A Phylogeny of Genera Spirobolomyia and Blaesoxipha (Diptera: Sarcophagidae)

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogeny of Genera Spirobolomyia and Blaesoxipha (Diptera: Sarcophagidae) A Phylogeny of Genera Spirobolomyia and Blaesoxipha (Diptera: Sarcophagidae) A thesis submitted to the Graduate School Of the University of Cincinnati In partial fulfillment of the requirements for the degree of Master of Science In the Department of Biological Sciences of the McMicken College of Arts and Sciences By Stephanie J. Gierek B.S., University of Cincinnati May 2014 Committee chair: Ronald W. DeBry, Ph.D. Abstract Blaesoxipha and Spirobolomyia are two genera from the large family Sarcophagidae, more commonly known as flesh flies. These two genera are parasitoids to a wide variety of other arthropods. When Spirobolomyia was first described by Townsend in 1917, it was a new genus with only one species. In 1965, Downes synonymized Spirobolomyia with Blaesoxipha, giving it subgeneric status, and included 3 new species. In 1996, Pape added another species and removed Spirobolomyia from Blaesoxipha returning it to genus status. In this study, I infer a phylogeny using the cytochrome oxidase I (COI) and NADH dehydrogenase (ND4) genes from the fly’s mitochondrial DNA (mtDNA) in hopes of determining if Spirobolomyia should remain a genus or be reduced to subgeneric status under Blaesoxipha. The phylogeny infers strong support for monophly of Spirobolomyia. However due to no support from the Maximum Likelihood analysis but support from the Bayesian Inference, of the monophyly of Blaesoxipha, more data is needed to determine the placement of Spirobolomyia. ii iii Acknowledgements First, I would like to thank my ever-patient husband. When we agreed I would start this journey four years ago, I promised him it would only take two years. Now here we are, four years later. And even though it took me twice as long, he as was always supportive. Whenever I doubted whether I could do this, he was always there to remind me I could do it. Josh, this is not only my victory but yours too. We did this together because without your support and constant confidence boots, I would have never made it this far. I would also like to thank Dr. Ron DeBry. Little did he know when he talked me into this journey, he would have to put up with me and my life happenings for four long years. Had it not been for him I would never have thought graduate school was an option. Ron, thank you for pushing me to do this. And although it took longer than we both anticipated, I am thankful you had the faith in me to finish. I want to say a special a thanks to Dr. Evan Wong. Without his vote of confidence, I would have never become a part of the lab. He taught me everything I needed to know when it came to lab, even the quirky little tricks it would sometime take to make something work. Evan, I was always fascinated by iv your drive to accomplish more. I know you will accomplish great things as Dr2 Evan Wong. I would also like to thank Dr. Greg Dahlem and Dr. Eric Tepe. I truly appreciate you taking the time from your busy schedules to be a part of my committee. Also, thank you for putting up with me and my last-minute neediness. I would like to give a quick thank you to my new PI, Dr. Latha Satish. You welcomed me into your lab and have given me amazing support while trying to finish up my thesis. v Table of Contents Abstract……………………………………………………………………………………………………………… ii Acknowledgements…………………………………………………………………….….……….………… iv Table of Contents………………………………………………………………………….…………………. vi List of Tables and Figures…………………………………………………………………….…………. vii Introduction……………………………………………………………………………………………...……… 1 Materials & Methods…………………………….………………………………………………….………. 4 Results……………………………………………………………………………………….……….……………… 7 Discussion………………………………………………………………………….……………….…...……… 11 Conclusion ………………………………………………………………………………………………………. 13 Tables…………………………………………………………………………………………………………………14 References…………………………………………….………………………………………………………….20 vi Tables and Figures Figure 1. The Bayesian phylogeny of Blaesoxipha and Spirobolomyia inferred using mtDNA genes COI and ND4 ……………………………….………………………………….10 Table 1. Specimen Identification: Genus, subgenus, species and voucher ……….14 Table 2. List of primers used in this study…………………………………………………………19 vii Introduction Blaesoxipha and Spirobolomyia are two genera from the large family Sarcophagidae, more commonly known as flesh flies. These two genera are parasitoids to a wide variety of other arthropods. Blaesoxipha primarily parasitizes grasshoppers and beetles, while Spirobolomyia preys on millipedes. Since these genera were described, entomologist have disagreed over whether these two groups are congeners or whether they should be recognized as two separate genera. Blaesoxipha was established by Loew in 1861. He discovered a female Blaesoxipha attempting to deposit her larva on a grasshopper using a long sword-like ovipositor. The sword- like ovipositor lead to the name Blaesoxipha, blaisos meaning “Bandy-legged, bent” and xiphos meaning “sword, saber” (Pape 1994). Blaesoxipha is one of the more species-rich taxa in the family of Sarcophagidae. It has 242 described species currently organized into ten subgenera (Pape 1994). The largest of the ten subgenera is Blaesoxipha sensu stricto. It encompasses 75 species, all of which have an old-world distribution except for two species, Blaesoxipha (Blaesoxipha) atlantis and Blaesoxipha (Blaesoxipha) opifera, which have a New World distribution. The Subgenus Acanthodotheca is nearly as large, with 71 described species attributed to it. The species in Acanthodotheca are primarily beetle parasitoids. It has an exclusive New World distribution. The subgenera Abapa (eight species) and Aldrichisca (three species) are restricted to the Antilles. Subgenera Acridiophaga (containing 11 species) and Servaisia (32 species) are Neotropic, Nearctic and Palearctic in distribution. Tephromyia is the only subgenus that is found only in the Palearctic region. It contains 21 species. Subgenera 1 Gigantotheca (17 species) and Kellymyia (three species) are both distributed among the New World. The subgenus Speciosia contains only one species. Blaesoxipha speciosa, originally designated Fletcherimyia speciosa by Downes (1947), was placed in a subgenus alone by Roeback in 1954 (Pape 1994). A vast majority of Blaesoxipha are parasitoids of grasshoppers and darkling beetles. However, there are species that are parasitoids to a large range of other insect taxa (Pape 1994). Blaesoxipha are ovoviviparous; meaning they incubate their eggs within a uterus or pouch. The eggs hatch within the uterus or pouch and first instar larvae are expelled through the larvapositor (Allen and Pape 1994). Blaesoxipha deposit or insert their larva into another insect species. Blaesoxipha have been observed depositing larva on to a host in two ways. Females will stalk their prey from a stationary position above their prey. They will then dart out and deposit a single larva either directly on the prey or even directly within the prey via the genital-anal orifice (Leonide 1964), the buccal cavity (Salvin 1958), or directly into the haemocoele through the cuticle or between the soft segments of the cuticle (Middlekauf 1958; Leonide 1967). Other species of Blaesoxipha will bend the abdomen forward and position their larvapositor between their legs and expel the larva forcefully onto the host. Larvae will quickly penetrate the host (Leonide and Leonide 1986). Larvae will remain inside the host haemocoele for 4-10 days. The host will usually survive while larvae develop within their haemocoele, and if large enough, may survive the exiting of the larva (Greathead 1963). After leaving the host, larvae burrow into the soil to pupate for 1-4 weeks (Crouzel and Slavin 1961). Spirobolomyia was originally described as a genus by Townsend (1917). Spirobolomyia has only five known species (Pape, 1994). Three of the five species of Spirobolomyia were 2 described before Townsend described the genus. All three were first identified as a part of the genus Sarcophaga. Spirobolomyia basalis was originally described by Walker in 1853 and designated Sarcophaga basalis. Sarcophaga pallipes, by original designation, was synonymized with Spirobolomyia basalis by Downes in 1965. When Aldrich (1916) described Sarcophaga pallipes, he was unable to determine the species as the holotype is female, making it difficult to identify to species with any certainty (Pape 1990). In 1916, Aldrich described a species he named Sarcophaga deceptiva in which he described to be similar Sarcophaga singularis with only minor differences. This species later was discovered to be Spirobolomyia basalis. Spirobolomyia flavipalpis was originally identified as Sarcophaga flavipalpis by Aldrich in 1916. Hall (1927) and Roback (1954) described two species (Sarcophaga flavipalpus and Sarcophaga flavipes) that were discovered to be Spirobolomyia flavipalpis. Hall (1927) discovered a species he named Sarcophaga cingularis that was also later identified to be Spirobolomyia singularis. Hall (1927) also described a species he named Sarcophaga ohioensis. These four species were included in Spirobolomyia by Downes in 1965 when he placed Spirobolomyia as a subgenus of Blaesoxipha. In 1990, Pape described the fifth species of Spirobolomyia, Spirobolomyia latissima. All five species have a Nearctic distribution with Spirobolomyia ohioensis and Spirobolomyia latissimi expanding to the Neotropic region. Spirobolomyia lay their larvae on dead and/or injured millipedes. Beyond the identification and knowledge of its parasitic behavior, there is little knowledge of the natural history of this genus. Spirobolomyia
Recommended publications
  • The Sarcophagidae (Diptera) Described by C
    © Entomologica Fennica. 12.X.1993 The Sarcophagidae (Diptera) described by C. De Geer, J. H. S. Siebke, and 0. Ringdahl ThomasPape Pape, T. 1993: The Sarcophagidae (Diptera) described by C. De Geer, J. H. S. Siebke, and 0. Ringdahl.- Entomol. Fennica 4:143-150. All species-group taxa described by or assigned to C. De Geer, J.H.S. Siebke, and 0. Ringdahl are revised. Musca vivipara minor De Geer, 1776 and Musca vivipara major De Geer, 1776 are considered binary and outside nomenclature. The single species-group name ascribed to Siebke is shown to be unavailable. A lectotype of Sarcophaga vertic ina Ringdahl, 1945 [= S. pleskei (Rohdendorf, 1937)] is designated and Brachicoma borealis Ringdahl, 1932 is revised and resurrected as a distinct species. Thomas Pape, Zoological Museum, Universitetsparken 15, DK-2100 Copen­ hagen, Denmark 1. Introduction specimens concerned or to the taxonomic deci­ sions made. Original labels of primary type All Sarcophagidae described by the Scandinavian specimens have been cited, with text from differ­ authors Fabricius, Fallen, and Zetterstedt were ent labels separated by semicolons. Alllectotypes treated by Pape (1986), and the single species de­ have been given a red label stating their status as scribed by Linnaeus was revised (for the first time!) such. Paralectotypes, if any, have been recovered by Richet (1987). Other Scandinavian authors of and are discussed separately under the entry 'ad­ taxa in this family include Charles (or Carl) De ditional material.' Geer and Oscar Ringdahl, who have each proposed two species-group names, and it is the purpose of 3. Results the present paper to revise these taxa and to comment on their identity and availability.
    [Show full text]
  • Diptera) 129 Doi: 10.3897/Zookeys.703.12377 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 703: 129–158 (2017) New records of Sarcophagidae from Turkey (Diptera) 129 doi: 10.3897/zookeys.703.12377 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New records of Sarcophagidae from Turkey (Diptera) Yury Verves1, Miroslav Barták2, Štěpán Kubík2, Hasan Sungur Civelek3 1 Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Academician Lebedev Str. 37 Kyiv, Ukraine, 03143 2 Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Kamýcká 129, 165 00 Praha Suchdol, Czech Republic 3 Muğla Sıtkı Koçman University, Faculty of Science, Biology Department, Muğla, Turkey Corresponding author: Štěpán Kubík ([email protected]) Academic editor: P. Cerretti | Received 23 February 2017 | Accepted 28 July 2017 | Published 28 September 2017 http://zoobank.org/DC91518D-5544-4CB1-9120-E08609FDCDFD Citation: Verves Y, Barták M, Kubík S, Civelek HS (2017) New records of Sarcophagidae from Turkey (Diptera). ZooKeys 703: 129–158. https://doi.org/10.3897/zookeys.703.12377 Abstract Faunistic records of 68 flesh fly species are presented, and altogether, 22 species are recorded from Turkey for the first time. A further 46 species were recorded for the first time in at least one Turkish province. This paper presents the first locality data for four additional species, which were previously mentioned only generically in catalogues. One new synonym has been established, Servaisia (s. str.) rybaltschenkoi (Verves, 1977) = Blaesoxipha ataturkia Lehrer, 2008, syn. n. Two new combinations are proposed: Helicophagella (Parabellieria) dreyfusi (Lehrer, 1994), comb. n. and Helicophagella (s.
    [Show full text]
  • A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
    PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction.
    [Show full text]
  • Sarcophagidae
    Cornell University Insect Collection SARCOPHAGIDAE Determined Species: 215 Emily Satinsky Updated: August 13, 2014 Subfamily Tribe Genus Species Author Zoogeography Miltogramminae Miltogrammini Amobia aurifrons (Townsend 1891) NEA distorta (Allen 1926) NEA erythrura (Wulp 1890) NEA floridensis (Townsend 1892) NEA oculata (Zetterstedt 1844) NEA spp. NEA Euaraba tergata (Coquillett 1895) NEA Eumacronychia agnella (Reinhard 1939) NEA montana Allen 1926 NEA spp. NEA Gymnoprosopa argentifrons Townsend 1892 NEA filipalpus Allen 1926 NEA milanoensis Reinhard 1945 NEA Hilarella hilarella Zetterstedt 1844 NEA Macronychia aurata (Coquillett 1902) NEA confundens (Townsend 1915) NEA townsendi (Smith 1916) NEA Metopia argyrocephala (Meigen 1824) NEA campestris (Fallen 1810) NEA/PAL lateralis (Macquart 1848) NEA perpendicularis Wulp 1890 NEA sinipalpis Allen 1926 NEA spp. NEA Oebalia aristalis (Coquillett 1897) NEA Opsidia gonioides Coquillett 1895 NEA Phrosinella aldrichi Allen 1926 NEA aurifacies Downes 1985 NEA fulvicornis (Coquillett 1895) NEA Senotainia flavicornis (Townsend 1891) NEA inyoensis Reinhard 1955 NEA litoralis Allen 1924 NEA nana Coquillett 1897 NEA opiparis Reinhard 1955 NEA rubriventris Macquart 1846 NEA trilineata (Wulp 1890) NEA vigilans Allen 1924 NEA spp. NEA/NEO Sphenometopa tergata (Coquillett 1895) NEA Taxigramma heteroneura (Meigen 1830) NEA hilarella (Zetterstedt 1844) NEA Miltogrammini spp. NEA Paramacronychiinae Paramacronychiini Agria housei Shewell 1971 NEA Brachicoma devia (Fallen 1820) NEA sarcophagina (Townsend 1891)
    [Show full text]
  • Diptera: Sarcophagidae) of Southern South America
    Zootaxa 3933 (1): 001–088 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3933.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:00C6A73B-7821-4A31-A0CA-49E14AC05397 ZOOTAXA 3933 The Sarcophaginae (Diptera: Sarcophagidae) of Southern South America. I. The species of Microcerella Macquart from the Patagonian Region PABLO RICARDO MULIERI1, JUAN CARLOS MARILUIS1, LUCIANO DAMIÁN PATITUCCI1 & MARÍA SOFÍA OLEA1 1Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. Museo Argentino de Ciencias Naturales, Buenos Aires, MACN. E-mails: [email protected]; [email protected]; [email protected]; [email protected] Magnolia Press Auckland, New Zealand Accepted by J. O'Hara: 19 Jan. 2015; published: 17 Mar. 2015 PABLO RICARDO MULIERI, JUAN CARLOS MARILUIS, LUCIANO DAMIÁN PATITUCCI & MARÍA SOFÍA OLEA The Sarcophaginae (Diptera: Sarcophagidae) of Southern South America. I. The species of Microcerella Macquart from the Patagonian Region (Zootaxa 3933) 88 pp.; 30 cm. 17 Mar. 2015 ISBN 978-1-77557-661-7 (paperback) ISBN 978-1-77557-662-4 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]
  • Taxonomy and Systematics of the Australian Sarcophaga S.L. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong Recommended Citation Meiklejohn, Kelly Ann, Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae), Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2012. http://ro.uow.edu.au/theses/3729 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) A thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Kelly Ann Meiklejohn BBiotech (Adv, Hons) School of Biological Sciences 2012 Thesis Certification I, Kelly Ann Meiklejohn declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Kelly Ann Meiklejohn 31st of August 2012 ii Table of Contents List of Figures ..................................................................................................................................................
    [Show full text]
  • Klicken, Um Den Anhang Zu Öffnen
    Gredleria- VOL. 1 / 2001 Titelbild 2001 Posthornschnecke (Planorbarius corneus L.) / Zeichnung: Alma Horne Volume 1 Impressum Volume Direktion und Redaktion / Direzione e redazione 1 © Copyright 2001 by Naturmuseum Südtirol Museo Scienze Naturali Alto Adige Museum Natöra Südtirol Bindergasse/Via Bottai 1 – I-39100 Bozen/Bolzano (Italien/Italia) Tel. +39/0471/412960 – Fax 0471/412979 homepage: www.naturmuseum.it e-mail: [email protected] Redaktionskomitee / Comitato di Redazione Dr. Klaus Hellrigl (Brixen/Bressanone), Dr. Peter Ortner (Bozen/Bolzano), Dr. Gerhard Tarmann (Innsbruck), Dr. Leo Unterholzner (Lana, BZ), Dr. Vito Zingerle (Bozen/Bolzano) Schriftleiter und Koordinator / Redattore e coordinatore Dr. Klaus Hellrigl (Brixen/Bressanone) Verantwortlicher Leiter / Direttore responsabile Dr. Vito Zingerle (Bozen/Bolzano) Graphik / grafica Dr. Peter Schreiner (München) Zitiertitel Gredleriana, Veröff. Nat. Mus. Südtirol (Acta biol. ), 1 (2001): ISSN 1593 -5205 Issued 15.12.2001 Druck / stampa Gredleriana Fotolito Varesco – Auer / Ora (BZ) Gredleriana 2001 l 2001 tirol Die Veröffentlichungsreihe »Gredleriana« des Naturmuseum Südtirol (Bozen) ist ein Forum für naturwissenschaftliche Forschung in und über Südtirol. Geplant ist die Volume Herausgabe von zwei Wissenschaftsreihen: A) Biologische Reihe (Acta Biologica) mit den Bereichen Zoologie, Botanik und Ökologie und B) Erdwissenschaftliche Reihe (Acta Geo lo gica) mit Geologie, Mineralogie und Paläontologie. Diese Reihen können jährlich ge mein sam oder in alternierender Folge erscheinen, je nach Ver- fügbarkeit entsprechender Beiträge. Als Publikationssprache der einzelnen Beiträge ist Deutsch oder Italienisch vorge- 1 Naturmuseum Südtiro sehen und allenfalls auch Englisch. Die einzelnen Originalartikel erscheinen jeweils Museum Natöra Süd Museum Natöra in der eingereichten Sprache der Autoren und sollen mit kurzen Zusammenfassun- gen in Englisch, Italienisch und Deutsch ausgestattet sein.
    [Show full text]
  • IOBC Internet Book of Biological Control – Draft September 2005
    IOBC Internet Book of Biological Control Version 5, January 2008 IOBC Internet Book of Biological Control, version 5 Editor: J.C. van Lenteren ([email protected]) Aim: to present the history, the current state of affairs and the future of biological control in order to show that this control method is sound, safe and sustainable Contents 1. Introduction......................................................................................................................................................... 6 2. Discovery of natural enemies and a bit of entomological history ..................................................................... 10 3. Development of idea to use natural enemies for pest control and classification of types of biological control 16 4. History of biological control ............................................................................................................................. 22 5. Current situation of biological control (including region/country revieuws).................................................... 41 6. Biological control of weeds .............................................................................................................................. 51 7. Future of biological control: to be written ........................................................................................................ 61 8. Mass production, storage, shipment and release of natural enemies................................................................. 62 9. Commercial and non-commercial producers
    [Show full text]
  • Diptera – Brachycera
    Biodiversity Data Journal 3: e4187 doi: 10.3897/BDJ.3.e4187 Data Paper Fauna Europaea: Diptera – Brachycera Thomas Pape‡§, Paul Beuk , Adrian Charles Pont|, Anatole I. Shatalkin¶, Andrey L. Ozerov¶, Andrzej J. Woźnica#, Bernhard Merz¤, Cezary Bystrowski«», Chris Raper , Christer Bergström˄, Christian Kehlmaier˅, David K. Clements¦, David Greathead†,ˀ, Elena Petrovna Kamenevaˁ, Emilia Nartshuk₵, Frederik T. Petersenℓ, Gisela Weber ₰, Gerhard Bächli₱, Fritz Geller-Grimm₳, Guy Van de Weyer₴, Hans-Peter Tschorsnig₣, Herman de Jong₮, Jan-Willem van Zuijlen₦, Jaromír Vaňhara₭, Jindřich Roháček₲, Joachim Ziegler‽, József Majer ₩, Karel Hůrka†,₸, Kevin Holston ‡‡, Knut Rognes§§, Lita Greve-Jensen||, Lorenzo Munari¶¶, Marc de Meyer##, Marc Pollet ¤¤, Martin C. D. Speight««, Martin John Ebejer»», Michel Martinez˄˄, Miguel Carles-Tolrá˅˅, Mihály Földvári¦¦, Milan Chvála ₸, Miroslav Bartákˀˀ, Neal L. Evenhuisˁˁ, Peter J. Chandler₵₵, Pierfilippo Cerrettiℓℓ, Rudolf Meier ₰₰, Rudolf Rozkosny₭, Sabine Prescher₰, Stephen D. Gaimari₱₱, Tadeusz Zatwarnicki₳₳, Theo Zeegers₴₴, Torsten Dikow₣₣, Valery A. Korneyevˁ, Vera Andreevna Richter†,₵, Verner Michelsen‡, Vitali N. Tanasijtshuk₵, Wayne N. Mathis₣₣, Zdravko Hubenov₮₮, Yde de Jong ₦₦,₭₭ ‡ Natural History Museum of Denmark, Copenhagen, Denmark § Natural History Museum Maastricht / Diptera.info, Maastricht, Netherlands | Oxford University Museum of Natural History, Oxford, United Kingdom ¶ Zoological Museum, Moscow State University, Moscow, Russia # Wrocław University of Environmental and Life Sciences, Wrocław,
    [Show full text]
  • Example Insect Natural History Data
    Example Insect Natural History Data These data were assembled by participants of a workshop held at the University of Florida from May 30 to June 1 of 2018. The data cover all five major insect orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) and represent most of the various kinds of natural history information found on insect specimen labels. The data also include representative natural history information from literature sources and online databases. For more information about how these data were assembled and why, see Stucky et al. (2019) __________. Except for works in the public domain, data use licenses are as specified by the original data owners. Coleoptera Example 1 Taxonomy: Coleoptera: Buprestidae: Acmaeodera sp. Record type: database Life stage(s): adult Source: iNaturalist Record URL: https://www.inaturalist.org/observations/12840335 Comments and relevant content: "Feeding on wildflowers in an open meadow in the midlands of South Carolina." Example 2 Taxonomy: Coleoptera: Cerambycidae Record type: literature Source: Paro et al. (2011) Relevant text: "Table 1. Association between girdled and available host-plants (listed alphabetically) and Onciderini beetles in Serra do Japi from 2002 to 2006." The table gives the percentages of each plant species that were girdled along with associated beetle species. Example 3 Taxonomy: Coleoptera: Cerambycidae: Rhaesus serricollis Record type: literature Source: Sama et al. (2010) Relevant text: "Host plants: Polyphagous on deciduous trees like Platanus (Platanaceae), Ficus
    [Show full text]
  • Diversity of Sarcophagidae (Insecta, Diptera) Associated with Decomposing Carcasses in a Rural Area of the State of Minas Gerais, Brazil
    doi:10.12741/ebrasilis.v12i3.842 e-ISSN 1983-0572 Publication of the project Entomologistas do Brasil www.ebras.bio.br Creative Commons Licence v4.0 (BY-NC-SA) Copyright © EntomoBrasilis Copyright © Author(s) Forensic Entomology/Entomologia Forense Diversity of Sarcophagidae (Insecta, Diptera) associated with decomposing carcasses in a rural area of the State of Minas Gerais, Brazil Maria Lígia Paseto¹, Lucas Silva de Faria², Júlio Mendes² & Arício Xavier Linhares¹ 1. Universidade Estadual de Campinas. 2. Universidade Federal de Uberlândia. EntomoBrasilis 12 (3): 118-125 (2019) Abstract. Cerrado biome presents high biodiversity, but it still lacks works that focus on entomological inventories. New records for species of Sarcophagidae were provided, including the first record of Blaesoxipha (Acridiophaga) caridei (Brèthes) to Brazil, and new occurrences of the following species for the Cerrado and/or for the state of Minas Gerais, Brazil: Blaesoxipha (Acanthodotheca) acridiophagoides (Lopes & Downs), Oxysarcodexia mineirensis Souza & Paseto, Oxysarcodexia occulta Lopes, Nephochaetopteryx orbitalis (Curran & Walley), Ravinia effrenata (Walker) and Sarcophaga (Neobellieria) polistensis (Hall). These flies are necrophagous and lay first instar larvae directly of the substrate for feeding and development. Pig carcasses were used as animal model for monitoring the decaying process and attractiveness to insects. This study aimed to evaluate the diversity and abundance of adult Sarcophagidae collected from eight pig carcasses exposed in two different environments at a rural area, and to identify which species used the carcasses as rearing substrates for the immatures. The experiment was carried out until the end of the carcasses decomposition, and lasted 49 days during the dry and cool season (2012), and 30 days during the wet and warm season (2013).
    [Show full text]
  • F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera
    F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera Bibliography Thompson, F. C, Evenhuis, N. L. & Sabrosky, C. W. The following bibliography gives full references to 2,982 works cited in the catalog as well as additional ones cited within the bibliography. A concerted effort was made to examine as many of the cited references as possible in order to ensure accurate citation of authorship, date, title, and pagination. References are listed alphabetically by author and chronologically for multiple articles with the same authorship. In cases where more than one article was published by an author(s) in a particular year, a suffix letter follows the year (letters are listed alphabetically according to publication chronology). Authors' names: Names of authors are cited in the bibliography the same as they are in the text for proper association of literature citations with entries in the catalog. Because of the differing treatments of names, especially those containing articles such as "de," "del," "van," "Le," etc., these names are cross-indexed in the bibliography under the various ways in which they may be treated elsewhere. For Russian and other names in Cyrillic and other non-Latin character sets, we follow the spelling used by the authors themselves. Dates of publication: Dating of these works was obtained through various methods in order to obtain as accurate a date of publication as possible for purposes of priority in nomenclature. Dates found in the original works or by outside evidence are placed in brackets after the literature citation.
    [Show full text]