Dizionario Della Nomenclatura Lunare
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. -
Table of Exposures
Table of Exposures Dole UT Focal Emulsion Exposure Moon's age Plate Nos. ralio sec. days 08.11.65 2132· f/29 Kodak 0.250 Plole 0.4 15.3 7e/2 08.01.66 2228 f/24 Kodak 0.250 Plate 0.31 17.0 3b, 15e 31.01.66 1947 1/24 Kodak 0.250 Plale 0.3 10.1 5b 02.02.66 1944 f/24 Kodak 0.250 Plote 0.25 12.1 7b, 8b 06.02.66 2326 1/24 Kodak 0.250 Plole 0.2 16.3 14c,16b 05.03.66 2259 1/41 IIford Zenith Plole 0.1 13 .5 lOe/l 27.04.66 2152 1/24 lIford G.30 Plate 0.5 6.9 150 28.04.66 2046 f/30 lIford G.30 Pia Ie 0.8 7.9 10,130 23.05.66 2033 f/24 Kodak 0.250 Plole 0.7 3.4 15e/2 23.05,66 2034 f/24 Kodak 0.250 Plate 0.7 3.4 3e/2,4b 23.05.66 2036 1/24 Kodak 0.250 Plate 0.7 3.4 16e 28.05.66 2122 1/30 IIford G.30 Plole 0.8 8.4 140 29.05.66 2103 1/30 IIford G.30 Plate 0.8 9.4 2e 23.06.66 2109 f/24 lIford G.30 Pia Ie 1.0 5.0 160 06.08.66 0211 f/30 Illord G.30 Pia Ie 0.7 18.9 2b 06.08.66 0215 1/30 IIford G.30 Plale 0.7 18.9 lb, 13b 09.08.66 0315 1/30 IIlord G.30 Plate 1.1 23.8 50,60 09.08.66 03 17 1/30 Ilford G.30 Plate 1.1 23.8 90, 91/2, 11 b, 12e/l 06. -
1 Peter Mclaughlin the Question of the Authenticity of the Mechanical
Draft: occasionally updated Peter McLaughlin The Question of the Authenticity of the Mechanical Problems Sept. 30, 2013 Until the nineteenth century there was little doubt among scholars as to the authenticity of the Aristotelian Mechanical Problems. There were some doubters among the Renaissance humanists, but theirs were general doubts about the authenticity of a large class of writings, 1 not doubts based on the individual characteristics of this particular work. Some Humanists distrusted any text that hadn’t been passed by the Arabs to the Latin West in the High Middle Ages. However, by the end of the 18th century after Euler and Lagrange, the Mechanical Problems had ceased to be read as part of science and had become the object of history of science; and there the reading of the text becomes quite different from the Renaissance 2 readings. In his Histoire des mathématiques J.E. Montucla (1797) dismisses the Mechanical Problems with such epithets as “entirely false,” “completely ridiculous,” and “puerile.” William Whewell remarks in the History of the Inductive Sciences3 that “in scarcely any one instance are the answers, which Aristotle gives to his questions, of any value.” Neither of them, however, cast doubt on the authenticity of the work. Abraham Kaestner’s Geschichte der Mathematik (1796–1800) mentions doubts – but does not share them.4 Serious doubts about the authenticity of the Mechanical Problems as an individual work seem to be more a consequence of the disciplinary constitution of classical philology, particularly in nineteenth-century Germany. Some time between about 1830 and 1870, the opinion of most philologists shifted from acceptance to denial of the authenticity of the 5 Mechanical Problems. -
UC Davis UC Davis Previously Published Works
UC Davis UC Davis Previously Published Works Title The anthropology of incommensurability Permalink https://escholarship.org/uc/item/3vx742f4 Journal Studies in History and Philosophy of Science, 21(2) ISSN 0039-3681 Author Biagioli, M Publication Date 1990 DOI 10.1016/0039-3681(90)90022-Z Peer reviewed eScholarship.org Powered by the California Digital Library University of California MARIO BIAGIOLP’ THE ANTHROPOLOGY OF INCOMMENSURABILITY I. Incommensurability and Sterility SINCE IT entered the discourse of history and philosophy of science with Feyerabend’s “Explanation, Reduction, and Empiricism” and Kuhn’s The Structure of Scient$c Revolutions, the notion of incommensurability has problematized the debate on processes of theory-choice.’ According to Kuhn, two scientific paradigms competing for the explanation of roughly the same set of natural phenomena may not share a global linguistic common denominator. As a result, the possibility of scientific communication and dialogue cannot be taken for granted and the process of theory choice can no longer be reduced to the simple picture presented, for example, by the logical empiricists. By analyzing the dialogue (or rather the lack of it) between Galileo and the Tuscan Aristotelians during the debate on buoyancy in 1611-1613, I want to argue that incommensurability between competing paradigms is not just an unfortunate problem of linguistic communication, but it plays an important role in the process of scientific change and paradigm-speciation. The breakdown of communication during the -
Diameter and Depth of Lunar Craters - Course: HET 602, June 2002 Supervisor: Barry Adcock - Student: Eduardo Manuel Alvarez
Project: Diameter and Depth of Lunar Craters - Course: HET 602, June 2002 Supervisor: Barry Adcock - Student: Eduardo Manuel Alvarez Diameter and Depth of Lunar Craters Abstract The aim of this project is to find out the size and height of some features on the surface of the Moon from obtained observational field measures and the afterwards proper calculation in order to transform them into the corresponding physical final values. First of all it will be briefly described two different proceedings for the acquisition of the observational field measures and the theoretical development of the formulae that allow the conversion into the final required results. It will also be discussed the implicit theoretical errors that each method presents. Secondly, it will be described the actual applied measuring proceedings and the complete exposition of the field collected data, plus photos and sketches. Then it will be presented all the lunar related parameters corresponding to the same moments as when the measures were obtained, basically taken from the internet. After that, through the application of the proper formulae to each observational measure and the corresponding related parameters, it will be found out the required lunar features sizes and heights. Later the obtained final values will be compared to the actual values, analyzing the possible reasons of the differences, and suggesting improvements and special cares in the experimental application of the performed proceedings. Finally, an overall conclusion and the complete list of all the involved references will end this project report. 1) Theoretical considerations a) Measuring lunar surface sizes In order to measure the size of lunar features by telescopic observation from the Earth, it is necessary to firstly obtain some direct value related with its size and secondly apply the corresponding calculation that converts it into the desired actual length. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Master's Thesis
2009:106 MASTER'S THESIS Design a Nano-Satellite for Observation of Transient Lunar Phenomena(TLP) Bao Han Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2009:106 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/106--SE Design a Nano-Satellite for Observation of Transient Lunar Phenomena (TLP) SpaceMaster Thesis I Students: Bao Han Supervisor: Prof. Dr. Hakan Kayal Date of Submission: 24 Sep 2009 II DECLARATION I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by other person or material which to a substantial extent has been accepted for the award of other degree or diploma of university or other institute of high learning, except due acknowledgment has been made in the text. Würzburg, the 20th, September, 2009 _______________________ (Bao Han) III ACKNOWLEGMENT I would like to express my gratitude to all those who gave me the possibility to complete this thesis. First I am deeply indebted to my supervisor Prof. Dr. Hakan Kayal for providing me the possibility to do a very interesting and changeling master thesis by contributing to the Nano-Satellite project and his stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis. This thesis work allowed me to have a good insight in the Nano-satellite project while gaining many satellite system design experience in many fields. I have furthermore to thank the Prof. Klaus Schilling, the chair of the computer science VII department, who encouraged me to go ahead with my thesis. -
UHM-PRPDC-0102 PR Set: 2019-05 Image Title: on and Around Mons
UHM-PRPDC-0102 PR Set: 2019-05 Image Title: On and Around Mons Piton, the Moon Original Source: NASA/GSFC/ASU Image Released: 2019-05-09 Instruments: Lunar Reconnaissance Orbiter Camera Image Number: M190609650LR Mons Piton was one of many peaks in the inner mountain ring of the Imbrium basin. It likely stood as high as five kilometers above the basin floor. Between about 3.7 and 2.5 billion years ago, however, volcanic eruptions gradually filled in the Imbrium basin. Lava submerged most of the mountain ring of which Mons Piton was a part. Mons Piton now stands up to 2.3 kilometers above Mare Imbrium. Other fragments of that lost mountain ring survive: they include Mons Pico, Montes Teneriffe, and Montes Recti, all located west of Mons Piton. Here we see the southern part of Mons Piton, which rises ~2,300 m above the dark volcanic rocks of Mare Imbrium. As in most images of the lunar surface, impact craters large and small pock the landscape. Many are degraded. A steady rain of micrometeoroids chips away at boulders and crater rims, gradually turning fresh craters into nondescript depressions. In addition, shaking caused by impacts and moonquakes gradually fills in craters. Mons Piton has fewer obvious craters than the surrounding plain because mountain slopes tend to be less stable than flat terrain. This means that some crater-erasing degradation processes — specifically, gradual slumping and sudden landslides — are more efficient and thus occur more often than on the plains. . -
A Study About Two Unlisted Domes Near Promontorium Laplace
EEEDDDIIITTTOOORRRIIIAAALLL Selenology Today #1 Welcome to the first issue of Selenology Today. Selenology Today is a new online journal devoted to studies of the Moon, mainly of observational, geological, and historical nature. It will appear twice per year. Despite the fact that the Moon has been visited by six manned missions and a multitude of unmanned spacecraft, its surface is far from being completely explored. After the last manned mission, Apollo 17, which took place in 1972, it was not before 1994 that the Moon was visited by a spacecraft again: Clementine performed a nearly complete multispectral mapping with state-of-the-art imaging sensors in the visible, near and mid infrared wavelength range. The Clementine mission as well as the Lunar Prospector spacecraft launched in 1998 have stimulated a broad range of scientific activities dealing with the geology and surface composition of the lunar surface. The Clementine image data, however, are largely unsuitable for photogeologic and topographic analyses due to the low phase angles and high illumination angles at which most of them were acquired. Hence, the best available set of spacecraft images globally covering the lunar surface, taken under low to moderate illumination angles and thus revealing the relief of the lunar surface, is still that obtained during the Lunar Orbiter programme in the mid-1960s. The ongoing Smart 1 mission, which is intended to be terminated by a spectacular crash of the spacecraft on the lunar surface at the end of September 2006, will provide the first high-resolution set of orbital lunar images acquired with modern sensory devices primarily at oblique illumination. -
Peter Rear * Jesuit Mathematical Science and the Reconstitution of Experience in the Early Seventeenth Century
PETER REAR * JESUIT MATHEMATICAL SCIENCE AND THE RECONSTITUTION OF EXPERIENCE IN THE EARLY SEVENTEENTH CENTURY I AN ‘EXPERIMENT’ in modern science is often contrasted with simple ‘experience’ by claiming that the former involves the posing of a specific question about nature which its outcome is to answer, whereas the Iatter does nothing more than supply items of fact regarding phenomena, and is not designed to judge matters of theory or interpretation. Thus it has been pointed out that pre-modern, scholastic uses of ‘experience’ in natural philosophy tend to take the form of selective presentation of instances which illustrate conclusions generated by abstract philosophizing, and not the employment of such material as a basis for testing these conclusions. ‘Experiment’ became a characteristic feature of natural philosophy only in the seventeenth century.’ In its broadest terms this picture must be accepted, but enough is left out in the analysis of the nature of ‘experiment’ to obscure understanding of its historical emergence. The science-textbook definition of experiment fails to capture the reality of the new conceptions of the seventeenth century: Robert Hooke’s term ‘experimentum crucis’, so signally adopted by Newton, was certainly intended to pick out an aspect of Bacon’s teaching suitable to the notion of ‘experiment’ as a test of hypotheses, but Boyle’s ‘experimental histories’, also indebted to Bacon, had no immediate purpose beyond the mere collection of facts.’ The ‘experiments’ of the Accademia de1 Cimento were frequently designed to test hypotheses or decide between alternatives,3 but the empirical work of the Accademia’s Florentine forebear, Galileo, seems at *Department of History, Corndl University, McGraw Hall, Ithaca. -
Luna 17/Lunokhod 1
:UP/3-PAGINATION/IAW-PROOFS/3B2/978«52181«5(M.3D 261 [7428] 19.8.20073:22PM Chronological sequence of missions and events 261 Operations officially ended on 4 October 1971, by which time it had travelled 10.5 km and had obtained more than 20 000 single pictures (to assist with driving opera tions) and over 200 panoramas. It conducted about 500 lunar regolith tests by pressing a probe into the ground, observed wheel tracks to estimate regolith mechanical properties, and made chemical composition measure ments by means of an X-ray spectrometer at 25 loca tions. The Lunokhods were originally conceived as vehicles which would survey and prepare sites for human landings, but they became highly effective explorers in their own right. The landing spacecraft, Luna 17, had dual ramps by which Lunokhod 1 could be driven down to the surface. Lunokhod 1 consisted of a near-cylindrical pressurized compartment, tapered slightly towards the base, on eight independently powered wheels. Internal temperatures were maintained at night by a radioisotope heater. On top were a conical omnidirectional antenna and a high- gain helical antenna. Two television cameras mounted at the front provided information to drivers on Earth. Two panoramic cameras were mounted on each side of the body, one facing outwards and one facing downwards, both providing 180° views from the forward to back ward directions. The body also supported deployable experiments to contact the lunar regolith for density and mechanical property tests. An X-ray spectrometer for soil composi 10 November 1970: Luna 17/Lunokhod 1 (Soviet tion measurements, a regolith radioactivity detector, an Union) instrument for solar and cosmic X-ray observations, cos mic-ray detectors, and a French laser retroreflector were Luna 17 carried the 750 kg Lunokhod 1 rover, which also operated. -
February 2019 Plato a to B
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – FEBRUARY 2019 PLATO A TO B Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA December 18, 2018 02:04-02:42, 02:58-03:10 UT, 15 cm refl, 170x, seeing 7-9/10, transparence 6/6. I observed the group of craters just west of Plato on the evening of Dec. 17/18, 2018. Plato A is the largest crater in this sketch. Three other craters form nearly a straight line to the west. From east to west, these are Plato M, Y and B. These four craters probably do not make a related chain since they differ considerably in appearance. Plato A has an irregular east rim (shadowed here) that appears to merge into an old ring. A small peak is near this old ring. Plato A also had a detached strip of internal shadow and substantial exterior shadow at this time. Plato M and Y look similar, but M seems deeper than Y. Plato M also had much exterior shadow. Plato B is the second largest crater depicted here, but it is shallower than its neighbors. Plato BA is the small crater northwest of Plato Y, and a small peak is farther to the northwest. A short ridge is just north of Plato Y. A large peak is northeast of Plato M, and Plato S is the crater far- ther northeast.