Subtle Metastability of the Layered Magnetic Topological Insulator

Total Page:16

File Type:pdf, Size:1020Kb

Subtle Metastability of the Layered Magnetic Topological Insulator www.nature.com/npjcompumats ARTICLE OPEN Subtle metastability of the layered magnetic topological insulator MnBi2Te4 from weak interactions ✉ Jinliang Ning1, Yanglin Zhu2, Jamin Kidd1, Yingdong Guan2, Yu Wang2, Zhiqiang Mao 2 and Jianwei Sun 1 Layered quantum materials can host interesting properties, including magnetic and topological, for which enormous computational predictions have been done. Their thermodynamic stability is much less visited computationally, which however determines the existence of materials and can be used to guide experimental synthesis. MnBi2Te4 is one of such layered quantum materials that was predicted to be an intrinsic antiferromagnetic topological insulator, and later experimentally realized but in a thermodynamically metastable state. Here, using a combined first-principles-based approach that considers lattice, charge, and spin degrees of freedom, we investigate the metastability of MnBi2Te4 by calculating the Helmholtz free energy for the reaction Bi2Te3 + MnTe → MnBi2Te4.Weidentifyatemperaturerange(~500–873 K) in which the compound is stable with respect to the competing binary phases, consistent with experimental observation. We validate the predictions by comparing the calculated specific heats contributed from different degrees of freedom with experimental results. Our findings indicate that the degrees of freedom responsible for the van der Waals interaction, lattice vibration, magnetic coupling, and nontrivial band topology in MnBi2Te4 not only enable emergent phenomena but also play a crucial role in determining its thermodynamic stability. This conclusion lays the foundation for the future computational material synthesis of novel layered systems. 1234567890():,; npj Computational Materials (2020) 6:157 ; https://doi.org/10.1038/s41524-020-00427-y INTRODUCTION Thermodynamic stability of materials can be predicted from Layered quantum materials, such as graphene and two- chemical reaction free energy based on first-principles density dimensional (2D) semiconductors of transition metal dichalcogen- functional theory (DFT) calculations. Nevertheless, for complex ides, have revolutionized many fields in condensed matter physics layered magnetic quantum materials like MnBi2Te4, such predic- and materials science because of their exotic quantum proper- tions are challenging, due to the increasing importance of various 1 weak interactions (including SOC, magnetic coupling, lattice ties . A new member in this family is MnBi2Te4 that is an intrinsic antiferromagnetic topological insulator (TI) currently under vibrations, and vdW interactions), most of which are also 2–10 responsible for their emergent properties, as illustrated in Fig. 1. intensive study . In MnBi2Te4, the interplay between magnet- ism and topology has been shown to generate exotic quantum Typically, these materials have different kinds of chemical bonds states, including quantum anomalous Hall effect4, axion insula- ranging from strong intralayer covalent bonds to weak interlayer vdW interactions, with interaction strengths across almost 3 orders tor6,7, and high-Chern-number insulator9, upon exfoliation to of magnitude (from ~1 eV for strong bonds to ~1 meV for vdW atomically thin layers. interactions). Both strong chemical bonds and weak interactions MnBi Te is formed by intercalating magnetic MnTe layers into 2 4 are equally important for the thermodynamic stability predictions, the quintuple layers of Bi Te , which is topologically protected due 2 3 demanding a single density functional approximation for simulta- to spin–orbit coupling (SOC)-induced band inversions11,12. The neously accurate descriptions. More importantly, the electronic, experimental synthesis of large, pure, high-quality MnBi Te single 2 4 magnetic, and vibrational thermal excitation energies of these crystals suitable for magnetotransport measurements is however fi fi fi materials at nite temperature can be up to several tens of meV; notoriously dif cult. Different experiments have con rmed that although this scale is typically negligible for stability predictions of MnBi2Te4 is a metastable phase that can only be synthesized bulk solids 21, it is comparable to the thermal energy required to within a narrow temperature range below 873 K3,13–15. Without a stabilize MnBi2Te4. Since DFT is a zero-temperature ground-state fundamental understanding of its metastability, the ideal growth electronic structure method, post-DFT models have to be used to conditions for pure, large crystal synthesis will remain elusive, describe such excitations. Therefore, all these interactions have to ultimately preventing further experimental study of its unique be considered and described accurately for the thermodynamic topological and magnetotransport properties. Furthermore, stability of MnBi2Te4, either at the DFT level or by DFT-based although there have been a significant number of materials models. predicted to host interesting topological properties16–18, using fi – Here, using a set of rst-principles-based approaches that different symmetry indicators16 19, there are only a handful of consider lattice, charge, and spin degrees of freedom to take into – experimental realizations of such predictions16 18,20. Hence, the account the various weak interactions, we calculate the understanding of the metastability of MnBi2Te4 is also highly temperature-dependent reaction free energy of MnBi2Te4 based desirable for the synthesis of other candidate layered topological on the reaction MnTe + Bi2Te3 → MnBi2Te4, which identifies a materials. narrow temperature range for the metastability of MnBi2Te4 1Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA. 2Department of Physics, The Pennsylvania State University, University Park, PA ✉ 16802, USA. email: [email protected] Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences J. Ning et al. 2 Fig. 2 Reaction free energy based on Bi2Te3 + MnTe → MnBi2Te4. The energy is calculated at different levels of theory, including the 0 K DFT reaction energy from PBE (EPBE), SCAN + rVV10 (ESCAN+rVV10), + Fig. 1 Schematic of synthesis reaction and various interactions and SCAN rVV10 with SOC (ESCAN+rVV10+SOC, denoted as E0); the electronic excitation (el), lattice vibrational (harmonic approxima- determining metastability in MnBi2Te4.aSchematic of the synthesis reaction of the target ternary layered magnetic material tion, phHA, and quasi-harmonic approximation with Debye model to 1234567890():,; MnBi Te from two competing binary phases: Bi Te + MnTe → include the anharmonic contribution for high temperature starting 2 4 2 3 around 150 K, ph ), and magnetic (mag) contributions. Experi- MnBi2Te4. Note the layered structures of Bi2Te3 and MnBi2Te4, and AHA mental melting temperatures of Bi2Te3 (TmBT) and MnBi2Te4 the localized magnetic moments (illustrated by blue and red arrows 14 (TmMBT) , MnBi2Te4 start decomposition temperature (Tsd) upon on Mn) in MnTe and MnBi2Te4. b Schematic of the weak interactions 14 considered here, found to be critical in determining the metast- heating (dashed blue line) , and uncertainty in MnBi2Te4 formation temperature (shaded area)13,14 are shown. ability of MnBi2Te4. Top left: SOC; top right: magnetic coupling interaction; bottom left: anharmonic nature of lattice vibration in comparison with the harmonic approximation; bottom right: vdW the competing binaries by about 6 meV/atom below the melting interaction. temperature from the calculations. RESULTS AND DISCUSSION consistent with experiments. These approaches are then validated Van der Waals interaction by comparing the predicted specific heat capacities of the It is well known that layered materials are bound by vdW relevant compounds to experimental results. interactions between layers, while the popular Figure 2 shows that MnBi Te is unstable with respect to its 2 4 Perdew–Burke–Ernzerhof (PBE) density functional22 misses most competing binary phases (MnTe and Bi2Te3) for low temperatures, vdW interactions and barely binds layered materials23,24. Mean- and becomes stable above 500 K, indicated by the calculated while, it has been shown that the strongly constrained and reaction free energy (blue solid line) with contributions from all appropriately-normed (SCAN) density functional25,26 combined considered degrees of freedom. The predicted thermodynamic with the revised Vydrov-Van Voorhis (rVV10) nonlocal correlation = equilibrium temperature T 500 K is close to the experimentally density functional27,28 is effective in accurately describing 14 estimated formation temperature range between 673 and structural and energetic properties of layered materials24.As 13 808 K and above ~423 K, at which MnBi2Te4 was observed to expected, Fig. 2 shows that PBE destabilizes MnBi Te with respect 13 2 4 start decomposing during heating . Since the melting points are to the competing binaries by about 11 meV/atom in comparison 14 ~853 and ~873 K for Bi2Te3 and MnBi2Te4, respectively , the with SCAN + rVV10 for the 0 K ground-state energies. Since quenching required for single crystal synthesis of MnBi2Te4 11 meV/atom is comparable to the finite temperature contribu- without the minor Bi2Te3 phase must occur between ~853 and tions to the reaction free energy from the electronic, magnetic, ~873 K. This narrow temperature window, in addition to the fact and vibrational degrees of freedom, PBE will falsely predict that that MnBi2Te4 is only more stable than the competing binaries by MnBi2Te4 cannot
Recommended publications
  • Part 5: the Bose-Einstein Distribution
    PHYS393 – Statistical Physics Part 5: The Bose-Einstein Distribution Distinguishable and indistinguishable particles In the previous parts of this course, we derived the Boltzmann distribution, which described how the number of distinguishable particles in different energy states varied with the energy of those states, at different temperatures: N εj nj = e− kT . (1) Z However, in systems consisting of collections of identical fermions or identical bosons, the wave function of the system has to be either antisymmetric (for fermions) or symmetric (for bosons) under interchange of any two particles. With the allowed wave functions, it is no longer possible to identify a particular particle with a particular energy state. Instead, all the particles are “shared” between the occupied states. The particles are said to be indistinguishable . Statistical Physics 1 Part 5: The Bose-Einstein Distribution Indistinguishable fermions In the case of indistinguishable fermions, the wave function for the overall system must be antisymmetric under the interchange of any two particles. One consequence of this is the Pauli exclusion principle: any given state can be occupied by at most one particle (though we can’t say which particle!) For example, for a system of two fermions, a possible wave function might be: 1 ψ(x1, x 2) = [ψ (x1)ψ (x2) ψ (x2)ψ (x1)] . (2) √2 A B − A B Here, x1 and x2 are the coordinates of the two particles, and A and B are the two occupied states. If we try to put the two particles into the same state, then the wave function vanishes. Statistical Physics 2 Part 5: The Bose-Einstein Distribution Indistinguishable fermions Finding the distribution with the maximum number of microstates for a system of identical fermions leads to the Fermi-Dirac distribution: g n = i .
    [Show full text]
  • The Debye Model of Lattice Heat Capacity
    The Debye Model of Lattice Heat Capacity The Debye model of lattice heat capacity is more involved than the relatively simple Einstein model, but it does keep the same basic idea: the internal energy depends on the energy per phonon (ε=ℏΩ) times the ℏΩ/kT average number of phonons (Planck distribution: navg=1/[e -1]) times the number of modes. It is in the number of modes that the difference between the two models occurs. In the Einstein model, we simply assumed that each mode was the same (same frequency, Ω), and that the number of modes was equal to the number of atoms in the lattice. In the Debye model, we assume that each mode has its own K (that is, has its own λ). Since Ω is related to K (by the dispersion relation), each mode has a different Ω. 1. Number of modes In the Debye model we assume that the normal modes consist of STANDING WAVES. If we have travelling waves, they will carry energy through the material; if they contain the heat energy (that will not move) they need to be standing waves. Standing waves are waves that do travel but go back and forth and interfere with each other to create standing waves. Recall that Newton's Second Law gave us atoms that oscillate: [here x = sa where s is an integer and a the lattice spacing] iΩt iKsa us = uo e e ; and if we use the form sin(Ksa) for eiKsa [both indicate oscillations]: iΩt us = uo e sin(Ksa) . We now apply the boundary conditions on our solution: to have standing waves both ends of the wave must be tied down, that is, we must have u0 = 0 and uN = 0.
    [Show full text]
  • Phys 446: Solid State Physics / Optical Properties Lattice Vibrations
    Solid State Physics Lecture 5 Last week: Phys 446: (Ch. 3) • Phonons Solid State Physics / Optical Properties • Today: Einstein and Debye models for thermal capacity Lattice vibrations: Thermal conductivity Thermal, acoustic, and optical properties HW2 discussion Fall 2007 Lecture 5 Andrei Sirenko, NJIT 1 2 Material to be included in the test •Factors affecting the diffraction amplitude: Oct. 12th 2007 Atomic scattering factor (form factor): f = n(r)ei∆k⋅rl d 3r reflects distribution of electronic cloud. a ∫ r • Crystalline structures. 0 sin()∆k ⋅r In case of spherical distribution f = 4πr 2n(r) dr 7 crystal systems and 14 Bravais lattices a ∫ n 0 ∆k ⋅r • Crystallographic directions dhkl = 2 2 2 1 2 ⎛ h k l ⎞ 2πi(hu j +kv j +lw j ) and Miller indices ⎜ + + ⎟ •Structure factor F = f e ⎜ a2 b2 c2 ⎟ ∑ aj ⎝ ⎠ j • Definition of reciprocal lattice vectors: •Elastic stiffness and compliance. Strain and stress: definitions and relation between them in a linear regime (Hooke's law): σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • What is Brillouin zone kl kl 2 2 C •Elastic wave equation: ∂ u C ∂ u eff • Bragg formula: 2d·sinθ = mλ ; ∆k = G = eff x sound velocity v = ∂t 2 ρ ∂x2 ρ 3 4 • Lattice vibrations: acoustic and optical branches Summary of the Last Lecture In three-dimensional lattice with s atoms per unit cell there are Elastic properties – crystal is considered as continuous anisotropic 3s phonon branches: 3 acoustic, 3s - 3 optical medium • Phonon - the quantum of lattice vibration. Elastic stiffness and compliance tensors relate the strain and the Energy ħω; momentum ħq stress in a linear region (small displacements, harmonic potential) • Concept of the phonon density of states Hooke's law: σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • Einstein and Debye models for lattice heat capacity.
    [Show full text]
  • Intermediate Statistics in Thermoelectric Properties of Solids
    Intermediate statistics in thermoelectric properties of solids André A. Marinho1, Francisco A. Brito1,2 1 Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraíba, Brazil and 2 Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brazil (Dated: July 23, 2019) Abstract We study the thermodynamics of a crystalline solid by applying intermediate statistics manifested by q-deformation. We based part of our study on both Einstein and Debye models, exploring primarily de- formed thermal and electrical conductivities as a function of the deformed Debye specific heat. The results revealed that the q-deformation acts in two different ways but not necessarily as independent mechanisms. It acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure, which are phenomena described by q-bosons, and also as a manifestation of intermediate statistics, the B-anyons (or B-type systems). For the latter case, we have identified the Schottky effect, normally associated with high-Tc superconductors in the presence of rare-earth-ion impurities, and also the increasing of the specific heat of the solids beyond the Dulong-Petit limit at high temperature, usually related to anharmonicity of interatomic interactions. Alternatively, since in the q-bosons the statistics are in principle maintained the effect of the deformation acts more slowly due to a small change in the crystal lattice. On the other hand, B-anyons that belong to modified statistics are more sensitive to the deformation. PACS numbers: 02.20-Uw, 05.30-d, 75.20-g arXiv:1907.09055v1 [cond-mat.stat-mech] 21 Jul 2019 1 I.
    [Show full text]
  • Arxiv:1608.06287V1 [Hep-Th] 22 Aug 2016 Published in Int
    Preprint typeset in JHEP style - HYPER VERSION Surprises with Nonrelativistic Naturalness Petr Hoˇrava Berkeley Center for Theoretical Physics and Department of Physics University of California, Berkeley, CA 94720-7300, USA and Theoretical Physics Group, Lawrence Berkeley National Laboratory Berkeley, CA 94720-8162, USA Abstract: We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of funda- mental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem. This brief review is based on talks and lectures given at the 2nd LeCosPA Symposium on Everything About Gravity at National Taiwan University, Taipei, Taiwan (December 2015), to appear in the Proceedings; at the International Conference on Gravitation and Cosmology, KITPC, Chinese Academy of Sciences, Beijing, China (May 2015); at the Symposium Celebrating 100 Years of General Relativity, Guanajuato, Mexico (November 2015); and at the 54. Internationale Universit¨atswochen f¨urTheoretische Physik, Schladming, Austria (February 2016). arXiv:1608.06287v1 [hep-th] 22 Aug 2016 Published in Int. J. Mod. Phys. D Contents 1. Puzzles of Naturalness 1 1.1 Technical Naturalness 2 2. Naturalness in Nonrelativistic Systems 3 2.1 Towards the Classification of Nonrelativistic Nambu-Goldstone Modes 3 2.2 Polynomial Shift Symmetries 5 2.3 Naturalness of Cascading Hierarchies 5 3. Interacting Theories with Polynomial Shift Symmetries 6 3.1 Invariants of Polynomial Shift Symmetries 6 3.2 Polynomial Shift Invariants and Graph Theory 6 3.3 Examples 7 4.
    [Show full text]
  • Quantum Phases and Spin Liquid Properties of 1T-Tas2 ✉ Samuel Mañas-Valero 1, Benjamin M
    www.nature.com/npjquantmats ARTICLE OPEN Quantum phases and spin liquid properties of 1T-TaS2 ✉ Samuel Mañas-Valero 1, Benjamin M. Huddart 2, Tom Lancaster 2, Eugenio Coronado1 and Francis L. Pratt 3 Quantum materials exhibiting magnetic frustration are connected to diverse phenomena, including high Tc superconductivity, topological order, and quantum spin liquids (QSLs). A QSL is a quantum phase (QP) related to a quantum-entangled fluid-like state of matter. Previous experiments on QSL candidate materials are usually interpreted in terms of a single QP, although theories indicate that many distinct QPs are closely competing in typical frustrated spin models. Here we report on combined temperature- dependent muon spin relaxation and specific heat measurements for the triangular-lattice QSL candidate material 1T-TaS2 that provide evidence for competing QPs. The measured properties are assigned to arrays of individual QSL layers within the layered charge density wave structure of 1T-TaS2 and their characteristic parameters can be interpreted as those of distinct Z2 QSL phases. The present results reveal that a QSL description can extend beyond the lowest temperatures, offering an additional perspective in the search for such materials. npj Quantum Materials (2021) 6:69 ; https://doi.org/10.1038/s41535-021-00367-w INTRODUCTION QSL, both from experimental and theoretical perspectives13,18–21, The idea of destabilizing magnetic order by quantum fluctuating but some alternative scenarios have also been proposed, such as a 1234567890():,; resonating valence bonds (RVB) originated with Anderson in Peierls mechanism or the formation of domain wall networks, 22–24 19731. Systems with frustrated interactions are particularly among others .
    [Show full text]
  • Multicritical Nambu-Goldstone Modes and Nonrelativistic Naturalness
    1 Multicritical Nambu-Goldstone Modes and Nonrelativistic Naturalness Petr Hoˇrava Berkeley Center for Theoretical Physics Bay Area Particle Theory Seminar SFSU, San Francisco, CA October 10, 2014 work with Tom Griffin, Kevin Grosvenor, Ziqi Yan 2 Puzzles of Naturalness Some of the most fascinating open problems in modern physics are all problems of naturalness: • The cosmological constant problem • The Higgs mass hierarchy problem • The linear resistivity of strange metals, the regime above Tc in high-Tc superconductors [Bednorz&M¨uller'86; Polchinski '92] In addition, the first two •s { together with the recent experimental facts { suggest that we may live in a strangely simple Universe ::: Naturalness is again in the forefront (as are its possible alternatives: landscape? :::?) If we are to save naturalness, we need new surprises! 3 What is Naturalness? Technical Naturalness: 't Hooft (1979) \The concept of causality requires that macroscopic phenomena follow from microscopic equations." \The following dogma should be followed: At any energy scale µ, a physical parameter or a set of physical parameters αi(µ) is allowed to be very small only if the replacement αi(µ) = 0 would increase the symmetry of the system." Example: Massive λφ4 in 3 + 1 dimensions. p λ ∼ "; m2 ∼ µ2"; µ ∼ m= λ. Symmetry: The constant shift φ ! φ + a. \Pursuing naturalness beyond 1000 GeV will require theories that are immensely complex compared with some of the grand unified schemes." 4 Gravity without Relativity (a.k.a. gravity with anisotropic scaling, or Hoˇrava-Lifshitz gravity) Field theories with anisotropic scaling: xi ! λxi; t ! λzt: z: dynamical critical exponent { characteristic of RG fixed point.
    [Show full text]
  • The Debye Model Professor Stephen Sweeney
    Solid State Physics Lecture 8 – The Debye model Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK [email protected] Solid State Physics - Lecture 8 Recap from Lecture 7 • Concepts of “temperature” and thermal Dulong-Petit equilibrium are based on the idea that individual particles in a system have some form of motion • Heat capacity can be determined by considering vibrational motion of atoms • We considered two models: • Dulong-Petit (classical) • Einstein (quantum mechanical) • Both models assume atoms act independently – this is made up for in the Debye model (today) Solid State Physics - Lecture 8 Summary of Dulong-Petit and Einstein models of heat capacity Dulong-Petit model (1819) Einstein model (1907) • Atoms on lattice vibrate • Atoms on lattice vibrate independently of each independently of each other other • Completely classical • Quantum mechanical • Heat capacity (vibrations are quantised) independent of • Agreement with temperature (3NkB) experiment good at very • Poor agreement with high (~3NkB) and very low experiment, except at (~0) temperatures, but high temperatures not inbetween Solid State Physics - Lecture 8 A more realistic model… • Both the Einstein and Dulong-Petit models treat each atom independently. This is not generally true. • When an atom vibrates, the force on adjacent atoms changes causing them to vibrate (and vice-versa) • Oscillations can be broken down into modes 1D case Nice animations here: http://www.phonon.fc.pl/index.php
    [Show full text]
  • The Phonon Heat Capacity for 1D, 2D and 3D System Masaatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 29, 2018)
    The phonon heat capacity for 1D, 2D and 3D system Masaatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 29, 2018) When I taught the Phys.411-511 (Statistical Thermodynamics, 2016) using the textbook of Huang, Introduction to Statistical Mechanics, I realized that the definition of the density of states for the statistical mechanics is different from that for the solid state physics even if we solve the same problem. In solid state physics, the velocity of the transverse mode is in general different from that of the longitudinal mode, while these velocities are the same in the statistical mechanics. In the 2D phonon, we use the approximation 2 1 1 2 2 2 for the solid state physics v vT vL and v vT vL for the statistical mechanics. 1. 2D phonon Show that the Debye model of a 2-dimensional crystal predicts that the low temperature heat capacity is proportional to T 2 . Solve the problem by answering the following questions. (a) Find the expression of the density of states. (b) Find the expression (without any approximation) for the internal energy. (c) Find the expression of the heat capacity with integral (you do not have to calculate the integral). (d) Find the expression of the entropy. ((Solution-1)) (a) Density of states There is one allowed states per (2 /L)2 in 2D k-space. In other words, there are 1 2 2 2( /) L , states per unit area of 2D k space, for each polarization and for each branch The density of states is defined by 2 dkxdk y 2kdk L kdk D()d 2 2 2 2 2( /) L 2( /) L 2 , using the linear dispersion relation, vk , L2 D() 2 2v , which is proportional to .
    [Show full text]
  • Contributions of Debye Functions to Bosons and Its Applications on Some Nd Metals, Part Ii
    International Journal of Pure and Applied Mathematics Volume 102 No. 3 2015, 429-445 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: http://dx.doi.org/10.12732/ijpam.v102i3.3 ijpam.eu CONTRIBUTIONS OF DEBYE FUNCTIONS TO BOSONS AND ITS APPLICATIONS ON SOME ND METALS, PART II Muhammad A. Al-Jalali Department of Physics Faculty of Science Taif University Taif, AL-Haweiah, P.O. Box 888, Zip Code 21974, KINGDOM OF SAUDI ARABIA Abstract: Internal thermal energy in solids contributes to vibrations (phonons) energy; spin waves (magnons) energy if solid has magnetism and fermions en- ergy across very complicated mechanisms. Debye functions, mathematically, was estimated because they are considered a main term which controls in all equations of those contributions. Semi-empirical equation has been obtained to nd (n=3,4,5) transition met- als specific heat to calculate some important physical constants. Numerical analyses gives an agreement with experimental results on nd transition metals. Comparison between theoretical and experimental was in- vestigated. AMS Subject Classification: 62H10, 62P35, 74F05, 74H45, 81V19, 82C10, 82D35, 82D40 Key Words: Debye functions, Bose–Einstein distribution, Phonons, magnons, fermions c 2015 Academic Publications, Ltd. Received: January 6, 2015 url: www.acadpubl.eu 430 M.A. Al-Jalali 1. Introduction In solid-state physics and statistical mechanics, bosons mean phonons, magnons, and photons, which subject to Bose–Einstein statistics [1]. There are two kinds of Debye functions family, the first belong to bosons energy, and the second is bosons specific heat. In mathematics, the family of Debye functions defined as [2]: x n tn E(n, x) = dt, xn+1 et − 1 Z0 x (1) n tn+1et C(n, x) = dt, xn (et − 1)2 Z0 Here Peter Debye in 1912, analytically computed the heat capacity, with n = 3 (of what is now called the Debye model in solid state).
    [Show full text]
  • §6 – Free Electron Gas : §6 – Free Electron Gas
    §6 – Free Electron Gas : §6 – Free Electron Gas 6.1 Overview of Electronic Properties The main species of solids are metals, semiconductors and insulators. One way to group these is by their resistivity: Metals – ~10−8−10−5 m Semiconductors – ~10−5−10 m Insulators – ~10−∞ m There is a striking difference in the temperature dependence of the resistivity: Metals – ρ increases with T (usually ∝T ) Semiconductors – ρ decreases with T Alloys have higher resistivity than its constituents; there is no law of mixing. This suggests some form of “impurity” mechanism The different species also have different optical properties. Metals – Opaque and lustrous (silvery) Insulators – often transparent or coloured The reasons for these differing properties can be explained by considering the density of electron states: 6.2 Free Electron (Fermi) Gas The simplest model of a metal was proposed by Fermi. This model transfers the ideas of electron orbitals in atoms into a macroscopic object. Thus, the fundamental behaviour of a metal comes from the Pauli exclusion principle. For now, we will ignore the crystal lattice. – 1 – Last Modified: 28/12/2006 §6 – Free Electron Gas : For this model, we make the following assumptions: ● The crystal comprises a fixed background of N identical positively charge nuclei and N electrons, which can move freely inside the crystal without seeing any of the nuclei (monovalent case); ● Coulomb interactions are negligible because the system is neutral overall This model works relatively well for alkali metals (Group 1 elements), such as Na, K, Rb and Cs. We would like to understand why electrons are only weakly scattered as they migrate through a metal.
    [Show full text]
  • Statistical Physics
    Part II | Statistical Physics Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. Part IB Quantum Mechanics and \Multiparticle Systems" from Part II Principles of Quantum Mechanics are essential Fundamentals of statistical mechanics Microcanonical ensemble. Entropy, temperature and pressure. Laws of thermody- namics. Example of paramagnetism. Boltzmann distribution and canonical ensemble. Partition function. Free energy. Specific heats. Chemical Potential. Grand Canonical Ensemble. [5] Classical gases Density of states and the classical limit. Ideal gas. Maxwell distribution. Equipartition of energy. Diatomic gas. Interacting gases. Virial expansion. Van der Waal's equation of state. Basic kinetic theory. [3] Quantum gases Density of states. Planck distribution and black body radiation. Debye model of phonons in solids. Bose{Einstein distribution. Ideal Bose gas and Bose{Einstein condensation. Fermi-Dirac distribution. Ideal Fermi gas. Pauli paramagnetism. [8] Thermodynamics Thermodynamic temperature scale. Heat and work. Carnot cycle. Applications of laws of thermodynamics. Thermodynamic potentials. Maxwell relations. [4] Phase transitions Liquid-gas transitions. Critical point and critical exponents. Ising model. Mean field theory. First and second order phase transitions. Symmetries and order parameters. [4] 1 Contents II Statistical Physics Contents 0 Introduction 3 1 Fundamentals of statistical mechanics 4 1.1 Microcanonical ensemble . .4 1.2 Pressure, volume and the first law of thermodynamics . 12 1.3 The canonical ensemble . 15 1.4 Helmholtz free energy .
    [Show full text]