Review of EFAS Progress During 2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bitterling Populations in the Sighişoara-Târnava Mare Natura 2000 Site
Management of Sustainable Development Sibiu, Romania, Volume 8, No.1, June 2016 10.1515/msd-2016-0001 BITTERLING POPULATIONS IN THE SIGHI ŞOARA-TÂRNAVA MARE NATURA 2000 SITE ‒ A SUPPORT SYSTEM FOR MANAGEMENT DECISIONS Angela, CURTEAN-BĂNĂDUC 1, Ioana-Cristina, CISMA Ș2 and Doru, BĂNĂDUC 3 1"Lucian Blaga" University of Sibiu, Sibiu, Romania, [email protected] 2"Lucian Blaga" University of Sibiu, Sibiu, Romania, [email protected] 3"Lucian Blaga" University of Sibiu, Sibiu, Romania, [email protected] ABSTRACT : The predominant threats to the Bitterling populations in the Sighi şoara-Târnava Mare Natura 2000 site are the hydro technical modifications of the river channels, organic contamination and illegal fishing. ADONIS:CE is applied commonly for business processes modelling, however, in this study case was applied in an ecology/biology sphere of interest. The authors acquired a Bitterling model which contained all of the identified habitat species’ necessities, the specific indicators that give good preservation status and the present pressures and threats. The keeping of the riverbed morphodynamics is especially necessary – the meanders existence is significant for the aquatic mollusc species which are existing in the inner U shape sectors of the lotic systems. The sectors, where the sand and mud are relatively fixed, give appropriate habitats for molluscs which is valuable for the reproduction of Bitterling. The preserving of the present water oxygenation and regime of liquid flows, and the prevention of the sediments deposition rate in the aquatic habitats are needed too for the molluscs’ existence. The sediments exploitation in these lotic systems should be realised in relation with the natural rate of renewal and at sites at a distance over five km between them. -
Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017)
International Journal of Environmental Research and Public Health Article Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017) Rodica-Mihaela Frîncu 1,2 1 National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; [email protected]; Tel.: +40-21-315-3299 2 INCDCP ICECHIM Calarasi Branch, 2A Ion Luca Caragiale St., 910060 Calarasi, Romania Abstract: The Danube River is the second longest in Europe and its water quality is important for the communities relying on it, but also for supporting biodiversity in the Danube Delta Biosphere Reserve, a site with high ecological value. This paper presents a methodology for assessing water quality and long-term trends based on water quality indices (WQI), calculated using the weighted arithmetic method, for 15 monitoring stations in the Lower Danube and Danube tributaries in Romania, based on annual means of 10 parameters for the period 1996–2017. A trend analysis is carried out to see how WQIs evolved during the studied period at each station. Principal component analysis (PCA) is applied on sub-indices to highlight which parameters have the highest contributions to WQI values, and to identify correlations between parameters. Factor analysis is used to highlight differences between locations. The results show that water quality has improved significantly at most stations during the studied period, but pollution is higher in some Romanian tributaries than in the Danube. The parameters with the highest contribution to WQI are ammonium and total phosphorus, suggesting the need to continue improving wastewater treatment in the studied area. -
Exceptional Floods in the Prut Basin, Romania, in the Context of Heavy
1 Exceptional floods in the Prut basin, Romania, in the context of 2 heavy rains in the summer of 2010 3 4 Gheorghe Romanescu1, Cristian Constantin Stoleriu 5 Alexandru Ioan Cuza, University of Iasi, Faculty of Geography and Geology, Department of 6 Geography, Bd. Carol I, 20 A, 700505 Iasi, Romania 7 8 Abstract. The year 2010 was characterized by devastating flooding in Central and Eastern 9 Europe, including Romania, the Czech Republic, Slovakia, and Bosnia-Herzegovina. This 10 study focuses on floods that occurred during the summer of 2010 in the Prut River basin, 11 which has a high percentage of hydrotechnical infrastructure. Strong floods occurred in 12 eastern Romania on the Prut River, which borders the Republic of Moldova and Ukraine, and 13 the Siret River. Atmospheric instability from 21 June-1 July 2010 caused significant amounts 14 of rain, with rates of 51.2 mm/50 min and 42.0 mm/30 min. In the middle Prut basin, there are 15 numerous ponds that help mitigate floods as well as provide water for animals, irrigation, and 16 so forth. The peak discharge of the Prut River during the summer of 2010 was 2,310 m3/s at 17 the Radauti Prut gauging station. High discharges were also recorded on downstream 18 tributaries, including the Baseu, Jijia, and Miletin. High discharges downstream occurred 19 because of water from the middle basin and the backwater from the Danube (a historic 20 discharge of 16,300 m3/s). The floods that occurred in the Prut basin in the summer of 2010 21 could not be controlled completely because the discharges far exceeded foreseen values. -
Ukraine Facts Figures
Danube Facts and Figures: Ukraine Danube Facts and Figures Ukraine (September 2015) General Overview Three sub-basins of the Danube are partly located in Ukraine - the Tisza, Prut and Siret basins, as well as part of the Danube Delta. Furthermore, 2.7 million people live in the Ukrainian part of the Danube Basin, which is 3.3% of the total Danube Basin District. Ukraine has been a Signatory State to the Danube River Protection Convention since 1994. The Convention was ratified by the Ukrainian Parliament in 2002 and is now a law. Topography The largest part of the Tisza Basin is located in the Ukrainian Carpathian Mountains, which are middle-height mountains of 1,000 to 1,200 metres above sea level - the highest peaks reach 2,000 metres. The main mountain ranges are located longitudinally from north-west to south-east and divided by transverse river valleys. One third of the Tisza Basin is located in the Zakarpattya Lowland, which forms part of the Great Hungarian Plain and the Pannonian Plain, with dominating heights of 120-180 metres above sea-level. Like the Tisza Basin, the Prut and Siret Basins are located mainly in the Ukrainian Carpathians, but in the eastern hills. The source of the Prut is in the Chernogora Mountains at around 1,600 metres above sea-level. The total area of the sub- basins is 30,520km 2, which makes up only 3.8% of the total Danube Basin area and 5.4% of the Ukrainian territory. The Danube itself comes through the lower part of Ukraine; its length in the mouth is 174km. -
Toponymic Homonymies and Metonymies: Names of Rivers Vs
ONOMÀSTICA 5 (2019): 91–114 | RECEPCIÓ 21.6.2018 | ACCEPTACIÓ 26.8.2018 Toponymic homonymies and metonymies: names of rivers vs names of settlements Oliviu Felecan & Nicolae Felecan Technical University of Cluj-Napoca North University Centre of Baia Mare (Romania) [email protected] Abstract: This paper analyses several toponymic homonymies and metonymies in Romania. Due to the country’s rich hydrographic network, there are many hydronymic and oikonymic similarities. Most often, the oikonyms borrow the names of rivers which, diachronically, enjoy the status of initial name bearers. However, there are various examples in which oikonyms and hydronyms are not completely homonymous, as numerous compounds or derivatives exist, etymologically and lexicologically eloquent in the contexts described. Keywords: toponymic homonymies and metonymies, hydronyms, oikonyms Homonímies i metonímies toponímiques: noms dels rius vs. noms dels assentaments Resum: Aquest treball analitza diverses homonímies i metonímies existents a la toponímia de Romania. En el context d’un país caracteritzat per la importància de la xarxa hidrogràfica, criden l’atenció les nombroses similituds existents entre els hidrònims i els noms dels assentaments de població. Molt sovint aquests últims, a Romania, prenen en préstec els noms dels rius −els quals, diacrònicament, gaudeixen de la condició de portadors de noms inicials. Tot i això, hi ha diversos exemples en què noms d’assentaments de població i hidrònims no són completament homònims: es tracta, sobretot, de casos de -
Testing Different Interpolation Methods Based on Single Beam
International Journal of Geo-Information Case Report Testing Different Interpolation Methods Based on Single Beam Echosounder River Surveying. Case Study: Siret River Maxim Arseni *, Mirela Voiculescu , Lucian Puiu Georgescu, Catalina Iticescu and Adrian Rosu Faculty of Science and Environment, European Center of Excellence for the Environment, “Dunarea de Jos” University of Galati, 111, Domneasca Street, 800201 Galati, Romania; [email protected] (M.V.); [email protected] (L.P.G.); [email protected] (C.I.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +40-746407084 Received: 12 September 2019; Accepted: 6 November 2019; Published: 10 November 2019 Abstract: Bathymetric measurements play an important role in assessing the sedimentation rate, deposition of pollutants, erosion rate, or monitoring of morphological changes in a river, lake, or accumulation basin. In order to create a coherent and continuous digital elevation model (DEM) of a river bed, various data interpolation methods are used, especially when single-beam bathymetric measurements do not cover the entire area and when there are areas which are not measured. Interpolation methods are based on numerical models applied to natural landscapes (e.g., meandering river) by taking into account various morphometric and morphologies and a wide range of scales. Obviously, each interpolation method, used in standard or customised form, yields different results. This study aims at testing four interpolation methods in order to determine -
Ecological Dimensions of Population Dynamics and Subsistence in Neo- Eneolithic Eastern Europe T
Journal of Anthropological Archaeology 53 (2019) 92–101 Contents lists available at ScienceDirect Journal of Anthropological Archaeology journal homepage: www.elsevier.com/locate/jaa Ecological dimensions of population dynamics and subsistence in Neo- Eneolithic Eastern Europe T ⁎ Thomas K. Harpera, , Aleksandr Diachenkob, Yuri Ya Rassamakinb, Douglas J. Kennetta a Department of Anthropology, The Pennsylvania State University, USA b Institute of Archaeology, National Academy of Sciences of Ukraine, Ukraine ARTICLE INFO ABSTRACT Keywords: During the fourth millennium BCE socioeconomic change from a regime of Neo-Eneolithic village-based se- Holocene dentary agriculture to more itinerant pastoralism dramatically changed European society. Continental-scale Paleoecology archaeological and genetic studies generally attribute this change to the movement of Early Bronze Age (EBA) Eastern Europe populations into Eastern Europe ca. 3000 BCE. However, archaeological assemblages in Ukraine, Moldova, and Eneolithic Romania suggest that migrations and changes in subsistence regime started earlier, coinciding with climatic Early Bronze Age change during the 5.9 ka event (Bond Event 4) and continuing into the Atlantic/Subboreal transition. We apply Soil quality Ideal Free Distribution the Ideal Free Distribution (IFD) to a settlement record spanning over 3000 years (ca. 6100–3000 BCE) in 14 sub- Cucuteni-Tripolye culture regions of Eastern Europe to establish a quantitative indicator of changing subsistence strategies throughout the fourth millennium BCE. This provides corroboration for arguments made on the basis of careful study of material culture, which suggest that economic changes were gradual, regionally diverse in their manifestation and pre- date the arrival of EBA populations in Eastern Europe. Our implementation of the IFD shows it to be a useful tool for highlighting changes in regional subsistence regimes, but further analysis is required to address issues of habitat ranking, migratory vectors, and settlement dating on smaller scales. -
Integrated Water Monitoring System Applied by Siret River Basin Administration from Romania, Important Mechanism for the Protection of Water Resources
PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, VOL. 5, no.2, 2011 INTEGRATED WATER MONITORING SYSTEM APPLIED BY SIRET RIVER BASIN ADMINISTRATION FROM ROMANIA, IMPORTANT MECHANISM FOR THE PROTECTION OF WATER RESOURCES Dan Dăscăliţa1 Keywords: water integrated monitoring, body of water, good water status. Abstract. The current status of Romania as European Community membership gives, in addition to a number of rights, many obligations concerning especially the implementation and compliance with relevant EU regulations. In the water sector The European Commission considered necessary the development of a new, common, uniform and consistent policy, which takes into account all the aspects linked both to human needs as well as to the existence of ecosystems and to sustainable development of water resources. Back in 2000, after a long decisional process, the European Community approved the Water Framework Directive (Directive 2000/60/EC), which established a policy framework for water management in the European Union based on sustainable development principles and which integrated all water issues, including problems of water’s integrated monitoring. In Romania the water’s monitoring system has been working since the early twentieth century, but since 1976 when the Water Directorate at basinal level were established this system has been developing into a scientific and defining structure. Water monitoring network has continuously suffered additions and improvements, but since 2002 the question of the modernization and the development of water integrated monitoring system was raised so it could meet European standards and the monitoring requirements and it could run in a dynamic, complex process and with spiral development. In this paper we presented some aspects concerning the synthesis of integrated water monitoring system, important mechanism for water resources management, applied to the Siret Basin by Siret River Basin Administration (ABAS). -
LIST of Container and Contrailer Trains Running on the Railways of the OSJD Member Countries (As of 11.10.2019)
2019 OSJD Bulletin No. 5-6 91 LIST of container and contrailer trains running on the railways of the OSJD member countries (as of 11.10.2019) Train Frequency of Train No. Route characteristics running “Azerbaijani Railways” CJSC (AZD) 1202 Turkmenbashi (TRK) – Baku-cargo (AZD) – Tbilisi-node (GR) container on request 1205 Gardabani (GR) – Alyat (AZD) – Aktau (KZH) – China container on request 1207 Gardabani (GR) – Baku-cargo pier (AZD) – Turkmenbashi (TRK) container on request 1202 Almaty (KZH) – Baku-cargo (AZD) – Poti (GR) container on request 1202 Turkmenbashi (TRK) – Baku-cargo (AZD) – Poti-ex. (GR) container on request 1209 Gardabani (GR) – St. Apsheron (AZD) container on request 1205 Poti (GR) – Alyat (AZD) – Turkmenbashi (TRK) container on request 1205 Gardabani (GR) – Baku-cargo (AZD) – Turkmenbashi (TRK) container on request 1207 Gardabani (GR) – Apsheron (AZD) – Turkmenbashi (TRK) container on request 1202 Turkmenbashi (TRK) – Baku-cargo pier (AZD) – Poti-ex. (GR) container on request 1205 Gardabani (GR) – Baku-cargo pier ex. (AZD) – Altynkol (KZH) container on request 1202 Altynkol (KZH) – Baku-cargo (AZD) – Poti (GR) container on request 1211 Poti (GR) – st. Apsheron (AZD) – Turkmenbashi (TRK) container on request 1205 Gardabani (GR) – Baku-cargo (AZD) – Almaty (KZH) container on request Byelorussian Railway (BC) Russia – Lithuania – Belarus – Russia 1022/1021 (Kaliningrad-Shunting – Kybartai – Gudogai – Osinovka – Krasnoye – container on request Kuntsevo-2/Moscow-Freight-Smolenskaya/Kupavna/Tuchkovo/Vorsino/Bely Rast) Russia -
In the Danube River Basin K
Geophysical Research Abstracts, Vol. 7, 09297, 2005 SRef-ID: 1607-7962/gra/EGU05-A-09297 © European Geosciences Union 2005 Setup and testing of European Early Flood Alert System (EFAS) in the Danube River Basin K. Wachter(1)(3), M. Kalas(1)(2), J. Szabo(1), S. Niemeyer(1), K.Bodis(1), A. de Roo(1) (1)Institute for Environment and Sustainability, DG Joint Research Centre, European Commission, TP 261, 21020 Ispra, Italy (2) Detached from Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia (3) Detached from Lower-Austrian Government, Unit of Water Management, St. Polten, Austria ([email protected]) The aim of the European Early Flood Alert System (EFAS) activity is to develop a prototype of an early flood forecasting system capable of simulating medium-range flood risk between 3-10 days for the whole of Europe. The Danube has been selected as one of the pilot catchments. It is a very challenging river basin in the sense that is one of the biggest catchments in Europe. This poster shows the present progress of testing the EFAS-LISFLOOD Model and gives an overview about the first results of calibration and validation in the Danube river basin. Depending of the already available data we made first simulation runs in the following sub catchments: Upper Danube, Slovenian Sava, Morava, Hron and Tisza River. This poster shows also the present status of data gathering of historical discharge data, climate data and cross sections (in percentages) in 14 Danube countries. In absolute numbers are at the present available data of 2915 meteorological stations, 195 gaug- ing/discharge stations and 349 cross sections. -
Siret River Basin Planning (Romania) and the Role of Wetlands in Diminishing the Floods
Water Resources Management V 439 Siret river basin planning (Romania) and the role of wetlands in diminishing the floods G. Romanescu “Alexandru Ioan Cuza” University of Iasi, Romania Abstract The Siret river flows from the wooded Carpathians (Ukraine) and on the Romanian territory it has a length of 559km, from its entrance into the country till its mouth into the Danube. Practically, it is the river basin with the highest hydro-energetic potential and with the greatest fresh water supply in Romania. The total theoretical water resource in the Siret river space represents 6,868 million m3/year, which is above the average for Romania. In order to ensure the water sources for different use and to diminish the high floods which are more numerous and stronger, 31 accumulations have been built, with a volume exceeding 1,206.12 mln.m3. In 2005 the Siret recorded a historical flow with values between 5,000-5,500 m3/s, representing the highest flow on the interior rivers in Romania. Unfortunately, in the last 50 years, a great part of the large wetlands in this river basin have been drained, changing their destination and therefore, changing their role in diminishing floods, in recharging the aquifers and in representing a habitat for different species. In order to protect the human settlements in different regions, 570.2 km of rivers undertook regulation actions and 357.7 km of dams were built. Due to the torrential character of most of the rivers in the Siret basin, water consumption appeared and developed from simple water use to the great complex accumulations. -
Flood Protection Expert Group
Flood protection Expert Group Flood Action Programme Prut-Siret Sub-basin Table of Content 1 Introduction ....................................................................................................................1 2 Characterisation of Current Situation ..............................................................................3 2.1 Natural conditions ...................................................................................................3 2.2 Anthropic influence. Flood defences.........................................................................5 2.3 Land use.................................................................................................................10 2.4 Flood forecasting and warning................................................................................11 2.5 Institutional and legal framework ...........................................................................11 3 Target Settings..............................................................................................................21 3.1 Regulation on Land Use and Spatial Planning .......................................................22 3.2 Reactivation of former, or creation of new, retention and detention capacities ........22 3.3 Technical Flood Defences ......................................................................................23 3.4 Preventive Actions .................................................................................................24 3.5 Capacity Building of Professionals.........................................................................26