Study on Artificial Intelligence Diplomacy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Sustainable Development, Technological Singularity and Ethics
European Research Studies Journal Volume XXI, Issue 4, 2018 pp. 714- 725 Sustainable Development, Technological Singularity and Ethics Vyacheslav Mantatov1, Vitaly Tutubalin2 Abstract: The development of modern convergent technologies opens the prospect of a new technological order. Its image as a “technological singularity”, i.e. such “transhuman” stage of scientific and technical progress, on which the superintelligence will be practically implemented, seems to be quite realistic. The determination of the basic philosophical coordinates of this future reality in the movement along the path of sustainable development of mankind is the most important task of modern science. The article is devoted to the study of the basic ontological, epistemological and moral aspects in the reception of the coming technological singularity. The method of this study is integrating dialectical and system approach. The authors come to the conclusion: the technological singularity in the form of a “computronium” (superintelligence) opens up broad prospects for the sustainable development of mankind in the cosmic dimension. This superintelligence will become an ally of man in the process of cosmic evolution. Keywords: Technological Singularity, Superintelligence, Convergent Technologies, Cosmocentrism, Human and Universe JEL code: Q01, Q56. 1East Siberia State University of Technology and Management, Ulan-Ude, Russia [email protected] 2East Siberia State University of Technology and Management, Ulan-Ude, Russia, [email protected] V. Mantatov, V. Tutubalin 715 1. Introduction Intelligence organizes the world by organizing itself. J. Piaget Technological singularity is defined as a certain moment or stage in the development of mankind, when scientific and technological progress will become so fast and complex that it will be unpredictable. -
Venona Special Studies
- 1 - Venona Project Special Studies Transcribed by Students of the Mercyhurst College Institute for Intelligence Studies Arranged by John Earl Haynes, Library of Congress, 2010 COVER NAMES IN NEW YORK TRAFFIC p. 2 UNIDENTIFIED COVER NAMES IN NEW YORK TRAFFIC p. 86 COVER NAMES IN SAN FRANCISCO TRAFFIC p. 92 COVER NAMES IN WASHINGTON TRAFFIC p. 123 ADDITIONAL COVERNAMES AND RELATED INFORMATION IN DIPLOMATIC TRAFFIC p. 127 REVISED TRANSLATION OF MESSAGE ON ANTENNA-LIBERAL'S WIFE ETHEL p. 135 THE COVERNAMES "ANTENNA" AND "LIBERAL" IN . MESSAGES p. 139 ESSAGES IN . INVOLVING THE COVERNAME"ENORMOZ" AND THE NAMES OF NUCLEAR PHYSICISTS, ETC. p. 147 UNDATED REPORT OF MEREDITH GARDNER p. 155 DEVELOPMENT OF THE “G--“HOMER” [“GOMER”] CASE p. 158 THE KOMAR (KRAVCHENKO) AFFAIR IN . MESSAGES p. 161 REVISED TRANSLATION OF TWO . MESSAGES ON CHANGES IN COVERNAMES p. 170 THE COVERNAME "KARAS" IN. TRAFFIC p. 178 THE COVERNAMES "TÉNOR", "BAS", AND "CHETÁ" (? IN . TRAFFIC p. 181 - 2 - Special Study Cover Names in New York Traffic - 3 - cover-name Message number Date Publication reference S/ or 3/NBF/ 19 N.Y. to M. 812 29053 JKI 06 T1022 1B-1910 0027A ABRAM N.Y. to M. 992 24063 JKR 14 T872√ 1B-7518 0005A JACK SOBLE 1086 06073 JKV 48 T873√ 2A-0011 1957 29113 NNNNNN T939√ 625 04054 JHD 48 T916√ 851 15064 JIJ 40 T10.1√ 1146 10084 JHM 41 T123√ 1251 02094 JHN 12 T301√ (to ChEKh) 0005B 1353 23094 JHO 42 T289√ 1449 12104 JIL 37 T106√ 1754 14124 JHZ 49 T6√ 48 11015 JHV 37 (NSA)T1941 AVGUR 2A-0013 1638 (AUGUR) N.Y. -
Future of Research on Catastrophic and Existential Risk
ORE Open Research Exeter TITLE Working together to face humanity's greatest threats: Introduction to The Future of Research in Catastrophic and Existential Risk AUTHORS Currie, AM; Ó hÉigeartaigh, S JOURNAL Futures DEPOSITED IN ORE 06 February 2019 This version available at http://hdl.handle.net/10871/35764 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Working together to face humanity’s greatest threats: Introduction to The Future of Research on Catastrophic and Existential Risk. Adrian Currie & Seán Ó hÉigeartaigh Penultimate Version, forthcoming in Futures Acknowledgements We would like to thank the authors of the papers in the special issue, as well as the referees who provided such constructive and useful feedback. We are grateful to the team at the Centre for the Study of Existential Risk who organized the first Cambridge Conference on Catastrophic Risk where many of the papers collected here were originally presented, and whose multi-disciplinary expertise was invaluable for making this special issue a reality. We’d like to thank Emma Bates, Simon Beard and Haydn Belfield for feedback on drafts. Ted Fuller, Futures’ Editor-in-Chief also provided invaluable guidance throughout. The Conference, and a number of the publications in this issue, were made possible through the support of a grant from the Templeton World Charity Foundation (TWCF); the conference was also supported by a supplementary grant from the Future of Life Institute. -
The Hera Mission
Dr. Patrick Michel Hera Investigation Team PI Université Côte d’Azur Observatoire de la Côte d’Azur CNRS, Lagrange Laboratory Nice, France The Hera Mission ESA UNCLASSIFIED - For Official Use Hera main aspects Role of space missions at ESA in NEO hazard mitigation • Understanding the problem (deflection modeling and simulations) 2001 • Ground versus space solutions analyses • Assessment of space component options 2002- • 6 parallel phase-0 studies (3 space telescopes, 3 rendezvous) Euneos Nero Earthguard 1 2004 • ESA’s NEO Mission Advisory Panel (NEOMAP) established • Kinetic impactor validation ranked highest importance 2004- • Don Quijote mission selected and studied up to phase-A level 2006 • SANCHO / Proba-IP orbiter up to phase A level studies, small deep-space Don Quijote Ishtar Simone 2008- mission to investigate impactor’s result 2009 • AIDA proposed by NASA: USA/impactor + ESA/impact assessment • ESA phase 0 and phase A studies on the observer spacecraft "AIM” (GSP) 2011- Proba-IP 2016 • Phase B1 study and “consolidation phase” for mission definition (GSTP) • HERA: impact observer spacecraft reformulation and optimization AIM 2017- • Phase B1 implementation + payload + technology breadboards (GSTP+SSA) Several concepts 2019 • DART phase-C kick-off on 15 May 2018 Hera iterated AIDA: An International Planetary Defense Mission U.S. National Research Council Committee “Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies” Recommendation: “If [U.S.] Congress chooses to fund mitigation research at an appropriately high level, the first priority for a space mission in the mitigation area is an experimental test of a kinetic impactor along with a characterization, monitoring, and verification system, such as the Don Quixote mission that was previously considered, but not funded, by the European Space Agency. -
ESA SSA and Instrumentation Required for Space Weather Activities
ESA SSA and instrumentation required for space weather activities Piers Jiggens, Alain Hilgers (ESTEC/TEC) Juha-Pekka Luntama, Alexi Glover (ESOC/HSO) SSA Preparatory Programme Overview (2009-2012) SSA Preparatory Programme SST NEO SWE Core CO-I CO-II Data Centre (DC-xx) Database and Prototype Requirements Architectural Portal Pilot Data and design Development Centres evaluation SN-I SN-II SN-IV SN-VI Preparation of Space Weather Space Weather Space Weather Space Weather Instruments Precursor Additional Services Implementation Service Services Design Study Operations and Development SSA Preparatory Programme Architecture studies ESA Customer Product System Req. (CRD) Spec. (PSD) Req. (SRD) CO-I Also SN-II CO-II Dedicated Space Weather Hosted SSA Spacecraft Instruments Payloads Programme Implementation Architectural Astrium Design Study Design Study (GmbH) Gather Instrument Astrium Kayser-Threde Documentation (GmbH) (GmbH) 2010 - Produce shortlist of Covering all 3 Covering only one viable missions Segments: segment: 2013 Space Surveillance Space Weather Match instruments & Tracking (other 2 are to missions Near-Earth Objects covered under a Space Weather separate contract) Determine 2012-2014 2013-2014 Development Plan SN-II: Space Weather Instrument Implementation Design Study - Inputs 1. Create database of instruments (46 originally included) Astrium (GmbH) 2. AO + instrument workshop (ESTEC, November 2010) Project Manager: Norbert Pailer 3. List of all possible mission opportunities (> 200 initially) 4. Shortlist of representative instruments based on maturity at the time and the amount of data provided (Design Descriptions, ICDs) including: • Radiation Monitors: NGRM, HMRM, EPT, SREM; Plasma instruments: SW- ChaPS, AMBER, AMBER_GEO, M-NLP • Micrometeoroids: AIDA-IS, SODA; Surface Potential: SPD; Magnetometer: MRMAG; Auroral Imager: WFAI; Solar X-rays: XFM 5. -
The Technological Singularity and the Transhumanist Dream
ETHICAL CHALLENGES The technological singularity and the transhumanist dream Miquel Casas Araya Peralta In 1997, an AI beat a human world chess champion for the first time in history (it was IBM’s Deep Blue playing Garry Kasparov). Fourteen years later, in 2011, IBM’s Watson beat two winners of Jeopardy! (Jeopardy is a general knowledge quiz that is very popular in the United States; it demands a good command of the language). In late 2017, DeepMind’s AlphaZero reached superhuman levels of play in three board games (chess, go and shogi) in just 24 hours of self-learning without any human intervention, i.e. it just played itself. Some of the people who have played against it say that the creativity of its moves make it seem more like an alien that a computer program. But despite all that, in 2019 nobody has yet designed anything that can go into a strange kitchen and fry an egg. Are our machines truly intelligent? Successes and failures of weak AI The fact is that today AI can solve ever more complex specific problems with a level of reliability and speed beyond our reach at an unbeatable cost, but it fails spectacularly in the face of any challenge for which it has not been programmed. On the other hand, human beings have become used to trivialising everything that can be solved by an algorithm and have learnt to value some basic human skills that we used to take for granted, like common sense, because they make us unique. Nevertheless, over the last decade, some influential voices have been warning that our skills PÀGINA 1 / 9 may not always be irreplaceable. -
Global Catastrophic Risks 2016
Global Challenges Foundation Global Catastrophic Risks 2016 © Global Challenges Foundation/Global Priorities Project 2016 GLOBAL CATASTROPHIC RISKS 2016 THE GLOBAL CHALLENGES FOUNDATION works to raise awareness of the The views expressed in this report are those of the authors. Their Global Catastrophic Risks. Primarily focused on climate change, other en- statements are not necessarily endorsed by the affiliated organisations. vironmental degradation and politically motivated violence as well as how these threats are linked to poverty and rapid population growth. Against this Authors: background, the Foundation also works to both identify and stimulate the Owen Cotton-Barratt*† development of good proposals for a management model – a global gover- Sebastian Farquhar* nance – able to decrease – and at best eliminate – these risks. John Halstead* Stefan Schubert* THE GLOBAL PRIORITIES PROJECT helps decision-makers effectively prior- Andrew Snyder-Beattie† itise ways to do good. We achieve his both by advising decision-makers on programme evaluation methodology and by encouraging specific policies. We * = The Global Priorities Project are a collaboration between the Centre for Effective Altruism and the Future † = The Future of Humanity Institute, University of Oxford of Humanity Institute, part of the University of Oxford. Graphic design: Accomplice/Elinor Hägg Global Challenges Foundation in association with 4 Global Catastrophic Risks 2016 Global Catastrophic Risks 2016 5 Contents Definition: Global Foreword 8 Introduction 10 Catastrophic Risk Executive summary 12 1. An introduction to global catastrophic risks 20 – risk of events or 2. What are the most important global catastrophic risks? 28 Catastrophic climate change 30 processes that would Nuclear war 36 Natural pandemics 42 Exogenous risks 46 lead to the deaths of Emerging risks 52 Other risks and unknown risks 64 Our assessment of the risks 66 approximately a tenth of 3. -
Legal Aspects on the Implementation of Artificial Intelligence
EAI Endorsed Transactions on Creative Technologies Research Article Legal Aspects on the Implementation of Artificial Intelligence Corneliu Andy Puşcã1,* 1 Danubius University of Galati, 3 Galati Blvd., Galati 800654, Romania Abstract Artificially Intelligent agents are more and more present in society. They have the potential to improve our daily life and social welfare. But, the introduction of AI already brings some technologic, industrial and regulatory challenges. The robots operating autonomously, without the intervention or awareness of humans will raise questions regarding attribution of rights or restrictions / obligations for them, liability for their actions, taxation, data privacy, robotic labour replacing human labour. The change of liability paradigm from the operator of the vehicle to the manufacturer started with the imposition of liability for damages arising from an autonomous car. Should robots pay taxes? Maybe it is not fair to tax artificially intelligent agents for benefiting from public expenditure, because the use of public services or infrastructures by an AI agent it’s not a benefit for the agent, but for the user or designer. It can be a necessity, for reasons related to altering patterns of consumption or employment within the economy. The risk of losing control over AI agents are not only related to damages, but also to the protection of personal data and public safety. This can happen due to malfunctions, security breaches, the superior response time of computers compared to humans, unsafe explorations, hacking and so on. In this paper we aim at demonstrating that, with the proliferation of artificial intelligence, questions will come up and legal frameworks will inevitably need to adapt. -
Artificial Intelligence: a Roadmap for California
Artificial Intelligence: A Roadmap for California Report #245, November 2018 Milton Marks Commission on California State Government Organization and Economy Little Hoover Commission Dedicated to Promoting Economy and Efficiency Pedro Nava Chairman in California State Government Sean Varner Vice Chairman/ Subcommitee Member The Little Hoover Commission, formally known as the Milton Marks “Little Hoover” David Beier Commission on California State Government Organization and Economy, is an Subcommitee Chair independent state oversight agency created in 1962. By statute, the Commission Iveta Brigis is bipartisan and composed of nine public members, two senators and two Subcommitee Member assemblymembers. Cynthia Buiza In creating the Commission, the Legislature declared its purpose: Anthony Cannella Senator [T]o secure assistance for the Governor and itself in promoting Chad Mayes economy, efficiency and improved services in the transaction of Assemblymember the public business in the various departments, agencies and Don Perata instrumentalities of the executive branch of the state government, Bill Quirk and in making the operation of all state departments, agencies and Assemblymember instrumentalities, and all expenditures of public funds, more directly Richard Roth responsive to the wishes of the people as expressed by their elected Senator representatives. Cathy Schwamberger The Commission fulfills this charge by holding public hearings, consulting with experts Janna Sidley and listening to stakeholders. During the course of its studies, the Commission may Former Commissioners Who create subcommittees and conduct site visits. Served During The Study Joshua LaFarga The findings and recommendations of the Commission are submitted to the Governor and the Legislature for their consideration. Recommendations often take the form of Helen Iris Torres legislation, which the Commission supports through the legislative process. -
NATO Legal Gazette Issue 41
Issue 41 October 2020 Legal Gazette Legal Aspects of Innovation 1 PAGE 2 NATO LEGAL GAZETTE, Issue 41 Contents Introduction, by Sherrod Lewis Bumgardner……………………………...….……......... 4 Preface, by Geoffrey S. Corn and Gary Corn..……………………………………... 6 Innovation for peaceful purposes only: Where there is the will, there is ITER, by Antoaneta Boeva …………………………………………………………………………… 14 Partnership, Not Pivot: NATO’s Legal Answer to the China Question, by Lauren Brown ………………………………………………………………………………………... 27 Responsibility, Liability and Lethal Autonomous Weapon Systems, by Theodora Vassilika Ogden ………………………………………………………………. 46 Autonomous Weapon Systems: A Pragmatic Approach to an Emerging Capability, by Major Gregg F. Curley..………………………………………………… 61 U.S. Export Controls: The Future of Disruptive Technologies, by Christopher Timura, Judith Alison Lee, R.L. Pratt and Scott Toussaint …………………………... 96 The Relevance and Benefits of Integrated Compliance Strategy (ICS) for NATO Defence Forces, by Martijn Antzoulatos-Borgstein …………………..…...…. 125 Legal Operations: The Use of Law as an Instrument of Power in the Context of Hybrid Threats and Strategic Competition, by Rodrigo Vázquez Benítez……….. 138 The Road to Hell is Paved with Bad Contractors: Vendor Vetting is a Better Path, by Brett Sander ……………………………………………………………………… 145 Publisher: Monte DeBoer, ACT Legal Advisor Editor-in-Chief: Sherrod Lewis Bumgardner, ACT SEE Legal Advisor Editors: Mette Prassé Hartov, HQ SACT Deputy Legal Advisor Galateia Gialitaki, ACT SEE Legal Assistant Copy Editors: Robert ‘Butch’Bracknell, HQ SACT Staff Legal Advisor Col Xavier Labarriere, HQ SACT Staff Legal Advisor Miles S. Porter, HQ SACT Legal Extern Malia Kenza Chenaoui, ACT SEE Legal Extern Copy Proofreader: Caitlin Fendon, HQ SACT Legal Intern Lola Chanfreau, ACT SEE Legal Extern 2 NATO LEGAL GAZETTE, Issue 41 PAGE 3 Disclaimer: The NATO Legal Gazette is produced and published by Headquarters Supreme Allied Commander Transformation (HQ SACT). -
Impact of Technological Singularity in Human Life
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727 PP 06-09 www.iosrjournals.org Impact of Technological Singularity in Human Life Mayur Umesh Ushir1, Prof. Pooja Kadam 2 1(MCA, BVIMIT, Navi Mumbai, India) 2(MCA, BVIMIT, Navi Mumbai, India) Abstract: The technological singularity is a situation that the invention of artificial superintelligence unexpectedly triggers technological growth, resulting in incalculable changes in human life. As we said it is artificial superintelligence, once a machine is learning to develop then it will improve technologies recursively and it will scale up to an exponential level, however, this change can evolve the human civilization rapidly. This is the point beyond which events may become unpredictable or even obscure to human intelligence. This paper will focus on the current state of the experiments on AI Software’s and deeply analyze the experiment results either positively or negatively impacting human society and life which can change them in the future. Keywords: Artificial Intelligence, Technological Singularity, Technical singularity, artificial superintelligence, technological growth, human intelligence, AI. I. Introduction In an artificial superintelligence, once a machine is learning to develop the new things then it will improve technologies recursively and it will scale up to an exponential level. This is the point beyond which events may become unpredictable or even obscure to human intelligence. We have seen many fiction movies and stories on technological singularity, which overcome the human society and destroy the human life. Lots of top research companies have given negative comments on the technological singularity. To understand ground reality, we have discovered some artificial intelligence experiments in the current year which may lead to the root of technological singularity which results may impact the human society and life.