TFS-CLI 16696 Targeted Therapies and Biomarkers Infographic

Total Page:16

File Type:pdf, Size:1020Kb

TFS-CLI 16696 Targeted Therapies and Biomarkers Infographic Precision oncology helps Available targeted medicines—solid tumors Biomarker development is accelerating Targeted therapies may improve to improve patient outcomes Over the last 20 years the development of targeted therapies has accelerated, and a large number of such While it took almost 20 years for the first biomarkers to become targets of oncology precision treatments are currently available. Testing for relevant, actionable biomarkers to identify genetic alterations has medicines and to be routinely analyzed, there are many new candidates in late-stage clinical Non-small cell lung cancer (NSCLC) patients who have received biomarker‐driven therapy as the become a necessary and routine part of the oncology patient management process. trials, and we can expect the spectrum to grow rapidly. oncology patient outcomes first line have had even better survival. Adapted from John A et al. Oncologist. 2020 Nov; 25(11):e1743–e1752. 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2018 2019 2020 Precision medicine is enabled by molecular profiling HER2 trastuzumab lapatinib pertuzumab ado-trastuzumab trastuzumab-pkrb fam-trastuzumab deruxtecan-nxki Today, drugs can be selected to directly target the biological pathways causing the disease, while HER2 KRAS ALK BRCA PIK3CA MET IDH1 MEK avoiding suboptimal therapies. Using patient-specific tumor molecular profiling, treatment plans can be Median overall survival emtansine trastuzumab and hyaluronidase-oysk uniquely tailored to help provide the best potential outcome. (Overall survival) EGFR gefitinib cetuximab erlotinib panitumumab erlotinib afatinib necitumumab afatinib atezolizumab (as maintenance therapy) osimertinib osimertinib dacomitinib ALK ROS1 1998 2019/2020 2022 Traditional therapies Precision medicine 1.0 crizotinib ceritinib entrectinib lorlatinib alectinib PF-0646392 21 years On the near horizon BRAF 0.8 vemurafenib dabrafenib brigatinib encorafenib binimetinib MEK EGFR EGFR BRAF ROS1 NTRK FGFR RET exon 20 cMET With CDx trametinib cobimetinib selumetinib 0.6 Without CDx encorafenib Molecular BRCA HRD profile olaparib veliparib niraparib niraparib 0.4 rucaparib talazoparib NTRK larotrectinib Survival probability 0.2 PIK3CA Response to therapy is unpredictable, alpelisib and might expose patients to 0.0 73% of medicines in oncology unnecessary side eects. FGFR 0 20 40 60 80 73% erdafitinib pemigatinib pipelines have associated biomarkers Survival time (months) RET Each patient is given an individualized selpercatinib treatment, specifically addressing an underlying genomic alteration. MET capmatinib Gene translocations and fusions (e.g., NTRK3) Gene copy number variations (CNVs) (e.g., HER2) Insertions and deletions (indels) (e.g., EGFR exon 19) Single-nucleotide polymorphisms (SNPs) (e.g., BRAF V600E) Native Insertion Deletion Before translocation After translocation AT AT AT Chromosome 15 Chromosome 15 Native C G C G C G Chromosome 12 Chromosome 12 C G G C G C G C A T GC C G ETV6 C G C G C G G C A T SNP Normal NTRK3 and NTRK3 and ETV6 NTRK3-ETV6 Amplification Native G C A T ETV6 genes genes with breaks gene fusion A T C G T A G C G C T A A T GC Deletion G C T A NTRK3 GC Find out more at oncomine.com.
Recommended publications
  • Oncofocus® Precision Oncology
    Medical Laboratory Accredited to ISO15189:2012 Oncofocus® Precision Oncology ONCOFOCUS® TEST REPORT Oncologica UK Ltd Suite 15-16, The Science Village Chesterford Research Park Cambridge, CB10 1XL, UK Tel: +44(0)1223 785327 Email: [email protected] Lead Clinical Scientist: - Pre-Reg Clinical Scientist: - Date: 1 of 30 ONC19 - Surname - Requester - Forename - Contact details - DOB - Date requested - Gender - Histology # - Tumour % - Primary site Breast Tumour % - Tumour subtype - (macrodissected) Tissue Type - Comment: The DNA and RNA extracted from this sample were of optimal quality. The Oncofocus assay on which the sample was run met all assay specific quality metrics. Oncofocus currently targets 505 genes covering oncogenes, fusion genes, genes susceptible to copy number variation and tumour suppressors. Actionable genetic variants detected by Oncofocus are currently linked to 687 anti-cancer targeted therapies/therapy combinations. The following actionable variants were detected: Within the 'Current Clinical Trials Information' section of this report, starting on page 8, the NCT numbers are hyperlinks to the clinicaltrials.gov webpages which should be accessed to gain further trial specific information Sample Cancer Type: Breast Cancer Clinically Significant Biomarkers Indicated Contraindicated Relevant Therapies Relevant Therapies Genomic Alteration Alt allele freq (In this cancer type) (In other cancer type) Clinical Trials ERBB2 p.(G727A) c.2180G>C 39% Clinical trials and/or off-label ado-trastuzumab emtansine 19 BRAF p.(V600E) c.1799T>A 5% Clinical trials and/or off-label dabrafenib 13 vemurafenib PIK3CA p.(G1049R) c.3145G>C 58% Clinical trials and/or off-label Clinical trials and/or off-label 15 Sources included in relevant therapies: EMA1, FDA2, ESMO, NCCN Hotspot variants with >10% alternate allele reads are classified as ‘detected’ with an assay sensitivity and positive predictive value(PPV) of 99%.
    [Show full text]
  • Product Monograph Including Patient Medication Information
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION Pr ® COTELLIC cobimetinib tablets 20 mg cobimetinib (as cobimetinib fumarate) Protein Kinase Inhibitor Date of Revision: Hoffmann-La Roche Limited January 5, 2018 7070 Mississauga Road Mississauga, Ontario, Canada L5N 5M8 www.rochecanada.com Submission Control No: 209926 COTELLIC®, ZELBORAF® are registered trade-marks of F. Hoffmann-La Roche AG, used under license ©Copyright 2016-2017, Hoffmann-La Roche Limited Page 1 of 38 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................3 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ..................................................................................................11 DRUG INTERACTIONS ..................................................................................................15 DOSAGE AND ADMINISTRATION ..............................................................................17 OVERDOSAGE ................................................................................................................20 ACTION AND CLINICAL PHARMACOLOGY ............................................................20
    [Show full text]
  • Quantification of Cobimetinib, Cabozantinib, Dabrafenib, Niraparib
    University of Groningen Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS Krens, Stefanie D; van der Meulen, Eric; Jansman, Frank G A; Burger, David M; van Erp, Nielka P Published in: Biomedical chromatography DOI: 10.1002/bmc.4758 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Krens, S. D., van der Meulen, E., Jansman, F. G. A., Burger, D. M., & van Erp, N. P. (2020). Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS. Biomedical chromatography, 34(3), [4758]. https://doi.org/10.1002/bmc.4758 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • (AZD6244) in an in Vivo Model of Childhood Astrocytoma
    Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Development, Characterization, and Reversal of Acquired Resistance to the MEK1 Inhibitor Selumetinib (AZD6244) in an In Vivo Model of Childhood Astrocytoma Hemant K. Bid1, Aaron Kibler1, Doris A. Phelps1, Sagymbek Manap1, Linlin Xiao1, Jiayuh Lin1, David Capper2, Duane Oswald1, Brian Geier1, Mariko DeWire1,5, Paul D. Smith3, Raushan T. Kurmasheva1, Xiaokui Mo4, Soledad Fernandez4, and Peter J. Houghton1*. 1Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205 2Institut of Pathology, Department Neuropathology, Ruprecht-Karls University and Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany 3Astrazeneca Ltd., Oncology iMed, Macclesfield, U.K. 4Center for Biostatistics, The Ohio State University, Columbus, OH 43221 5 Present address: Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 Correspondence to Peter J. Houghton, Ph.D. Center for Childhood Cancer & Blood Diseases Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205 Ph: 614-355-2633 Fx: 614-355-2792 [email protected] Running head: Acquired resistance to MEK Inhibition in astrocytoma models. Conflict of Interest Statement: The authors consider that there is no actual or perceived conflict of interest. Dr. Paul D. Smith is an employee of Astrazeneca. 1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Could Hbx Protein Expression Affect Signal Pathway Inhibition by Gefitinib Or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines?
    ORIGINAL ARTICLE Oncology & Hematology DOI: 10.3346/jkms.2011.26.2.214 • J Korean Med Sci 2011; 26: 214-221 Could HBx Protein Expression Affect Signal Pathway Inhibition by Gefitinib or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines? Yoon Kyung Park1, Kang Mo Kim1, Hepatitis B virus X (HBx) protein has been known to play an important role in development Young-Joo Lee2, Ki-Hun Kim2, of hepatocellular carcinoma (HCC). The aim of this study is to find out whether HBx Sung-Gyu Lee2, Danbi Lee1, protein expression affects antiproliferative effect of an epidermal growth factor receptor- Ju Hyun Shim1, Young-Suk Lim1, tyrosine kinase (EGFR-TK) inhibitor and a MEK inhibitor in HepG2 and Huh-7 cell lines. We 1 1 Han Chu Lee , Young-Hwa Chung , established HepG2 and Huh-7 cells transfected stably with HBx gene. HBx protein 1 1 Yung Sang Lee , and Dong Jin Suh expression increased pERK and pAkt expression as well as β-catenin activity in both cells. Departments of 1Internal Medicine and 2Surgery, Gefitinib (EGFR-TK inhibitor) inhibited pERK and pAkt expression andβ -catenin activity in Asan Medical Center, University of Ulsan College of both cells. Selumetinib (MEK inhibitor) reduced pERK level and β-catenin activity but pAkt Medicine, Seoul, Korea expression was rather elevated by selumetinib in these cells. Reduction of pERK levels was much stronger with selumetinib than gefitinib in both cells. The antiproliferative efficacy Received: 19 July 2010 Accepted: 2 November 2010 of selumetinib was more potent than that of gefitinib. However, the antiproliferative effect of gefitinib, as well as selumetinib, was not different between cell lines with or Address for Correspondence: without HBx expression.
    [Show full text]
  • I4X-JE-JFCM an Open-Label, Multicenter, Phase 1B/2 Study To
    Protocol (e) I4X-JE-JFCM An Open-label, Multicenter, Phase 1b/2 Study to Evaluate Necitumumab in Combination with Gemcitabine and Cisplatin in the First-Line Treatment of Patients with Advanced (Stage IV) Squamous Non-Small Cell Lung Cancer (NSCLC) NCT01763788 Approval Date: 12-Jun-2016 I4X-JE-JFCM(e) Clinical Protocol Page 1 1. Protocol I4X-JE-JFCM(e) An Open-label, Multicenter, Phase 1b/2 Study to Evaluate Necitumumab in Combination with Gemcitabine and Cisplatin in the First-Line Treatment of Patients with Advanced (Stage IV) Squamous Non-Small Cell Lung Cancer (NSCLC) Confidential Information The information contained in this protocol is confidential and is intended for the use of clinical investigators. It is the property of Eli Lilly and Company or its subsidiaries and should not be copied by or distributed to persons not involved in the clinical investigation of Necitumumab (IMC-11F8; LY3012211), unless such persons are bound by a confidentiality agreement with Eli Lilly and Company or its subsidiaries. Note to Regulatory Authorities: This document may contain protected personal data and/or commercially confidential information exempt from public disclosure. Eli Lilly and Company requests consultation regarding release/redaction prior to any public release. In the United States, this document is subject to Freedom of Information Act (FOIA) Exemption 4 and may not be reproduced or otherwise disseminated without the written approval of Eli Lilly and Company or its subsidiaries. Necitumumab (IMC-11F8; LY3012211) Gemcitabine (LY188011) This is a Phase 1b/2 study in the first-line treatment of patients with advanced (Stage IV) Squamous Non-Small Cell Lung Cancer (NSCLC).
    [Show full text]
  • MET Or NRAS Amplification Is an Acquired Resistance Mechanism to the Third-Generation EGFR Inhibitor Naquotinib
    www.nature.com/scientificreports OPEN MET or NRAS amplifcation is an acquired resistance mechanism to the third-generation EGFR inhibitor Received: 5 October 2017 Accepted: 16 January 2018 naquotinib Published: xx xx xxxx Kiichiro Ninomiya1, Kadoaki Ohashi1,2, Go Makimoto1, Shuta Tomida3, Hisao Higo1, Hiroe Kayatani1, Takashi Ninomiya1, Toshio Kubo4, Eiki Ichihara2, Katsuyuki Hotta5, Masahiro Tabata4, Yoshinobu Maeda1 & Katsuyuki Kiura2 As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from geftinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplifcation was detected in naquotinib-resistant cells derived from geftinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly benefcial efect in resistant cells with NRAS amplifcation, but the combination of MEK inhibitors and osimertinib had limited efects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little efect on osimertinib-resistant cells.
    [Show full text]
  • New Oncology Reimbursements in Belgium
    33 New oncology reimbursements in Belgium P. Specenier, MD, PhD OVERVIEW OF BELGIAN REIMBURSEMENT NEWS (BELG J MED ONCOL 2018;12(1):33-34) TEMOZOLOMIDE® (TEMODAR/TEMODAL) was 7.4 months (95% confidence interval [CI] 5.6-9.1) with Some companies have transferred temozolomide from chap- cabozantinib versus 3.8 months (95% CI 3.7-5.4) with ever- ter IV to chapter I. These can now be prescribed without re- olimus with a hazard ratio (HR) of 0.58 (95% CI 0.45-0.74; strictions. In the near future, other temozolomide brands are p<0.0001). Similar data were observed in the intent-to-treat also expected to be transferred. population. A planned interim analysis of overall survival (OS) was conducted at the time of the PFS analysis and did LOMUSTINE (CCNU) not reach the interim boundary for statistical significance The reimbursement criteria for lomustine have been modi- (HR=0.68 [0.51, 0.90], p=0.006). However, in a subsequent fied and are entirely concordant with the recently modified unplanned interim analysis of OS, a statistically significant criteria for procarbazine, except for the indication Hodgkin’s improvement was demonstrated (median 21.4 months ver- disease, which only applies for procarbazine. sus 16.5 months; HR=0.66; 95% CI 0.53-0.83; p=0.0003). The overall response rate (ORR) was 17% (95% CI 13-22) for CABOMETYX® (CABOZANTINIB) cabozantinib and 3% (95% CI 2-6) for everolimus (p<0.0001). Cabometyx® (cabozantinib) can be reimbursed for patients with advanced renal cell carcinoma (RCC) after at least one COTELLIC® (COBIMETINIB) prior anti-VEGF directed agent.
    [Show full text]
  • DNA Replication During Acute MEK Inhibition Drives Acquisition of Resistance Through Amplification of the BRAF Oncogene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436572; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Acquisition of MEKi resistance during DNA replication in drug Channathodiyil et al. DNA replication during acute MEK inhibition drives acquisition of resistance through amplification of the BRAF oncogene Prasanna Channathodiyil1,2, Anne Segonds-Pichon3, Paul D. Smith4, Simon J. Cook5 and Jonathan Houseley1,6,* 1 Epigenetics Programme, Babraham Institute, Cambridge, UK 2 ORCID: 0000-0002-9381-6089 3 Babraham Bioinformatics, Babraham Institute, Cambridge, UK. ORCID: 0000-0002-8369- 4882 4 Oncology R&D, AstraZeneca CRUK Cambridge Institute, Cambridge, UK 5 Signalling programme, Babraham Institute, Cambridge, UK. ORCID: 0000-0001-9087-1616 6 ORCID: 0000-0001-8509-1500 * Corresponding author: [email protected] Abstract Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing is poorly understood. Here, we investigate BRAFV600E amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells. We find that de novo focal BRAF amplification is the primary path to resistance irrespective of pre-existing amplifications. Although selumetinib causes long-term G1 arrest, we observe that cells stochastically re-enter the cell cycle during treatment without reactivation of ERK1/2 or induction of a normal proliferative gene expression programme. Genes encoding DNA replication and repair factors are downregulated during G1 arrest, but many are transiently induced when cells escape arrest and enter S and G2.
    [Show full text]
  • Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma
    Review Melanoma Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma Antonio M Grimaldi, Ester Simeone, Lucia Festino, Vito Vanella and Paolo A Ascierto Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione “G. Pascale”, Napoli, Italy cquired resistance is the most common cause of BRAF inhibitor monotherapy treatment failure, with the majority of patients experiencing disease progression with a median progression-free survival of 6-8 months. As such, there has been considerable A focus on combined therapy with dual BRAF and MEK inhibition as a means to improve outcomes compared with monotherapy. In the COMBI-d and COMBI-v trials, combined dabrafenib and trametinib was associated with significant improvements in outcomes compared with dabrafenib or vemurafenib monotherapy, in patients with BRAF-mutant metastatic melanoma. The combination of vemurafenib and cobimetinib has also been investigated. In the phase III CoBRIM study in patients with unresectable stage III-IV BRAF-mutant melanoma, treatment with vemurafenib and cobimetinib resulted in significantly longer progression-free survival and overall survival (OS) compared with vemurafenib alone. One-year OS was 74.5% in the vemurafenib and cobimetinib group and 63.8% in the vemurafenib group, while 2-year OS rates were 48.3% and 38.0%, respectively. The combination was also well tolerated, with a lower incidence of cutaneous squamous-cell carcinoma and keratoacanthoma compared with monotherapy. Dual inhibition of both MEK and BRAF appears to provide a more potent and durable anti-tumour effect than BRAF monotherapy, helping to prevent acquired resistance as well as decreasing adverse events related to BRAF inhibitor-induced activation of the MAPK-pathway.
    [Show full text]
  • Lenvatinib in Advanced, Radioactive Iodine– Refractory, Differentiated Thyroid Carcinoma Kay T
    Published OnlineFirst October 20, 2015; DOI: 10.1158/1078-0432.CCR-15-0923 CCR Drug Updates Clinical Cancer Research Lenvatinib in Advanced, Radioactive Iodine– Refractory, Differentiated Thyroid Carcinoma Kay T. Yeung1 and Ezra E.W. Cohen2 Abstract Management options are limited for patients with radioactive therapy for these patients. Median PFS of 18.3 months in the iodine refractory, locally advanced, or metastatic differentiated lenvatinib group was significantly improved from 3.6 months in thyroid carcinoma. Prior to 2015, sorafenib, a multitargeted the placebo group, with an HR of 0.21 (95% confidence interval, tyrosine kinase inhibitor, was the only approved treatment and 0.4–0.31; P < 0.0001). ORR was also significantly increased in the was associated with a median progression-free survival (PFS) of lenvatinib arm (64.7%) compared with placebo (1.5%). In this 11 months and overall response rate (ORR) of 12% in a phase III article, we will review the molecular mechanisms of lenvatinib, trial. Lenvatinib, a multikinase inhibitor with high potency the data from preclinical studies to the recent phase III clinical against VEGFR and FGFR demonstrated encouraging results in trial, and the biomarkers being studied to further guide patient phase II trials. Recently, the pivotal SELECT trial provided the selection and predict treatment response. Clin Cancer Res; 21(24); basis for the FDA approval of lenvatinib as a second targeted 5420–6. Ó2015 AACR. Introduction PI3K–mTOR pathways (reviewed in ref. 3). The signals ultimately converge in the nucleus, influencing transcription of oncogenic Thyroid carcinoma is the most common endocrine malignan- proteins including, but not limited to, NF-kB), hypoxia-induced cy, with an estimated incidence rate of 13.5 per 100,000 people factor 1 alpha unit (HIF1a), TGFb, VEGF, and FGF.
    [Show full text]
  • Targeting the Epidermal Growth Factor Receptor in EGFR-Mutated Lung Cancer: Current and Emerging Therapies
    cancers Review Targeting the Epidermal Growth Factor Receptor in EGFR-Mutated Lung Cancer: Current and Emerging Therapies Karam Khaddour 1,*, Sushma Jonna 1, Alexander Deneka 2 , Jyoti D. Patel 3, Mohamed E. Abazeed 4, Erica Golemis 2 , Hossein Borghaei 5 and Yanis Boumber 3,6,* 1 Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; [email protected] 2 Fox Chase Cancer Center, Program in Molecular Therapeutics, Philadelphia, PA 19111, USA; [email protected] (A.D.); [email protected] (E.G.) 3 Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] 4 Robert H. Lurie Comprehensive Cancer Center, Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] 5 Fox Chase Cancer Center, Department of Hematology and Oncology, Philadelphia, PA 19111, USA; [email protected] 6 Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia * Correspondence: [email protected] (K.K.); [email protected] (Y.B.) Simple Summary: Epidermal growth factor receptor (EGFR) mutations occur in a significant number Citation: Khaddour, K.; Jonna, S.; of lung cancer patients. Treatment outcomes in this subset of patients has greatly improved over the Deneka, A.; Patel, J.D.; Abazeed, M.E.; last decade after the introduction of EGFR tyrosine kinase inhibitors (TKIs), which demonstrated high Golemis, E.; Borghaei, H.; Boumber, Y. efficacy and improved survival in randomized clinical trials. Although EGFR TKIs became the stan- Targeting the Epidermal Growth dard of care in patients with EGFR-mutated lung cancer, resistance almost inevitably develops.
    [Show full text]