SR844 RF Lock-In Amplifier

Total Page:16

File Type:pdf, Size:1020Kb

SR844 RF Lock-In Amplifier User’s Manual Model SR844 RF Lock-In Amplifier 1290-D Reamwood Avenue Sunnyvale, California 94089 Phone: (408) 744-9040 • Fax: (408) 744-9049 email: [email protected] • www.thinkSRS.com Copyright © 1997, 2007, 2013 by SRS, Inc. All Rights Reserved. Revision 2.9 (07/2016) Certification Stanford Research Systems certifies that this product met its published specifications at the time of shipment. Stanford Research Systems further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (NIST). Warranty This Stanford Research Systems product is warranted against defects in materials and workmanship for a period of one (1) year from the date of shipment. Service For warranty service or repair, this product must be returned to a Stanford Research Systems authorized service facility. Contact Stanford Research Systems or an authorized representative before returning this product for repair. Information in this document is subject to change without notice. Copyright © Stanford Research Systems, Inc., 1997, 2007, 2013, 2016. All rights reserved. Stanford Research Systems, Inc. 1290-D Reamwood Avenue Sunnyvale, California 94089 Printed in U.S.A. SR844 RF Lock-In Amplifier i Safety and Preparation For Use WARNING! Dangerous voltages, capable of causing injury or death, are present in this instrument. Use extreme caution whenever the instrument cover is removed. Do not remove the cover while the unit is plugged into a live outlet. Caution This instrument may be damaged if operated with the LINE VOLTAGE SELECTOR set for the wrong AC line voltage or if the wrong fuse is installed. Line Voltage The SR844 operates from a 100V, 120V, 220V, or 240V nominal AC power source Selection having a line frequency of 50 or 60 Hz. Before connecting the power cord to a power source, verify that the LINE VOLTAGE SELECTOR card, located in the rear panel fuse holder, is set so that the correct AC input voltage value is visible. Conversion to other AC input voltages requires a change in the fuse holder voltage card position and fuse value. Disconnect the power cord, open the fuse holder cover door and pull the fuse-pull lever to remove the fuse. Remove the small printed circuit board and select the operating voltage by orienting the printed circuit board so that the desired voltage is visible when the circuit board is pushed firmly into its slot. Push the fuse-pull lever back into its normal position and insert the correct fuse into the fuse holder. Line Fuse Verify that the correct line fuse is installed before connecting the line cord. For 100V/120V, use a 1 Amp fuse and for 220V/240V, use a 1/2 Amp fuse. Line Cord The SR844 has a detachable, three-wire power cord for connection to the power source and to a protective ground. The exposed metal parts of the instrument are connected to the outlet ground to protect against electrical shock. Always use an outlet which has a properly connected protective ground. Service Do not attempt to service or adjust this instrument unless another person, capable of providing first aid or resuscitation, is present. Do not install substitute parts or perform any unauthorized modifications to this instrument. Contact the factory for instructions on how to return the instrument for authorized service and adjustment. Fan The fans in the SR844 are required to maintain proper operation. Do not block the vents in the chassis or the unit may not operate properly. Warning! Regarding Use With Photomultipliers and Other Detectors The front end amplifier of this instrument is easily damaged if a photomultiplier is used improperly with the amplifier. When left completely unterminated, a cable connected to a PMT can charge to several hundred volts in a relatively short time. If this cable is connected to the inputs of the SR844 the stored charge may damage the front-end op ampls. To avoid this problem, always connect the PMT output to the SR844 input before turning the PMT on. SR844 RF Lock-In Amplifier ii Symbols that may be found on SRS products Symbol Description Alternating current Caution - risk of electric shock Frame or chassis terminal Caution - refer to accompanying documents Earth (ground) terminal Battery Fuse On (supply) Off (supply) SR844 RF Lock-In Amplifier iii Contents General Information Safety and Preparation For Use i Contents iii Specifications v Chapter 1 Getting Started Quick Start 1-3 The Basic Lock-In 1-5 X, Y, R, θ and dBm 1-9 Outputs, Offsets and Expands 1-12 Storing and Recalling Setups 1-18 Aux Outputs and Inputs 1-19 Chapter 2 SR844 Basics What is a Lock-In Amplifier? 2-3 The Functional SR844 2-8 RF Signal Input Path 2-9 Reference Channel 2-10 I.F. Section 2-11 Inside the DSP 2-12 Analog Outputs and Scaling 2-15 What is Dynamic Reserve ? 2-17 Sources of Error 2-19 Using the SR844 as a Double Lock-In 2-22 Noise Measurements 2-23 Intrinsic (Random) Noise Sources 2-24 External Noise Sources 2-25 Chapter 3 Operation Overview 3-3 Signal Input 3-8 Time Constants 3-11 Sensitivity 3-13 CH1 Display and Output 3-15 CH2 Display and Output 3-20 Reference Section 3-26 Save and Recall 3-30 Interface 3-31 Scan and Rel 3-33 Auto Functions 3-40 Shift Functions 3-41 SR844 RF Lock-In Amplifier iv Contents Chapter 4 Programming Index of Commands 4-2 Introduction 4-7 Command Syntax 4-10 Status Register Definitions 4-31 Example Program 4-34 Chapter 5 Testing Getting Ready 5-3 Self Test 5-5 Amplitude Response 5-7 Phase Response 5-9 Frequency Accuracy 5-11 Ref Out Amplitude 5-13 DC Outputs and Inputs 5-15 Input Noise 5-17 SR844 Performance Test Record 5-19 Chapter 6 Circuitry Service 6-3 Circuit Board Locations 6-4 Circuit Descriptions 6-6 Parts Lists 6-25 Schematic Diagrams 6-80 SR844 RF Lock-In Amplifier v Specifications Specifications apply after 30 minutes of warm-up. All specifications are with output filtering enabled (6, 12, 18 or 24 dB/oct) and 2F detection OFF, unless stated otherwise. Signal Input Voltage Input single-ended BNC. Input Impedance 50 Ω or 1 MΩ || 30 pF. Damage Threshold ±5 V (DC+AC) Bandwidth 25 kHz to 200 MHz. Full Scale Sensitivity 100 nV to 1V rms in a 1-3-10 sequence. Gain Accuracy < 50 MHz ±0.25 dB < 200 MHz ±0.50 dB Gain Stability 0.2%/°C Coherent Pickup Low Noise Wide Reserve, Sensitivity < 30 mV. f < 10 MHz < 100 nV (typical) f < 50 MHz < 2.5 µV (typical) f < 200 MHz < 25 µV (typical) Input Noise: 50 Ω Input 100 kHz < f < 100 MHz 2 nV/√Hz (typical), < 4 nV/√Hz (max). 25 kHz < f < 200 MHz < 5 nV/√Hz (typical), < 8 nV/√Hz (max). Input Noise: 1 MΩ Input 25 kHz < f < 200 MHz 5 nV/√Hz (typical), < 8 nV/√Hz (max). Dynamic Reserve > 60 dB (expand off) Reference External Reference Input 25 kHz to 200 MHz. Impedance 50 Ω or 10 kΩ || 40 pF. Level 0.7 Vpp digital or 0 dBm sinusoidal signal. Pulse Width > 2 ns at any frequency. Threshold Setting Automatic, set to midpoint of waveform extrema. Acquisition Time < 10 s (auto-ranging, any frequency). < 1 s (within same octave). Internal Reference Oscillator 25 kHz to 200 MHz. Frequency Resolution 3 digits. Frequency Accuracy ±0.1 in the 3rd digit. Phase Noise -90 dBc/Hz at f=100 MHz, ∆f=100 Hz. Reference Outputs Phase locked to either Internal or External reference. Front Panel Ref Out 25 kHz to 200 MHz square wave, 1.0 Vpp nominal into 50 Ω. Rear Panel TTL Out 25 kHz to 1.5 MHz, 0 to +5 V nominal, ≥ 3 V into 50 Ω. Harmonic Detect Detect at 50 kHz ≤ 2×Reference ≤ 200 MHz. Phase Resolution 0.02° Absolute Phase Error < 50 MHz < 2.5° < 100 MHz < 5.0° < 200 MHz < 10.0° SR844 RF Lock-In Amplifier vi Specifications Reference Relative Phase Error, < 2.5° Orthogonality Phase Noise 0.005° rms at 100 MHz, 100 ms time constant. Phase Drift < 10 MHz < 0.1°/°C < 100 MHz < 0.25°/°C < 200 MHz < 0.5°/°C Demodulator Zero Stability Digital displays have no zero drift. Analog outputs have < 5ppm/°C drift for all dynamic reserve settings. Filtering Time Constants 100 µs to 30 ks with 6, 12, 18 or 24 dB/octave roll-off. None 10 to 20 µs update rate (X and Y outputs), 60 µs (R and θ outputs). Harmonic Rejection Odd Harmonics -10 dBc @ 3×Ref, -14 dBc @ 5×Ref, etc. Other Harmonics and < -40 dBc Sub-harmonics Spurious Responses -10 dBc @ Ref ± 2×IF -23 dBc @ Ref ± 4×IF < -30 dBc otherwise. Displays Channel 1 Channel 2 Reference Type 4½ digit LED 4½ digit LED 4½ digit LED Displayed X Y Reference Frequency Quantities R [Volts] θ [degrees] Reference Phase R [dBm] Y-noise [Volts] Aux Output Voltages X-noise Y-noise [dBm] Offsets in % of Full Scale AUX IN 1 AUX IN 2 IF Frequency Elapsed Settling Time Ratio The signal may be ratioed with respect to AUX IN 1 or 2. The ratio is applied to both X and Y before computation of R, R[dBm], X-noise, Y-noise [V, dBm] and so affects all of these quantities. The ratio input is normalized to 1 V and has a dynamic range > 100. Expand The CH1 and CH2 displays and outputs may be expanded by ×10 or ×100. SR844 RF Lock-In Amplifier Specifications vii CH1 and CH2 Outputs Connectors Front Panel BNC.
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,526,129 Ko (45) Date of Patent: Jun
    US005526129A United States Patent (19) 11 Patent Number: 5,526,129 Ko (45) Date of Patent: Jun. 11, 1996 54). TIME-BASE-CORRECTION IN VIDEO 56) References Cited RECORDING USINGA FREQUENCY-MODULATED CARRIER U.S. PATENT DOCUMENTS 4,672,470 6/1987 Morimoto et al. ...................... 358/323 75) Inventor: Jeone-Wan Ko, Suwon, Rep. of Korea 5,062,005 10/1991 Kitaura et al. ....... ... 358/320 5,142,376 8/1992 Ogura ............... ... 358/310 (73) Assignee: Sam Sung Electronics Co., Ltd., 5,218,449 6/1993 Ko et al. ...... ... 358/320 Suwon, Rep. of Korea 5,231,507 7/1993 Sakata et al. ... 358/320 5,412,481 5/1995 Ko et al. ...................... ... 359/320 21 Appl. No.: 203,029 Primary Examiner-Thai Q. Tran Assistant Examiner-Khoi Truong 22 Filed: Feb. 28, 1994 Attorney, Agent, or Firm-Robert E. Bushnell Related U.S. Application Data (57) ABSTRACT 63 Continuation-in-part of Ser. No. 755,537, Sep. 6, 1991, A circuit for recording and reproducing a TBC reference abandoned. signal for use in video recording/reproducing systems includes a circuit for adding to a video signal to be recorded (30) Foreign Application Priority Data a TBC reference signal in which the TBC reference signal Nov. 19, 1990 (KR) Rep. of Korea ...................... 90/18736 has a period adaptively varying corresponding to a synchro nizing variation of the video signal; and a circuit for extract (51 int. Cl. .................. H04N 9/79 ing and reproducing a TBC reference signal from a video (52) U.S. Cl. .......................... 358/320; 358/323; 358/330; signal read-out from the recording medium in order to 358/337; 360/36.1; 360/33.1; 348/571; correct time-base errors in the video signal.
    [Show full text]
  • Electronic Services Capability Listing
    425 BAYVIEW AVENUE, AMITYVILLE, NEW YORK 11701-0455 TEL: 631-842-5600 FSCM 26269 www.usdynamicscorp.com e-mail: [email protected] ELECTRONIC SERVICES CAPABILITY LISTING OEM P/N USD P/N FSC NIIN NSN DESCRIPTION NHA SYSTEM PLATFORM(S) 00110201-1 5998 01-501-9981 5998-01-501-9981 150 VDC POWER SUPPLY CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110204-1 5998 01-501-9977 5998-01-501-9977 FILAMENT POWER SUPPLY CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110213-1 5998 01-501-5907 5998-01-501-5907 IGBT SWITCH CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110215-1 5820 01-501-5296 5820-01-501-5296 RADIO TRANSMITTER MODULATOR AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 004088768 5999 00-408-8768 5999-00-408-8768 HEAT SINK MSP26F/TRANSISTOR HEAT EQUILIZER B-1B 0050-76522 * * *-* DEGASSER ENDCAP * * 01-01375-002 5985 01-294-9788 5985-01-294-9788 ANTENNA 1 ELECTRONICS ASSEMBLY AN/APG-68 F-16 01-01375-002A 5985 01-294-9788 5985-01-294-9788 ANTENNA 1 ELECTRONICS ASSEMBLY AN/APG-68 F-16 015-001-004 5895 00-964-3413 5895-00-964-3413 CAVITY TUNED OSCILLATOR AN/ALR-20A B-52 016024-3 6210 01-023-8333 6210-01-023-8333 LIGHT INDICATOR SWITCH F-15 01D1327-000 573000 5996 01-097-6225 5996-01-097-6225 SOLID STATE RF AMPLIFIER AN/MST-T1 MULTI-THREAT EMITTER SIMULATOR 02032356-1 570722 5865 01-418-1605 5865-01-418-1605 THREAT INDICATOR ASSEMBLY C-130 02-11963 2915 00-798-8292 2915-00-798-8292 COVER, SHIPPING J-79-15/17 ENGINE 025100 5820 01-212-2091 5820-01-212-2091 RECEIVER TRANSMITTER (BASEBAND
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 8,073,418 B2 Lin Et A]
    US008073418B2 (12) United States Patent (10) Patent N0.: US 8,073,418 B2 Lin et a]. (45) Date of Patent: Dec. 6, 2011 (54) RECEIVING SYSTEMS AND METHODS FOR (56) References Cited AUDIO PROCESSING U.S. PATENT DOCUMENTS (75) Inventors: Chien-Hung Lin, Kaohsiung (TW); 4 414 571 A * 11/1983 Kureha et al 348/554 Hsing-J“ Wei, Keelung (TW) 5,012,516 A * 4/1991 Walton et a1. .. 381/3 _ _ _ 5,418,815 A * 5/1995 Ishikawa et a1. 375/216 (73) Ass1gnee: Mediatek Inc., Sc1ence-Basedlndustr1al 6,714,259 B2 * 3/2004 Kim ................. .. 348/706 Park, Hsin-Chu (TW) 7,436,914 B2* 10/2008 Lin ....... .. 375/347 2009/0262246 A1* 10/2009 Tsaict a1. ................... .. 348/604 ( * ) Notice: Subject to any disclaimer, the term of this * Cited by examiner patent is extended or adjusted under 35 U'S'C' 154(1)) by 793 days' Primary Examiner * Sonny Trinh (21) App1_ NO; 12/185,778 (74) Attorney, Agent, or Firm * Winston Hsu; Scott Margo (22) Filed: Aug. 4, 2008 (57) ABSTRACT (65) Prior Publication Data A receiving system for audio processing includes a ?rst Us 2010/0029240 A1 Feb 4 2010 demodulation unit and a second demodulation unit. The ?rst ' ’ demodulation unit is utilized for receiving an audio signal and (51) Int_ CL generating a ?rst demodulated audio signal. The second H043 1/10 (200601) demodulation unit is utilized for selectively receiving the H043 5/455 (200601) audio signal or the ?rst demodulated audio signal according (52) us. Cl. ....................... .. 455/312- 455/337- 348/726 to a Setting Ofa television audio System Which the receiving (58) Field Of Classi?cation Search ...............
    [Show full text]
  • Single-Electron Transistor As a Radio-Frequency Mixer R
    APPLIED PHYSICS LETTERS VOLUME 81, NUMBER 3 15 JULY 2002 Single-electron transistor as a radio-frequency mixer R. Knobel, C. S. Yung, and A. N. Clelanda) Department of Physics and iQUEST, University of California, Santa Barbara, Santa Barbara, California 93106 ͑Received 14 March 2002; accepted for publication 10 May 2002͒ We demonstrate the use of the single-electron transistor as a radio-frequency mixer, based on the nonlinear dependence of current on gate charge. This mixer can be used for high-frequency, ultrasensitive charge measurements over a broad and tunable range of frequencies. We demonstrate operation of the mixer, using a lithographically defined thin-film aluminum transistor, in both the superconducting and normal states of aluminum, over frequencies from 10 to 300 MHz. We have operated the device both as a homodyne detector and as a phase-sensitive heterodyne mixer. We demonstrate a charge sensitivity of Ͻ4ϫ10Ϫ3 e/ͱHz, limited by room-temperature electronics. An optimized mixer has a theoretical charge sensitivity of Շ1.5ϫ10Ϫ5 e/ͱHz. © 2002 American Institute of Physics. ͓DOI: 10.1063/1.1493221͔ Coulomb blockade can occur when current through a linear dependence of the current I on the coupled charge is device passes through high-resistance contacts to a small- employed to mix a rf signal to dc, while in the latter, the capacitance island. The condition for Coulomb blockade is signal is mixed with a local oscillator to generate a signal at ϵ 2 that the resistance of each contact must exceed RK h/e the difference frequency, close to dc, whose amplitude and Ϸ ⍀ 25.8 k , and the electrostatic charging energy EC of the phase may be measured.
    [Show full text]
  • Communication Systems (4Th Semester ECE)
    e-Notes of Communication Systems (4th semester ECE) By Ms. Sharmila Senior Lecturer, ECE Deptt. Govt. Polytechnic Manesar 1 CHAPTER-1 AM/FM TRANSMITTERS Learning Objectives: After the completion of this chapter, the students will be able to: Classify the transmitters on the basis of modulation, service, frequency and power Demonstrate the working of each stage of AM and FM transmitters 1.1 Classification of Radio Transmitters 1.1.1 Classification on the basis of type of modulation used 1. Amplitude Modulation Transmitters: Here the modulating signal modulates the carrier with respect to its amplitude. AM transmitters are used for radio broadcast, radio telephony, radio telegraphy and TV picture broadcast. 2. Frequency Modulation Transmitters: In FM transmitters, the frequency of the carrier is varied in accordance with the modulating signal. These are used for radio broadcast, TV sound broadcast and radio telephone communication. 3. Pulse Modulation Transmitters: The signal changes any of the characteristics like pulse width, position, amplitude of the pulse carrier. 1.1.2 Classification on the basis of the service involved 1. Radio Broadcast transmitters: These transmitters are particularly designed for broadcasting speech signals, music, information etc. These systems may be amplitude or frequency modulated. 2. Radio Telephone Transmitters: These transmitters are mainly used for transmitting telephone signals over long distance by radio waves. The transmitter uses volume compressors, peak limiters etc. 3. Radio Telegraph Transmitters: It transmits telegraph signals from one radio station to another radio station. The transmitter uses either amplitude modulation or frequency modulation. 4. Television Transmitters: TV broadcast requires transmitters for transmission of picture and sound separately.
    [Show full text]
  • LOCKED LOOP IEEE Press 445 Hoes Lane Piscataway, NJ 08854
    NANOMETER FREQUENCY SYNTHESIS BEYOND THE PHASE- LOCKED LOOP IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board John B. Anderson, Editor in Chief R. Abhari G. W. Arnold F. Canavero D. Goldgof B - M. Haemmerli D. Jacobson M. Lanzerotti O. P. Malik S. Nahavandi T. Samad G. Zobrist Kenneth Moore, Director of IEEE Book and Information Services (BIS) Technical Reviewers Prof. Michael Peter Kennedy, University College Cork Associate Prof. Woogeun Rhee, Tsinghua University Books in the IEEE Press Series on Microelectronic System: A complete list of the titles in this series appears at the end of this volume. NANOMETER FREQUENCY SYNTHESIS BEYOND THE PHASE- LOCKED LOOP LIMING XIU IEEE PRESS A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2012 by The Institute of Electrical and Electronics Engineers, Inc. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • Laser-To-RF Phase Detection with Femtosecond Precision for Remote Reference Phase Stabilization in Particle Accelerators
    Laser-to-RF Phase Detection with Femtosecond Precision for Remote Reference Phase Stabilization in Particle Accelerators Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Thorsten Lamb aus Bad Kreuznach 1. Gutachter: Prof. Dr. Ernst Brinkmeyer 2. Gutachter: Prof. Dr.-Ing. Arne Jacob 3. Gutachter: Dr. Holger Schlarb Datum der mündlichen Prüfung: .. Laser-to-RF Phase Detection with Femtosecond Precision for Remote Reference Phase Stabilization in Particle Accelerators Lamb, Thorsten: Laser-to-RF Phase Detection with Femtosecond Precision for Remote Reference Phase Stabilization in Particle Accelerators – DESY-THESIS-2017-016. Verlag Deutsches Elektro- nen Synchrotron: Hamburg, 2017. ISSN: 1435-8085. doi: 10.3204/PUBDB-2017-02117 Zugleich: Hamburg, Technische Universität Hamburg-Harburg, Dissertation, 2016 ORCID: 0000-0001-6682-9450 © by Thorsten Lamb This dissertation is licensed under a Creative Commons Attribution-ShareAlike . International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ keywords (HEP) free electron laser ; interferometer ; laser: erbium ; laser: pulsed ; microwaves: phase ; microwaves: stability ; optics: design ; optics: laser ; optics: time delay ; stability: phase ; time: stability Schlagwörter (SWD) Empfindlichkeit ; Faseroptik ; Femtosekundenbereich ; Femtosekundenlaser ; Freie-Elektronen-Laser ; Hochfrequenz ; Hochfrequenztechnik ; Impulslaser ; Integrierte
    [Show full text]
  • The Mathematics of Mixers: Basic Principles
    High Frequency Design From January 2011 High Frequency Electronics Copyright © 2011 Summit Technical Media, LLC MIXER THEORY The Mathematics of Mixers: Basic Principles By Gary Breed Editorial Director ixers are classic This month’s tutorial is RF/microwave a first introduction to the circuits that f1 + f2 M f 1 mathematical principles make it possible to trans- f1 – f2 that describe the operation late RF signals from one of frequency mixers frequency to another. Ideally, they implement this frequency change with no effect on the amplitude and frequency components of the f2 signal’s modulation. Figure 1 · The frequency translation scheme Frequency Translation that is the goal for a frequency mixer. Mixers are nonlinear circuits; they rely on near-perfect nonlinearity. This sounds like a contradiction, but it means that perfect tude, with the actual rate of decrease versus switching—discontinuity being the ultimate order determined by the quality of the mixing nonlinearity—will result in ideal mixer behav- circuit. In all cases, the second order respons- ior. We will describe how this switching takes es will have the highest amplitudes: place in a circuit later on, but first let’s review the overall behavior of the mixing process. f1 + f2 Nonlinear response creates new signals f1 – f2 (actually: |f1 – f2|) where none previously existed. In the case of two unmodulated signals applied to the input 2f1 and 2f2 are also second-order outputs, of a nonlinear device, there will be a series of but nearly all practical mixers use a balanced output signals that contain multiples of the design to suppress these outputs, as well as all input signals (harmonics), plus sums and dif- other even-order harmonics.
    [Show full text]
  • Flow Patterns and Energy Dissipation Rates in Batch Rotor-Stator Mixers
    THE UNIVERSITY OF BIRMINGHAM FLOW PATTERNS AND ENERGY DISSIPATION RATES IN BATCH ROTOR-STATOR MIXERS By Adi Tjipto Utomo A thesis submitted to The School of Engineering of The University of Birmingham for the degree of Doctor of Philosophy School of Engineering Chemical Engineering The University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom June 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The flow pattern and distribution of energy dissipation rate in a batch rotor-stator mixer fitted with disintegrating head have been numerically investigated. Standard k-ε turbulence model in conjunction with sliding mesh method was employed and the simulation results were verified by laser Doppler anemometry (LDA) measurements. The agreement between predicted and measured velocity profiles in the bulk and of jet emerging from stator hole was very good. Results showed that the interaction between stator and rotating blades generated periodic fluctuations of jet velocity, flowrate, torque and energy dissipation rate around the holes. The kinetic energy balance based on measured velocity distribution indicated that about 70% of energy supplied by the rotor was dissipated in close proximity to the mixing head, while the simulation predicted that about 60% of energy dissipated in the same control volume.
    [Show full text]
  • Design of High Isolation Frequency Mixer in CMOS 0.18 M Technology
    Design of High Isolation Frequency Mixer in CMOS 0.18 µm Technology Suitable for Low Power Radio Frequency Applications Khalid Faitah, Ahmed El Oualkadi, Abdellah Ait Ouahman To cite this version: Khalid Faitah, Ahmed El Oualkadi, Abdellah Ait Ouahman. Design of High Isolation Frequency Mixer in CMOS 0.18 µm Technology Suitable for Low Power Radio Frequency Applications. Physical and Chemical News, Best Edition, 2009, 49, pp.1-7. hal-00947412 HAL Id: hal-00947412 https://hal.inria.fr/hal-00947412 Submitted on 16 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. September 2009 Phys. Chem. News 49 (2009) 01-07 PCN DESIGN OF HIGH ISOLATION FREQUENCY MIXER IN CMOS 0.18 µm TECHNOLOGY SUITABLE FOR LOW POWER RADIO FREQUENCY APPLICATIONS CONCEPTION D’UN MELANGEUR DE FREQUENCE EN TECHNOLOGIE CMOS 0,18 µm, FAIBLE PUISSANCE ET BONNE ISOLATION, DEDIE A DES APPLICATIONS RADIO FREQUENCES K. Faitah*, A. El Oualkadi, A. Ait Ouahman Laboratoire de Microinformatique, Systèmes Embarqués et Systèmes sur Puces Université Cadi Ayyad Ecole Nationale des Sciences Appliquées. Avenue Abdelkrim El Khattabi BP : 575 Marrakech Maroc. * Corresponding author. E-mail: [email protected] Received: 16 July 2008; revised version accepted: 10 October 2008 Abstract In this paper we will present the design of Single Balanced Mixer, operating at a frequency RF of 1.9 GHz, implemented in 0.18 µm CMOS technology at supply voltage of 1.8 V.
    [Show full text]
  • Communications Transceiver Model Fpm-300 Mk Ii
    OPERATING AND SERVICE INSTRUCTIONS FOR ••• COMMUNICATIONS TRANSCEIVER MODEL FPM-300 MK II ""'"---~ . ... ....... "The Hallicrafter's Company warrants each new radio product manu­ factured by it to be free. from defective material and workmanship and agrees to remedy any such defect or to furnish a new part in ex­ change for any part of any unit of its manufacture which under nor­ mal installation, use and service discloses such defect, provided the unit is delivered by the owner to our allthorized radio dealer, whole­ saler, from whom purchased, or, authorized service center, ill tact; for examination, with all transportation charges prepaid within ninety days from the cUJte of sale to original purchaser and provided that such examination discloses in our judgment that it is thus defective. This warranty does not extend to any of Ollr radio products which have been subjected to misuse, neglect, accident, incorrect wiring not our own, improper installation, or to use in violation of instTllctions furnished by us, nor extended to units which have been repaired or altered olltside of ollr factory or authorized service center, nor to cases where the serial number thereof has been removed, defaced or changed, nor to accessories used therewith not of our own manufacture. Any part of a unit approved for remedy or exchange hereunder will be remedied or exchanged by the allthorized radio dealer or whole­ saler without charge to the owner. This warranty is in lieu of all other u:arranties expressed or implied and no representative or person is allfhorized to aSSl/me for liS allY other liability in connection with the sale of our radio products:' OPERA TING AND SERVICE INSTRUCTIONS FOR COMMUNICATIONS TRANSCEIVER MODEL FPM-300 MK II Manufactured By: The Hallicrafters Co.
    [Show full text]
  • Pal-Xfel Cavity Bpm Prototype Beam Test at Itf
    PAL-XFEL CAVITY BPM PROTOTYPE BEAM TEST AT ITF Sojeong Lee, Young Jung Park, Changbum Kim, Seung Hwan Kim, D.C. Shin Heung-Sik Kang, Jang Hui Han, In Soo Ko Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 Abstract To achieve sub-micrometer resolution, The Pohang Accelerator Laboratory X-ray Free electron Laser (PAL-XFEL) undulator section will use X-band Cavity beam position monitor (BPM) systems. Prototype cavity BPM pick-up was designed and fabricated to test performance of cavity BPM system. Fabricated prototype cavity BPM pick- up was installed at the beam line of Injector Test Facility (ITF) at PAL for beam test. Under 200 pC beam charge condition, the signal properties of cavity BPM pick-up were measured. Also, the dynamic range of cavity BPM was measured by using the corrector magnet. In this paper, the design and beam test results of prototype cavity BPM pick-up will be introduced. PAL-XFEL Cavity Beam Position Monitor Fabricated Prototype PAL-XFEL CBPM PAL-XFEL will provide X-rays in ranges of 0.1 to 0.06 nm for hard X-ray line and 3.0 nm to 1.0 nm for soft X-ray line by using the self-amplified spontaneous emission (SASE) Schematic [1, 2, 3]. To generate X-ray FEL radiation, the PAL-XFEL undulator section requires high resolution beam position monitoring systems with <1 μm resolution for single bunch. To achieve high resolution requirement, the PAL-XFEL undulator section will use the cavity BPM. Total 49 units of cavity BPM system will be installed in between each undulators with other diagnostics tools.
    [Show full text]