Open Full Page

Total Page:16

File Type:pdf, Size:1020Kb

Open Full Page Published OnlineFirst July 25, 2019; DOI: 10.1158/2159-8290.CD-19-0138 RESEARCH ARTICLE Epigenomics and Single-Cell Sequencing Define a Developmental Hierarchy in Langerhans Cell Histiocytosis Florian Halbritter1,2, Matthias Farlik1,3, Raphaela Schwentner2, Gunhild Jug2, Nikolaus Fortelny1, Thomas Schnöller2, Hanja Pisa2, Linda C. Schuster1, Andrea Reinprecht4, Thomas Czech4, Johannes Gojo5, Wolfgang Holter2,5,6, Milen Minkov2,7, Wolfgang M. Bauer3, Ingrid Simonitsch-Klupp8, Christoph Bock1,9,10,11, and Caroline Hutter2,5,6 ABSTRACT Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory dis- eases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including puta- tive LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene- regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell tran- scriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy. See related commentary by Gruber et al., p. 1343. 1CeMM Research Center for Molecular Medicine of the Austrian Acad- Note: Supplementary data for this article are available at Cancer Discovery emy of Sciences, Vienna, Austria. 2St. Anna Children’s Cancer Research Online (http://cancerdiscovery.aacrjournals.org/). 3 Institute (CCRI), Vienna, Austria. Department of Dermatology, Medical F. Halbritter and M. Farlik contributed equally to this work. University of Vienna, Vienna, Austria. 4Department of Neurosurgery, Medi- cal University of Vienna, Vienna, Austria. 5Department of Pediatrics, Medi- Corresponding Authors: Caroline Hutter, St. Anna Children’s Cancer cal University of Vienna, Vienna, Austria. 6St. Anna Children’s Hospital, Research Institute (CCRI), St. Anna Kinderkrebsforschung, Zimmer- St. Anna Kinderspital, Vienna, Austria. 7Department of Pediatrics, Adoles- mannplatz 10, 1090 Vienna, Austria. Phone: 4314-0470-4043; E-mail: cent Medicine and Neonatology, Rudolfstiftung Hospital, Vienna, Austria. [email protected]; and Christoph Bock, CeMM Research Center for 8Clinical Institute of Pathology, Medical University of Vienna, Vienna, Aus- Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, tria. 9Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria. E-mail: [email protected] Vienna, Austria. 10Max Planck Institute for Informatics, Saarland Informat- Cancer Discov 2019;9:1406–21 11 ics Campus, Saarbrücken, Germany. Ludwig Boltzmann Institute for Rare doi: 10.1158/2159-8290.CD-19-0138 and Undiagnosed Diseases, Vienna, Austria. ©2019 American Association for Cancer Research. 1406 | CANCER DISCOVERY OCTOBER 2019 www.aacrjournals.org Downloaded from cancerdiscovery.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst July 25, 2019; DOI: 10.1158/2159-8290.CD-19-0138 INTRODUCTION BRAFV600E mutation (6–8), but the pathophysiology of LCH is different from cancers with oncogenic BRAFV600E mutations, Langerhans cell histiocytosis (LCH) is a rare hematopoietic such as melanoma, non–small cell lung cancer, and colorec- neoplasm driven by gain-of-function mutations in the MAPK tal cancer. LCH cells carry few genetic alterations beyond pathway (1, 2). The name of the disease originates from the BRAFV600E or another oncogenic driver in the MAPK pathway characteristic expression of CD207, also known as langerin, (MAP2K1, ARAF), and they show no progressive accumula- which is conventionally associated with Langerhans cells—a tion of recurrent somatic mutations (9). Instead, high levels type of resident epidermal immune cell (3). However, the rela- of inflammatory infiltrate suggest that cell-extrinsic, immu- tionship between LCH cells and Langerhans cells remains con- nologic stimuli could be key contributors to the formation of troversial, and LCH has also been linked to dendritic cells and LCH lesions (10–12). LCH is lethal in up to 20% of patients other myeloid cell types (4–6). LCH is phenotypically character- with risk organ–positive, multisystem disease treated accord- ized by an accumulation of CD1A and CD207 double-positive ing to current standard of care. In contrast, the disease often cells in various tissues (Fig. 1A). These lesions can develop in resolves spontaneously following unknown mechanisms in almost any organ, but are most common in skin and bone (1). patients with single lesions (1, 12). LCH severity is clinically assessed by the extent of the dis- ease (involvement of one or more organs, i.e., single-system RESULTS vs. multisystem disease) and the involvement of known risk organs (liver, spleen, hematopoietic system). Treatment deci- Langerhans Cell Histiocytosis Lesions Are sions are currently based solely on clinical presentation, as Composed of Distinct Cell Populations no reliable molecular markers for risk stratification have LCH cells within the same lesion show wide variability in been identified yet. LCH is most commonly driven by the their CD1A and CD207 levels based on IHC (Fig. 1B) and flow OCTOber 2019 CANCER DISCOVERY | 1407 Downloaded from cancerdiscovery.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst July 25, 2019; DOI: 10.1158/2159-8290.CD-19-0138 RESEARCH ARTICLE Halbritter et al. A Langerhans cells histiocytosis (LCH) is a rare BELCH cells are Marker genes identify multiple cell types in single-cell transcriptome data of LCH lesions paediatric disease that affects various organs heterogeneous CD1A CD207 MAP2K1 CD33 BRAF Lesions formed by immune Bone lesion within biopsies Brain cells of unknown origin CD1A Cell surface markers: Lymph node CD1A, CD207 High Skin Genetic drivers: Lung Gain of MAPK signaling, CD3D IL32 FOXP3 CD19 CD79A V600E Liver 60% BRAF CD207 Spleen Incidence: Bone ∼4.6/million (age 0–15) Hematoxylin and eosin stain Skin lesion t-SNE dimension 2 IL3RACLEC4C TCF4 CD14 CD163 BRAFV600E Normalized UMI count Low t-SNE dimension 1 CDLCH biopsy samples analyzed using LCH biopsy samples analyzed using F Single-cell transcriptomics captures LCH cells single-cell transcriptome sequencing single-cell transcriptome sequencing and their microenvironment Identifier Biopsy Sex Age Extent Plasmacytoid CD1A+ CD207 + LCH_ELymph FemaleChild Multi- dendritic cells (LCH cells) node system LCH_H Skin Female Infant Multi- B cells system LCH_I Bone Male Child Single- system LCH_J Skin Female Aged Multi- system LCH_K Bone Male Child Single- system t-SNE dimension 2 LCH_N Skin Male Adult Multi- t-SNE dimension 2 system T cells LCH_O Bone Male Child Single- 19,044 single-cell Monocytes/ system transcriptomes macrophages t-SNE dimension 1 t-SNE dimension 1 Patient: EHIJKNO LCH cellImmune cell Figure 1. Single-cell transcriptome analysis captures cellular and molecular diversity of LCH lesions. A, Clinical presentation and incidence of LCH. Shown is an X-ray image of LCH bone lesions in the skull (top right), a photograph of extensive LCH skin lesions (bottom right), and a hematoxylin and eosin staining of an LCH biopsy (bottom left). B, Cellular heterogeneity in an LCH biopsy (lymph node), as revealed by immunostaining for CD1A, CD207, and an antibody that specifically detects mutated BRAFV600E protein. C, Overview of patient biopsy samples analyzed by single-cell RNA sequencing (RNA-seq) in this study. D, Low-dimensional projection (t-SNE plot) of the combined single-cell RNA-seq dataset across all analyzed biopsies, comprising a total of 19,044 single-cell transcriptome profiles. E, Molecular heterogeneity in LCH illustrated by low-dimensional projection (as in D) of all single-cell transcriptome profiles overlaid with the expression levels of selected marker genes (dark blue color indicates high expression levels). F, Cellular hetero- geneity in LCH illustrated by low-dimensional projection (as in D), annotated with cell types inferred from marker-gene expression. cytometry (Supplementary Fig. S1). To characterize the cel- Focusing initially on LCH-specific transcriptional profiles lular and molecular landscape of LCH lesions, we performed that were shared across cells and across patients, we com- droplet-based single-cell transcriptome sequencing of seven pared CD1A and CD207 marker–positive LCH cells with four LCH lesions. The biopsies were obtained from patients with immune-cell populations identified in all biopsies (Supple- multisystem disease (n = 4) and single-system disease (n = 3), mentary Fig. S2D). The LCH cells showed high expression of and they were collected
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Identification of a Receptor Required for the Anti-Inflammatory Activity of IVIG
    Identification of a receptor required for the INAUGURAL ARTICLE anti-inflammatory activity of IVIG Robert M. Anthonya, Fredrik Wermelinga,b, Mikael C. I. Karlssonb, and Jeffrey V. Ravetcha,1 aThe Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065; and bDepartment of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 25, 2006. Contributed by Jeffrey V. Ravetch, October 11, 2008 (sent for review October 1, 2008) The anti-inflammatory activity of intravenous Ig (IVIG) results from patients suffering from autoimmune diseases (3). Monomeric IgG, a minor population of the pooled IgG molecules that contains purified from the serum of thousands of healthy donors (IVIG) is terminal ␣2,6-sialic acid linkages on their Fc-linked glycans. These a commonly administered at high doses (1–2 g/kg) for the treatment anti-inflammatory properties can be recapitulated with a fully of a number of autoimmune diseases, including immune-mediated recombinant preparation of appropriately sialylated IgG Fc frag- thrombocytopenia, chronic inflammatory demyelinating polyneu- ments. We now demonstrate that these sialylated Fcs require a ropathy, Kawasaki Disease and Guillain-Barre syndrome, and is specific C-type lectin, SIGN-R1, (specific ICAM-3 grabbing non- widely used in other autoimmune disorders (4–6). integrin-related 1) expressed on macrophages in the splenic mar- A number of hypotheses have been advanced to explain the ginal zone. Splenectomy, loss of SIGN-R1؉ cells in the splenic paradoxical activity of high dose IgG, and include models that marginal zone, blockade of the carbohydrate recognition domain attribute the activity to the polyclonal binding specificities, encoded (CRD) of SIGN-R1, or genetic deletion of SIGN-R1 abrogated the in the variable domains of the administered antibodies that may anti-inflammatory activity of IVIG or sialylated Fc fragments.
    [Show full text]
  • Examination of the Transcription Factors Acting in Bone Marrow
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Examination of the transcription factors acting in bone marrow derived macrophages by Gergely Nagy Supervisor: Dr. Endre Barta UNIVERSITY OF DEBRECEN DOCTORAL SCHOOL OF MOLECULAR CELL AND IMMUNE BIOLOGY DEBRECEN, 2016 Table of contents Table of contents ........................................................................................................................ 2 1. Introduction ............................................................................................................................ 5 1.1. Transcriptional regulation ................................................................................................... 5 1.1.1. Transcriptional initiation .................................................................................................. 5 1.1.2. Co-regulators and histone modifications .......................................................................... 8 1.2. Promoter and enhancer sequences guiding transcription factors ...................................... 11 1.2.1. General transcription factors .......................................................................................... 11 1.2.2. The ETS superfamily ..................................................................................................... 17 1.2.3. The AP-1 and CREB proteins ........................................................................................ 20 1.2.4. Other promoter specific transcription factor families ...................................................
    [Show full text]
  • The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis
    Subject Review The Activator Protein-1 Transcription Factor in Respiratory Epithelium Carcinogenesis Michalis V. Karamouzis,1 Panagiotis A. Konstantinopoulos,1,2 and Athanasios G. Papavassiliou1 1Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece and 2Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts Abstract Much of the current anticancer research effort is focused on Respiratory epithelium cancers are the leading cause cell-surface receptors and their cognate upstream molecules of cancer-related death worldwide. The multistep natural because they provide the easiest route for drugs to affect history of carcinogenesis can be considered as a cellular behavior, whereas agents acting at the level of gradual accumulation of genetic and epigenetic transcription need to invade the nucleus. However, the aberrations, resulting in the deregulation of cellular therapeutic effect of surface receptor manipulation might be homeostasis. Growing evidence suggests that cross- considered less than specific because their actions are talk between membrane and nuclear receptor signaling modulated by complex interacting downstream signal trans- pathways along with the activator protein-1 (AP-1) duction pathways. A pivotal transcription factor during cascade and its cofactor network represent a pivotal respiratory epithelium carcinogenesis is activator protein-1 molecular circuitry participating directly or indirectly in (AP-1). AP-1–regulated genes include important modulators of respiratory epithelium carcinogenesis. The crucial role invasion and metastasis, proliferation, differentiation, and of AP-1 transcription factor renders it an appealing survival as well as genes associated with hypoxia and target of future nuclear-directed anticancer therapeutic angiogenesis (7). Nuclear-directed therapeutic strategies might and chemoprevention approaches.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Chapter 6.4 Herpes Simplex Virus Enhances HIV-1 Transmission By
    6.4: HSV enhances HIV-1 transmission by LCs Chapter 6.4 Herpes simplex virus enhances HIV-1 transmission by Langerhans cells. Lot de Witte*, Marein A.W.P. de Jong*, Yvette van Kooyk and Teunis B.H. Geijtenbeek. Genital herpes is a risk factor to acquire HIV-1 infection by sexual contact, by increasing both infectivity of an infected person and susceptibility to acquire HIV-1. Here we have investigated the mechanisms that underlie the increased susceptibility to HIV-1 when people have genital herpes. Under steady state conditions, LCs capture HIV-1 through interaction with the C-type lectin Langerin, resulting in viral clearance and protection against HIV-1. During primary genital herpes or recurrent infections, HSV infects epithelial cells and encounters LCs in the mucosal epithelium. We set out to investigate the function of HSV-infected LCs and subepithelial DCs during HIV-1 transmission. We demonstrate that HSV interacts with soluble and cellular Langerin and that infection of LCs decreases expression of this receptor. Notably, LC infection with both HSV-1 and HSV-2 enhances HIV-1 transmission, suggesting an important role for LCs during HIV-1 transmission in the HSV-infected individual. Furthermore our data indicate that HSV infection of DCs and LCs has different outcomes for HIV-1 transmission, and our results suggest that DC-SIGN and Langerin are involved. Future research is needed to confirm the differential role of Langerin and DC-SIGN during HIV-1 transmission in conditions of genital herpes. Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands *Authors contributed equally to this work (Manuscript submitted for publication) 195 Section 6: Risk factors to acquire HIV-1: a role for Langerhans cells? Introduction Genital herpes is a common infection, which is mainly caused by herpes simplex virus type-2 (HSV-2), although an increasing percentage of the genital herpes is caused by HSV-141.
    [Show full text]
  • Hepatitis C Virus As a Unique Human Model Disease to Define
    viruses Review Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection David Wolski and Georg M. Lauer * Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA * Correspondence: [email protected]; Tel.: +1-617-724-7515 Received: 27 June 2019; Accepted: 23 July 2019; Published: 26 July 2019 Abstract: The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses. Keywords: viral hepatitis; hepatitis C virus; T cells; transcriptional regulation; transcription factors; metabolism; nucleosome 1.
    [Show full text]
  • Junb and GATA3 Transcription Factors Cytokine Expression Through Regulating CARMA1 Controls Th2 Cell-Specific
    CARMA1 Controls Th2 Cell-Specific Cytokine Expression through Regulating JunB and GATA3 Transcription Factors This information is current as Marzenna Blonska, Donghyun Joo, Patrick A. of September 27, 2021. Zweidler-McKay, Qingyu Zhao and Xin Lin J Immunol published online 27 February 2012 http://www.jimmunol.org/content/early/2012/02/26/jimmun ol.1102943 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/02/27/jimmunol.110294 Material 3.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 27, 2012, doi:10.4049/jimmunol.1102943 The Journal of Immunology CARMA1 Controls Th2 Cell-Specific Cytokine Expression through Regulating JunB and GATA3 Transcription Factors Marzenna Blonska,* Donghyun Joo,*,† Patrick A. Zweidler-McKay,‡ Qingyu Zhao,*,1 and Xin Lin*,† The scaffold protein CARMA1 is required for the TCR-induced lymphocyte activation.
    [Show full text]
  • Junb Differs from C-Jun in Its DNA- Binding and Dlmenzatlon Domains, and Represses C-Jun by Formation of Inactive Heterodimers
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press JunB differs from c-Jun in its DNA- binding and dlmenzatlon domains, and represses c-Jun by formation of inactive heterodimers Tiliang Deng and Michael Karin 1 Department of Pharmacology, Center for Molecular Genetics, University of California, San Diego, School of Medicine, La Jolla, California 92093-0636 USA JunB differs considerably from c-Jun in its ability to activate AP-l-responsive genes and induce oncogenic transformation. We demonstrate that the decreased ability of JunB to activate gene expression is the result of a small number of amino acid changes between its DNA-binding and dimerization motifs and the corresponding regions of c-Jun. These changes lead to a 10-fold decrease in the DNA-binding activity of Junk JunB can be converted into a c-Jun-like activator by substituting four amino acids in its DNA-binding and dimerization motifs with the corresponding c-Jun sequences. JunB can also attenuate trans-activation by c-Jun, an activity mediated by its leucine zipper. This ability depends on two glycine residues that decrease the stability of the JunB leucine zipper, resulting in decreased homodimerization and increased heterodimerization. These results illustrate how small changes in primary structure, including chemically conservative changes, can result in functional divergence of two highly related transcriptional regulators. [Key Words: JunB; c-Jun; DNA-binding/dimerization motifs; leucine zipper] Received October 16, 1992; revised version accepted December 29, 1992. Transcriptional control is commonly mediated by se- AP-1 was identified as a transcription factor required quence-specific DNA-binding proteins (Pabo and Saner for optimal activity of the human metallothionein IIA 1984; Johnson and McKnight 1989).
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]