Statistical Physics
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Part 5: the Bose-Einstein Distribution
PHYS393 – Statistical Physics Part 5: The Bose-Einstein Distribution Distinguishable and indistinguishable particles In the previous parts of this course, we derived the Boltzmann distribution, which described how the number of distinguishable particles in different energy states varied with the energy of those states, at different temperatures: N εj nj = e− kT . (1) Z However, in systems consisting of collections of identical fermions or identical bosons, the wave function of the system has to be either antisymmetric (for fermions) or symmetric (for bosons) under interchange of any two particles. With the allowed wave functions, it is no longer possible to identify a particular particle with a particular energy state. Instead, all the particles are “shared” between the occupied states. The particles are said to be indistinguishable . Statistical Physics 1 Part 5: The Bose-Einstein Distribution Indistinguishable fermions In the case of indistinguishable fermions, the wave function for the overall system must be antisymmetric under the interchange of any two particles. One consequence of this is the Pauli exclusion principle: any given state can be occupied by at most one particle (though we can’t say which particle!) For example, for a system of two fermions, a possible wave function might be: 1 ψ(x1, x 2) = [ψ (x1)ψ (x2) ψ (x2)ψ (x1)] . (2) √2 A B − A B Here, x1 and x2 are the coordinates of the two particles, and A and B are the two occupied states. If we try to put the two particles into the same state, then the wave function vanishes. Statistical Physics 2 Part 5: The Bose-Einstein Distribution Indistinguishable fermions Finding the distribution with the maximum number of microstates for a system of identical fermions leads to the Fermi-Dirac distribution: g n = i . -
Temperature Dependence of Breakdown and Avalanche Multiplication in In0.53Ga0.47As Diodes and Heterojunction Bipolar Transistors
This is a repository copy of Temperature dependence of breakdown and avalanche multiplication in In0.53Ga0.47As diodes and heterojunction bipolar transistors . White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/896/ Article: Yee, M., Ng, W.K., David, J.P.R. et al. (3 more authors) (2003) Temperature dependence of breakdown and avalanche multiplication in In0.53Ga0.47As diodes and heterojunction bipolar transistors. IEEE Transactions on Electron Devices, 50 (10). pp. 2021-2026. ISSN 0018-9383 https://doi.org/10.1109/TED.2003.816553 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 10, OCTOBER 2003 2021 Temperature Dependence of Breakdown and Avalanche Multiplication in InHXSQGaHXRUAs Diodes and Heterojunction Bipolar Transistors M. -
The Debye Model of Lattice Heat Capacity
The Debye Model of Lattice Heat Capacity The Debye model of lattice heat capacity is more involved than the relatively simple Einstein model, but it does keep the same basic idea: the internal energy depends on the energy per phonon (ε=ℏΩ) times the ℏΩ/kT average number of phonons (Planck distribution: navg=1/[e -1]) times the number of modes. It is in the number of modes that the difference between the two models occurs. In the Einstein model, we simply assumed that each mode was the same (same frequency, Ω), and that the number of modes was equal to the number of atoms in the lattice. In the Debye model, we assume that each mode has its own K (that is, has its own λ). Since Ω is related to K (by the dispersion relation), each mode has a different Ω. 1. Number of modes In the Debye model we assume that the normal modes consist of STANDING WAVES. If we have travelling waves, they will carry energy through the material; if they contain the heat energy (that will not move) they need to be standing waves. Standing waves are waves that do travel but go back and forth and interfere with each other to create standing waves. Recall that Newton's Second Law gave us atoms that oscillate: [here x = sa where s is an integer and a the lattice spacing] iΩt iKsa us = uo e e ; and if we use the form sin(Ksa) for eiKsa [both indicate oscillations]: iΩt us = uo e sin(Ksa) . We now apply the boundary conditions on our solution: to have standing waves both ends of the wave must be tied down, that is, we must have u0 = 0 and uN = 0. -
PHYS 596 Team 1
Braun, S., Ronzheimer, J., Schreiber, M., Hodgman, S., Rom, T., Bloch, I. and Schneider, U. (2013). Negative Absolute Temperature for Motional Degrees of Freedom. Science, 339(6115), pp.52-55. PHYS 596 Team 1 Shreya, Nina, Nathan, Faisal What is negative absolute temperature? • An ensemble of particles is said to have negative absolute temperature if higher energy states are more likely to be occupied than lower energy states. −퐸푖/푘푇 푃푖 ∝ 푒 • If high energy states are more populated than low energy states, entropy decreases with energy. 1 휕푆 ≡ 푇 휕퐸 Negative absolute temperature Previous work on negative temperature • The first experiment to measure negative temperature was performed at Harvard by Purcell and Pound in 1951. • By quickly reversing the magnetic field acting on a nuclear spin crystal, they produced a sample where the higher energy states were more occupied. • Since then negative temperature ensembles in spin systems have been produced in other ways. Oja and Lounasmaa (1997) gives a comprehensive review. Negative temperature for motional degrees of freedom • For the probability distribution of a negative temperature ensemble to be normalizable, we need an upper bound in energy. • Since localized spin systems have a finite number of energy states there is a natural upper bound in energy. • This is hard to achieve in systems with motional degrees of freedom since kinetic energy is usually not bounded from above. • Braun et al (2013) achieves exactly this with bosonic cold atoms in an optical lattice. What is the point? • At thermal equilibrium, negative temperature implies negative pressure. • This is relevant to models of dark energy and cosmology based on Bose-Einstein condensation. -
Phys 446: Solid State Physics / Optical Properties Lattice Vibrations
Solid State Physics Lecture 5 Last week: Phys 446: (Ch. 3) • Phonons Solid State Physics / Optical Properties • Today: Einstein and Debye models for thermal capacity Lattice vibrations: Thermal conductivity Thermal, acoustic, and optical properties HW2 discussion Fall 2007 Lecture 5 Andrei Sirenko, NJIT 1 2 Material to be included in the test •Factors affecting the diffraction amplitude: Oct. 12th 2007 Atomic scattering factor (form factor): f = n(r)ei∆k⋅rl d 3r reflects distribution of electronic cloud. a ∫ r • Crystalline structures. 0 sin()∆k ⋅r In case of spherical distribution f = 4πr 2n(r) dr 7 crystal systems and 14 Bravais lattices a ∫ n 0 ∆k ⋅r • Crystallographic directions dhkl = 2 2 2 1 2 ⎛ h k l ⎞ 2πi(hu j +kv j +lw j ) and Miller indices ⎜ + + ⎟ •Structure factor F = f e ⎜ a2 b2 c2 ⎟ ∑ aj ⎝ ⎠ j • Definition of reciprocal lattice vectors: •Elastic stiffness and compliance. Strain and stress: definitions and relation between them in a linear regime (Hooke's law): σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • What is Brillouin zone kl kl 2 2 C •Elastic wave equation: ∂ u C ∂ u eff • Bragg formula: 2d·sinθ = mλ ; ∆k = G = eff x sound velocity v = ∂t 2 ρ ∂x2 ρ 3 4 • Lattice vibrations: acoustic and optical branches Summary of the Last Lecture In three-dimensional lattice with s atoms per unit cell there are Elastic properties – crystal is considered as continuous anisotropic 3s phonon branches: 3 acoustic, 3s - 3 optical medium • Phonon - the quantum of lattice vibration. Elastic stiffness and compliance tensors relate the strain and the Energy ħω; momentum ħq stress in a linear region (small displacements, harmonic potential) • Concept of the phonon density of states Hooke's law: σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • Einstein and Debye models for lattice heat capacity. -
Consistent Thermostatistics Forbids Negative Absolute Temperatures
ARTICLES PUBLISHED ONLINE: 8 DECEMBER 2013 | DOI: 10.1038/NPHYS2815 Consistent thermostatistics forbids negative absolute temperatures Jörn Dunkel1* and Stefan Hilbert2 Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques. ositivity of absolute temperature T, a key postulate of Gibbs formalism yields strictly non-negative absolute temperatures thermodynamics1, has repeatedly been challenged both even for quantum systems with a bounded spectrum, thereby Ptheoretically2–4 and experimentally5–7. If indeed realizable, invalidating all previous negative temperature claims. negative temperature systems promise profound practical and conceptual -
Intermediate Statistics in Thermoelectric Properties of Solids
Intermediate statistics in thermoelectric properties of solids André A. Marinho1, Francisco A. Brito1,2 1 Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraíba, Brazil and 2 Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba, Brazil (Dated: July 23, 2019) Abstract We study the thermodynamics of a crystalline solid by applying intermediate statistics manifested by q-deformation. We based part of our study on both Einstein and Debye models, exploring primarily de- formed thermal and electrical conductivities as a function of the deformed Debye specific heat. The results revealed that the q-deformation acts in two different ways but not necessarily as independent mechanisms. It acts as a factor of disorder or impurity, modifying the characteristics of a crystalline structure, which are phenomena described by q-bosons, and also as a manifestation of intermediate statistics, the B-anyons (or B-type systems). For the latter case, we have identified the Schottky effect, normally associated with high-Tc superconductors in the presence of rare-earth-ion impurities, and also the increasing of the specific heat of the solids beyond the Dulong-Petit limit at high temperature, usually related to anharmonicity of interatomic interactions. Alternatively, since in the q-bosons the statistics are in principle maintained the effect of the deformation acts more slowly due to a small change in the crystal lattice. On the other hand, B-anyons that belong to modified statistics are more sensitive to the deformation. PACS numbers: 02.20-Uw, 05.30-d, 75.20-g arXiv:1907.09055v1 [cond-mat.stat-mech] 21 Jul 2019 1 I. -
Arxiv:1608.06287V1 [Hep-Th] 22 Aug 2016 Published in Int
Preprint typeset in JHEP style - HYPER VERSION Surprises with Nonrelativistic Naturalness Petr Hoˇrava Berkeley Center for Theoretical Physics and Department of Physics University of California, Berkeley, CA 94720-7300, USA and Theoretical Physics Group, Lawrence Berkeley National Laboratory Berkeley, CA 94720-8162, USA Abstract: We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of funda- mental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem. This brief review is based on talks and lectures given at the 2nd LeCosPA Symposium on Everything About Gravity at National Taiwan University, Taipei, Taiwan (December 2015), to appear in the Proceedings; at the International Conference on Gravitation and Cosmology, KITPC, Chinese Academy of Sciences, Beijing, China (May 2015); at the Symposium Celebrating 100 Years of General Relativity, Guanajuato, Mexico (November 2015); and at the 54. Internationale Universit¨atswochen f¨urTheoretische Physik, Schladming, Austria (February 2016). arXiv:1608.06287v1 [hep-th] 22 Aug 2016 Published in Int. J. Mod. Phys. D Contents 1. Puzzles of Naturalness 1 1.1 Technical Naturalness 2 2. Naturalness in Nonrelativistic Systems 3 2.1 Towards the Classification of Nonrelativistic Nambu-Goldstone Modes 3 2.2 Polynomial Shift Symmetries 5 2.3 Naturalness of Cascading Hierarchies 5 3. Interacting Theories with Polynomial Shift Symmetries 6 3.1 Invariants of Polynomial Shift Symmetries 6 3.2 Polynomial Shift Invariants and Graph Theory 6 3.3 Examples 7 4. -
Two Level System & Negative Temperature
PHYS4006: Thermal and Statistical Physics Lecture Notes Part - 4 (Unit - IV) Two Level System & Negative Temperature Dr. Neelabh Srivastava (Assistant Professor) Department of Physics Programme: M.Sc. Physics Mahatma Gandhi Central University Semester: 2nd Motihari-845401, Bihar E-mail: [email protected] Two level energy system • Consider a system having two non-degenerate microstates with energies ε1 and ε2. The energy difference between the levels is ε= ε - ε 2 1 ε2 Let us assume that the system is in ε= ε - ε thermal equilibrium at temperature T. 2 1 So, the partition function of the system is – ε1 Z exp 1 exp 2 ........(1) kT kT The probability of occupancy of these states is given by - exp 1 exp 1 kT kT 1 P 1 Z exp 1 exp 2 1 exp 2 1 kT kT kT 2 exp 2 exp 2 exp 2 1 kT kT kT P 2 Z exp 1 exp 2 1 exp 2 1 kT kT kT or, 1 and exp P1 ......(2) T P ........(3) 1 exp 2 T 1 exp T where 2 1 k From (2) and (3), we can see that P1 and P2 depends on T. Thus, if T=0, P1=1 and P2=0 (System is in ground state) When T<<θ, i.e. kT<<ε then P2 is negligible and it begins to increase when temperature is increased. 3 • Consider a paramagnetic substance having N magnetic atoms per unit volume placed in an external magnetic field B. Assume that each atoms has spin ½ and an intrinsic magnetic moment μB. -
Microcanonical, Canonical, and Grand Canonical Ensembles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 30, 2016)
The equivalence: microcanonical, canonical, and grand canonical ensembles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 30, 2016) Here we show the equivalence of three ensembles; micro canonical ensemble, canonical ensemble, and grand canonical ensemble. The neglect for the condition of constant energy in canonical ensemble and the neglect of the condition for constant energy and constant particle number can be possible by introducing the density of states multiplied by the weight factors [Boltzmann factor (canonical ensemble) and the Gibbs factor (grand canonical ensemble)]. The introduction of such factors make it much easier for one to calculate the thermodynamic properties. ((Microcanonical ensemble)) In the micro canonical ensemble, the macroscopic system can be specified by using variables N, E, and V. These are convenient variables which are closely related to the classical mechanics. The density of states (N E,, V ) plays a significant role in deriving the thermodynamic properties such as entropy and internal energy. It depends on N, E, and V. Note that there are two constraints. The macroscopic quantity N (the number of particles) should be kept constant. The total energy E should be also kept constant. Because of these constraints, in general it is difficult to evaluate the density of states. ((Canonical ensemble)) In order to avoid such a difficulty, the concept of the canonical ensemble is introduced. The calculation become simpler than that for the micro canonical ensemble since the condition for the constant energy is neglected. In the canonical ensemble, the system is specified by three variables ( N, T, V), instead of N, E, V in the micro canonical ensemble. -
LECTURE 9 Statistical Mechanics Basic Methods We Have Talked
LECTURE 9 Statistical Mechanics Basic Methods We have talked about ensembles being large collections of copies or clones of a system with some features being identical among all the copies. There are three different types of ensembles in statistical mechanics. 1. If the system under consideration is isolated, i.e., not interacting with any other system, then the ensemble is called the microcanonical ensemble. In this case the energy of the system is a constant. 2. If the system under consideration is in thermal equilibrium with a heat reservoir at temperature T , then the ensemble is called a canonical ensemble. In this case the energy of the system is not a constant; the temperature is constant. 3. If the system under consideration is in contact with both a heat reservoir and a particle reservoir, then the ensemble is called a grand canonical ensemble. In this case the energy and particle number of the system are not constant; the temperature and the chemical potential are constant. The chemical potential is the energy required to add a particle to the system. The most common ensemble encountered in doing statistical mechanics is the canonical ensemble. We will explore many examples of the canonical ensemble. The grand canon- ical ensemble is used in dealing with quantum systems. The microcanonical ensemble is not used much because of the difficulty in identifying and evaluating the accessible microstates, but we will explore one simple system (the ideal gas) as an example of the microcanonical ensemble. Microcanonical Ensemble Consider an isolated system described by an energy in the range between E and E + δE, and similar appropriate ranges for external parameters xα. -
Statistical Physics Syllabus Lectures and Recitations
Graduate Statistical Physics Syllabus Lectures and Recitations Lectures will be held on Tuesdays and Thursdays from 9:30 am until 11:00 am via Zoom: https://nyu.zoom.us/j/99702917703. Recitations will be held on Fridays from 3:30 pm until 4:45 pm via Zoom. Recitations will begin the second week of the course. David Grier's office hours will be held on Mondays from 1:30 pm to 3:00 pm in Physics 873. Ankit Vyas' office hours will be held on Fridays from 1:00 pm to 2:00 pm in Physics 940. Instructors David G. Grier Office: 726 Broadway, room 873 Phone: (212) 998-3713 email: [email protected] Ankit Vyas Office: 726 Broadway, room 965B Email: [email protected] Text Most graduate texts in statistical physics cover the material of this course. Suitable choices include: • Mehran Kardar, Statistical Physics of Particles (Cambridge University Press, 2007) ISBN 978-0-521-87342-0 (hardcover). • Mehran Kardar, Statistical Physics of Fields (Cambridge University Press, 2007) ISBN 978- 0-521-87341-3 (hardcover). • R. K. Pathria and Paul D. Beale, Statistical Mechanics (Elsevier, 2011) ISBN 978-0-12- 382188-1 (paperback). Undergraduate texts also may provide useful background material. Typical choices include • Frederick Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, 2009) ISBN 978-1-57766-612-7. • Charles Kittel and Herbert Kroemer, Thermal Physics (W. H. Freeman, 1980) ISBN 978- 0716710882. • Daniel V. Schroeder, An Introduction to Thermal Physics (Pearson, 1999) ISBN 978- 0201380279. Outline 1. Thermodynamics 2. Probability 3. Kinetic theory of gases 4.