by the specification and reports errors when encountering characters outside of the base64 set. It is available online as free software under a liberal license. CCS Concepts: •Theory of computation ! Vector / streaming algorithms; General Terms: Algorithms, Performance Additional Key Words and Phrases: Binary-to-text encoding, Vectorization, Data URI, Web Performance 1. INTRODUCTION We use base64 formats to represent arbitrary binary data as text. Base64 is part of the MIME email protocol [Linn 1993; Freed and Borenstein 1996], used to encode binary attachments. Base64 is included in the standard libraries of popular programming languages such as Java, C#, Swift, PHP, Python, Rust, JavaScript and Go. Major database systems such as Oracle and MySQL include base64 functions. On the Web, we often combine binary resources (images, videos, sounds) with text- only documents (XML, JavaScript, HTML). Before a Web page can be displayed, it is often necessary to retrieve not only the HTML document but also all of the separate binary resources it needs.
    [Show full text]
  • Bit-Mask Based Compression of FPGA Bitstreams
    International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3 Issue-1, March 2013 Bit-Mask Based Compression of FPGA Bitstreams S.Vigneshwaran, S.Sreekanth The efficiency of bitstream compression is measured using Abstract— In this paper, bitmask based compression of FPGA Compression Ratio (CR). It is defined as the ratio between the bit-streams has been implemented. Reconfiguration system uses compressed bitstream size (CS) and the original bitstream bitstream compression to reduce bitstream size and memory size (OS) (ie CR=CS/OS). A smaller compression ratio requirement. It also improves communication bandwidth and implies a better compression technique. Among various thereby decreases reconfiguration time. The three major compression techniques that has been proposed compression contributions of this paper are; i) Efficient bitmask selection [5] seems to be attractive for bitstream compression, because technique that can create a large set of matching patterns; ii) Proposes a bitmask based compression using the bitmask and of its good compression ratio and relatively simple dictionary selection technique that can significantly reduce the decompression scheme. This approach combines the memory requirement iii) Efficient combination of bitmask-based advantages of previous compression techniques with good compression and G o l o m b coding of repetitive patterns. compression ratio and those with fast decompression. Index Terms—Bitmask-based compression, Decompression II. RELATED WORK engine, Golomb coding, Field Programmable Gate Array (FPGA). The existing bitstream compression techniques can be classified into two categories based on whether they need I. INTRODUCTION special hardware support during decompression. Some Field-Programmable Gate Arrays (Fpga) is widely used in approaches require special hardware features to access the reconfigurable systems.
    [Show full text]
  • The Central Processor Unit
    Systems Architecture The Central Processing Unit The Central Processing Unit – p. 1/11 The Computer System Application High-level Language Operating System Assembly Language Machine level Microprogram Digital logic Hardware / Software Interface The Central Processing Unit – p. 2/11 CPU Structure External Memory MAR: Memory MBR: Memory Address Register Buffer Register Address Incrementer R15 / PC R11 R7 R3 R14 / LR R10 R6 R2 R13 / SP R9 R5 R1 R12 R8 R4 R0 User Registers Booth’s Multiplier Barrel IR Shifter Control Unit CPSR 32-Bit ALU The Central Processing Unit – p. 3/11 CPU Registers Internal Registers Condition Flags PC Program Counter C Carry IR Instruction Register Z Zero MAR Memory Address Register N Negative MBR Memory Buffer Register V Overflow CPSR Current Processor Status Register Internal Devices User Registers ALU Arithmetic Logic Unit Rn Register n CU Control Unit n = 0 . 15 M Memory Store SP Stack Pointer MMU Mem Management Unit LR Link Register Note that each CPU has a different set of User Registers The Central Processing Unit – p. 4/11 Current Process Status Register • Holds a number of status flags: N True if result of last operation is Negative Z True if result of last operation was Zero or equal C True if an unsigned borrow (Carry over) occurred Value of last bit shifted V True if a signed borrow (oVerflow) occurred • Current execution mode: User Normal “user” program execution mode System Privileged operating system tasks Some operations can only be preformed in a System mode The Central Processing Unit – p. 5/11 Register Transfer Language NAME Value of register or unit ← Transfer of data MAR ← PC x: Guard, only if x true hcci: MAR ← PC (field) Specific field of unit ALU(C) ← 1 (name), bit (n) or range (n:m) R0 ← MBR(0:7) Rn User Register n R0 ← MBR num Decimal number R0 ← 128 2_num Binary number R1 ← 2_0100 0001 0xnum Hexadecimal number R2 ← 0x40 M(addr) Memory Access (addr) MBR ← M(MAR) IR(field) Specified field of IR CU ← IR(op-code) ALU(field) Specified field of the ALU(C) ← 1 Arithmetic and Logic Unit The Central Processing Unit – p.
    [Show full text]
  • Chapter 17: Filters to Detect, Filters to Protect Page 1 of 11
    Chapter 17: Filters to Detect, Filters to Protect Page 1 of 11 Chapter 17: Filters to Detect, Filters to Protect You learned about the concepts of discovering events of interest by configuring filters in Chapter 8, "Introduction to Filters and Signatures." That chapter showed you various different products with unique filtering languages to assist you in discovering malicious types of traffic. What if you are a do- it-yourself type, inclined to watch Bob Vila or "Men in Tool Belts?" The time-honored TCPdump program comes with an extensive filter language that you can use to look at any field, combination of fields, or bits found in an IP datagram. If you like puzzles and don’t mind a bit of tinkering, you can use TCPdump filters to extract different anomalous traffic. Mind you, this is not the tool for the faint of heart or for those of you who shy away from getting your brain a bit frazzled. Those who prefer a packaged solution might be better off using the commercial products and their GUIs or filters. This chapter introduces the concept of using TCPdump and TCPdump filters to detect events of interest. TCPdump and TCPdump filters are the backbone of Shadow, and so the recommended suggestion is to download the current version of Shadow at http://www.nswc.navy.mil/ISSEC/CID/ to examine and enhance its native filters. This takes care of automating the collection and processing of traffic, freeing you to concentrate on improving the TCPdump filters for better detects. Specifically, this chapter discusses the mechanics of creating TCPdump filters.
    [Show full text]
  • This Is a Free, User-Editable, Open Source Software Manual. Table of Contents About Inkscape
    This is a free, user-editable, open source software manual. Table of Contents About Inkscape....................................................................................................................................................1 About SVG...........................................................................................................................................................2 Objectives of the SVG Format.................................................................................................................2 The Current State of SVG Software........................................................................................................2 Inkscape Interface...............................................................................................................................................3 The Menu.................................................................................................................................................3 The Commands Bar.................................................................................................................................3 The Toolbox and Tool Controls Bar........................................................................................................4 The Canvas...............................................................................................................................................4 Rulers......................................................................................................................................................5
    [Show full text]
  • Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
    Computer Architecture A Quantitative Approach, Fifth Edition Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. SIMD architecture 2. Vector architectures optimizations: Multiple Lanes, Vector Length Registers, Vector Mask Registers, Memory Banks, Stride, Scatter-Gather, 3. Programming Vector Architectures 4. SIMD extensions for media apps 5. GPUs – Graphical Processing Units 6. Fermi architecture innovations 7. Examples of loop-level parallelism 8. Fallacies Copyright © 2012, Elsevier Inc. All rights reserved. 2 Classes of Computers Classes Flynn’s Taxonomy SISD - Single instruction stream, single data stream SIMD - Single instruction stream, multiple data streams New: SIMT – Single Instruction Multiple Threads (for GPUs) MISD - Multiple instruction streams, single data stream No commercial implementation MIMD - Multiple instruction streams, multiple data streams Tightly-coupled MIMD Loosely-coupled MIMD Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Advantages of SIMD architectures 1. Can exploit significant data-level parallelism for: 1. matrix-oriented scientific computing 2. media-oriented image and sound processors 2. More energy efficient than MIMD 1. Only needs to fetch one instruction per multiple data operations, rather than one instr. per data op. 2. Makes SIMD attractive for personal mobile devices 3. Allows programmers to continue thinking sequentially SIMD/MIMD comparison. Potential speedup for SIMD twice that from MIMID! x86 processors expect two additional cores per chip per year SIMD width to double every four years Copyright © 2012, Elsevier Inc. All rights reserved. 4 Introduction SIMD parallelism SIMD architectures A. Vector architectures B. SIMD extensions for mobile systems and multimedia applications C.
    [Show full text]
  • X86 Intrinsics Cheat Sheet Jan Finis [email protected]
    x86 Intrinsics Cheat Sheet Jan Finis [email protected] Bit Operations Conversions Boolean Logic Bit Shifting & Rotation Packed Conversions Convert all elements in a packed SSE register Reinterpet Casts Rounding Arithmetic Logic Shift Convert Float See also: Conversion to int Rotate Left/ Pack With S/D/I32 performs rounding implicitly Bool XOR Bool AND Bool NOT AND Bool OR Right Sign Extend Zero Extend 128bit Cast Shift Right Left/Right ≤64 16bit ↔ 32bit Saturation Conversion 128 SSE SSE SSE SSE Round up SSE2 xor SSE2 and SSE2 andnot SSE2 or SSE2 sra[i] SSE2 sl/rl[i] x86 _[l]rot[w]l/r CVT16 cvtX_Y SSE4.1 cvtX_Y SSE4.1 cvtX_Y SSE2 castX_Y si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd epi16-64 epi16-64 (u16-64) ph ↔ ps SSE2 pack[u]s epi8-32 epu8-32 → epi8-32 SSE2 cvt[t]X_Y si128,ps/d (ceiling) mi xor_si128(mi a,mi b) mi and_si128(mi a,mi b) mi andnot_si128(mi a,mi b) mi or_si128(mi a,mi b) NOTE: Shifts elements right NOTE: Shifts elements left/ NOTE: Rotates bits in a left/ NOTE: Converts between 4x epi16,epi32 NOTE: Sign extends each NOTE: Zero extends each epi32,ps/d NOTE: Reinterpret casts !a & b while shifting in sign bits. right while shifting in zeros. right by a number of bits 16 bit floats and 4x 32 bit element from X to Y. Y must element from X to Y. Y must from X to Y. No operation is SSE4.1 ceil NOTE: Packs ints from two NOTE: Converts packed generated.
    [Show full text]
  • Simplified Adaptive Multiplicative Masking For
    Simplified Adaptive Multiplicative Masking for AES Elena Trichina, Domenico De Seta, and Lucia Germani Cryptographic Design Center, Gemplus TechnologyR&D Via Pio Emanuelli 1, 00143 Rome, Italy {elena.trichina,domenico.deseta,lucia.germani}@gemplus.com Abstract. Software counter measures against side channel attacks con- siderably hinder performance of cryptographic algorithms in terms of memory or execution time or both. The challenge is to achieve secure implementation with as little extra cost as possible. In this paper we optimize a counter measure for the AES block cipher consisting in trans- forming a boolean mask to a multiplicative mask prior to a non-linear Byte Substitution operation (thus, avoiding S-box re-computations for every run or storing multiple S-box tables in RAM), while preserving a boolean mask everywhere else. We demonstrate that it is possible to achieve such transformation for a cost of two additional multiplications in the field. However, due to an inherent vulnerability of multiplicative masking to so-called zero attack, an additional care must be taken to securize its im- plementation. We describe one possible, although not perfect, approach to such an implementation which combines algebraic techniques and par- tial re-computation of S-boxes. This adds one more multiplication oper- ation, and either occasional S-box re-computations or extra 528 bytes of memory to the total price of the counter measure. 1 Introduction With the increasing research endeavors in the field of side-channel attacks both hardware and software implementations of cryptosystems have to take into ac- count various counter measures. The main techniques are timing attacks [10], simple (SPA) and differential power analysis (DPA) [11], and electromagnetic attacks [7] .
    [Show full text]
  • Bit Manipulation
    jhtp_appK_BitManipulation.fm Page 1 Tuesday, April 11, 2017 12:28 PM K Bit Manipulation K.1 Introduction This appendix presents an extensive discussion of bit-manipulation operators, followed by a discussion of class BitSet, which enables the creation of bit-array-like objects for setting and getting individual bit values. Java provides extensive bit-manipulation capabilities for programmers who need to get down to the “bits-and-bytes” level. Operating systems, test equipment software, networking software and many other kinds of software require that the programmer communicate “directly with the hardware.” We now discuss Java’s bit- manipulation capabilities and bitwise operators. K.2 Bit Manipulation and the Bitwise Operators Computers represent all data internally as sequences of bits. Each bit can assume the value 0 or the value 1. On most systems, a sequence of eight bits forms a byte—the standard storage unit for a variable of type byte. Other types are stored in larger numbers of bytes. The bitwise operators can manipulate the bits of integral operands (i.e., operations of type byte, char, short, int and long), but not floating-point operands. The discussions of bit- wise operators in this section show the binary representations of the integer operands. The bitwise operators are bitwise AND (&), bitwise inclusive OR (|), bitwise exclu- sive OR (^), left shift (<<), signed right shift (>>), unsigned right shift (>>>) and bitwise complement (~). The bitwise AND, bitwise inclusive OR and bitwise exclusive OR oper- ators compare their two operands bit by bit. The bitwise AND operator sets each bit in the result to 1 if and only if the corresponding bit in both operands is 1.
    [Show full text]