N94- 28306 5 E,Z-2---"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System 1516 Lpscmv LARGE FLOOR-FRACTURED CRATERS: R.W
LPSCXXIV 1515 LARGE FLOOR-FRACTURED CRATERS AND ISOSTATIC CRATER MODIFICATION: IMPLICATIONS FOR LITHOSPHERIC THICKNESS ON VENUS. R.W. Wichman, Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND 58202-7306 and P.H. Schultz, Dept. of Geological Sciences, Brown Univ., Providence RI 02912 Introduction: Several of the largest craters on Venus, including Mead, Meitner and Isabella, exhibit well-developed floor fracture patterns combining a central set of radial features with a peripheral set of concentric fractures. This pattern strongly resembles the fracture patterns observed in the largest floor- fractured craters on the Moon (eg. Humboldt, Gauss, Petavius). Although most lunar floor-fractured craters apparently reflect crater modification by igneous intrusions and volcanism [I,2,3], we propose that the fractures in these larger craters represent domical flexure events in response to post-impact isostatic uplift. Since the extent of uplift and surface failure in this model depends on both the size of the basin cavity and the local lithospheric thickness, this interpretation also provides a means for constraining lithospheric thicknesses on Venus. Based on the apparent onset diameter of isostatic crater modification, we derive lithospheric thickness estimates for the Moon of -80-100 km, and for Venus of -50-70 km. Large Floor-fractured Craters: As noted in a companion abstract [4], ten craters on Venus show patterns of concentric or polygonal fractures resembling failure patterns observed in lunar floor-fractured craters. These craters are comparable in size (-20-90 km) to most of the lunar examples, and three craters in particular contain well-defined, moat-like structures around a scarp-bounded central floor plate identical to features observed in the most extensively modified craters on the Moon [5]. -
Dynamical Erosion of the Asteroid Belt and Implications for Large Impacts in the Inner Solar System
Icarus 207 (2010) 744–757 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System David A. Minton *, Renu Malhotra Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, United States article info abstract Article history: The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic Received 15 September 2009 behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids Revised 2 December 2009 with diameters D J 10 km in the current asteroid belt. In a numerical analysis of the long-term evolution Accepted 3 December 2009 of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles Available online 11 December 2009 from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at t 1 Myr persists with little deviation to at least t ¼ 4 Gyr. Our study indicates that Keywords: the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion— Asteroids having lost as much as 50% of the large asteroids—since 1 Myr after the establishment of the current Asteroids, Dynamics Cratering dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10–200 Myr as in 0.2–4 Gyr, roughly 30% of the current number of large asteroids in the main belt over each interval. -
Artbook & Distributed Art Publishers Artbook D.A.P
artbook & distributed art publishers distributed artbook D.A.P. SPRING 2017 CATALOG Matthew Ronay, “Building Excreting Purple Cleft Ovoids” (2014). FromMatthew Ronay, published by Gregory R. Miller & Co. See page 108. FEATURED RELEASES 2 Journals 77 CATALOG EDITOR SPRING HIGHLIGHTS 84 Thomas Evans Art 86 ART DIRECTOR Writings & Group Exhibitions 117 Stacy lakefield Photography 122 IMAGE PRODUCTION Maddie Gilmore Architecture & Design 140 COPY lRITING Janine DeFeo, Thomas Evans, Annabelle Maroney, Kyra Sutton SPECIALTY BOOKS 150 PRINTING Sonic Media Solutions, Inc. Art 152 Group Exhibitions 169 FRONT COVER IMAGE Photography 172 Kazimir Malevich, “Red House” (detail), 1932. From Revolution: Russian Art 1917–1932, published by Royal Academy of Arts. See page 5. Backlist Highlights 178 BACK COVER IMAGE Dorothy Iannone, pages from A CookBook (1969). Index 183 From Dorothy Iannone: A CookBook, published by JRP|Ringier. See page 51. CONTRIBUTORS INCLUDE ■ BARRY BERGDOLL Curator, Department of Architecture and Design, The Museum of Modern Art and Meyer Schapiro Professor of Art History and Archaeology, Department of Art History, Columbia University ■ JOHN MICHAEL DESMOND Professor, College of Art & Design, Louisiana State University ■ CAROLE ANN FABIAN Director, Avery Architectural & Fine Arts Library, Columbia University ■ JENNIFER GRAY Project Research Assistant, Department of Architecture and Design, The Museum of Modern Art ■ ELIZABETH S. HAWLEY PhD Candidate, The Graduate Center, City University of New York ■ JULIET KINCHIN Curator, Department of Architecture and Design, The Museum of Modern Art ■ NEIL LEVINE Emmet Blakeney Gleason Research Professor of History of Art and Architecture, Modern Architecture, Harvard University ■ ELLEN MOODY Assistant Projects Conservator, The Museum of Modern Art ■ KEN TADASHI OSHIMA Professor, Department of Architecture, University of Washington Frank Lloyd Wright: Unpacking the Archive ■ MICHAEL OSMAN Edited by Barry Bergdoll, Jennifer Gray. -
VENUS Corona M N R S a Ak O Ons D M L YN a G Okosha IB E .RITA N Axw E a I O
N N 80° 80° 80° 80° L Dennitsa D. S Yu O Bachue N Szé K my U Corona EG V-1 lan L n- H V-1 Anahit UR IA ya D E U I OCHK LANIT o N dy ME Corona A P rsa O r TI Pomona VA D S R T or EG Corona E s enpet IO Feronia TH L a R s A u DE on U .TÜN M Corona .IV Fr S Earhart k L allo K e R a s 60° V-6 M A y R 60° 60° E e Th 60° N es ja V G Corona u Mon O E Otau nt R Allat -3 IO l m k i p .MARGIT M o E Dors -3 Vacuna Melia o e t a M .WANDA M T a V a D o V-6 OS Corona na I S H TA R VENUS Corona M n r s a Ak o ons D M L YN A g okosha IB E .RITA n axw e A I o U RE t M l RA R T Fakahotu r Mons e l D GI SSE I s V S L D a O s E A M T E K A N Corona o SHM CLEOPATRA TUN U WENUS N I V R P o i N L I FO A A ght r P n A MOIRA e LA L in s C g M N N t K a a TESSERA s U . P or le P Hemera Dorsa IT t M 11 km e am A VÉNUSZ w VENERA w VENUE on Iris DorsaBARSOVA E I a E a A s RM A a a OLO A R KOIDULA n V-7 s ri V VA SSE e -4 d E t V-2 Hiei Chu R Demeter Beiwe n Skadi Mons e D V-5 S T R o a o r LI s I o R M r Patera A I u u s s V Corona p Dan o a s Corona F e A o A s e N A i P T s t G yr A A i U alk 1 : 45 000 000 K L r V E A L D DEKEN t Baba-Jaga D T N T A a PIONEER or E Aspasia A o M e s S a (1 MM= 45 KM) S r U R a ER s o CLOTHO a A N u s Corona a n 40° p Neago VENUS s s 40° s 40° o TESSERA r 40° e I F et s o COCHRAN ZVEREVA Fluctus NORTH 0 500 1000 1500 2000 2500 KM A Izumi T Sekhm n I D . -
Spring 2021 Honor Roll
Spring 2021 Honor Roll ADDISON BARTLETT Kelsey M Blackaller Roll of Excellence Roll of Honor Justin R Bogdan Shannel Davis Roxanne D Kuchta Donald J Bolger Michael J Bowe Justin B Brown ALSIP BEECHER Isabel Butler Roll of Merit Roll of Excellence Nicholas Campbell Breann R Moser Timothy Nelson II Maria C Castaneda Osvaldo Cerdas Roll of Merit Kourtney D Chapman APPLETON Elijah O Bamgbose Anya F Christian Roll of Excellence Catherine E Cronk Luke S Stovall Ravi A Daniel BELLWOOD Caleb Davis Roll of Merit Latavia R Davison AURORA Khadijah Sain Diana A Diaz Roll of Excellence Savanna B Dicostanzo Dennis Budde Emma M Dieckhaus Ulysses Chavez BELVIDERE Faith T Domercant Sarah E Hogan Roll of Excellence Thomas G Dynes Noah Hook Kristina M Sartori Curt Ederle Sydney D Moore Justin David I Escudero Marinna R Perez Brandon A Fagust James D Scott BENSENVILLE Syrena R Feustel Roll of Excellence Jalen C Fleming Roll of Honor Sean Heinz Raven R Fuqua Samara E Bosman Taha W Gabr Christopher Jules Matthew J Gahol Yuritzi Morales BOLINGBROOK Jose L Garcia Menelik Ramirez-rowe Roll of Excellence Emma R Geiger Raul Z Roman Jace Alexzander E Ancheta Gabrielle B Glees Amanda Selvaggio Adrienne R Andrews Moiz Habibi Sebastian S Wesley Nicole Antosik Aislin N Hargreaves Armando Armenta II Carson Harris Roll of Merit Kaitlynn R Barg Brycara J Hemmings Rianat M Adekola Kyle J Barg Katie Hernandez Brianna M Boccassini Christopher A Bayani Natalie M Hidalgo Parker Valek Nicole S Bebenov Donna Huang Emma K Beebe Alysa J Hyland Josie L Bell Keisha Bell Daphne A -
Download Full Program (Pdf)
Q COMMUNITY COLLEGE DISTRICT EIGHT BELLEVUE, WASHINGTON Commencement JUNE 25, 2021 BELLEVUE, WASHINGTON BLUE CEREMONY – 4:00 PM SILVER CEREMONY – 7:30 PM Class of 2021 Table of Contents O Board of Trustees & President ...................................................4 Program ...........................................................................................5 2021 Graduates: Bachelor of Applied Arts .....................................................6 Bachelor of Applied Science ..........................................7–9 Bachelor of Science ............................................................10 Associate in Applied Science .....................................11–13 Associate in Arts ...........................................................14–17 Associate in Arts & Sciences ......................................18–32 Associate in Business ...................................................33–34 Associate in Math Education ...........................................35 Associate in Music ..............................................................35 Associate in Occupational & Life Skills .........................35 Associate in Science .....................................................36–37 Certificate of Accomplishment .................................38–40 Certificate of Achievement .........................................41–42 High School Diploma .................................................43–44 Academic Regalia ........................................................................45 About the Speaker -
View the 2021 Tufts University Commencement Program (PDF)
165TH Commencement Tufts University Sunday, May 23, 2021 Commencement 2021 Commencement 2021 School of Arts and Sciences School of Engineering School of Medicine and Graduate School of Biomedical Sciences School of Dental Medicine The Fletcher School of Law and Diplomacy Cummings School of Veterinary Medicine The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy Jonathan M. Tisch College of Civic Life University College #Tufts2021 commencement.tufts.edu Produced by Tufts Communications and Marketing Printed on recycled paper Table of Contents Welcome from the President 5 University Commencement 7 Dear Alma Mater 10 Tuftonia’s Day Academic Mace Academic Regalia Recipients of Honorary Degrees 11 School of Arts and Sciences 15 Graduate School of Arts and Sciences School of Engineering School of Medicine 43 Graduate School of Biomedical Sciences 48 Public Health and Professional Degree Programs 52 School of Dental Medicine 59 The Fletcher School of Law and Diplomacy 67 Cummings School of Veterinary Medicine 73 The Gerald J. and Dorothy R. Friedman 79 School of Nutrition Science and Policy Jonathan M. Tisch College of Civic Life 83 COMMENCEMENT 2021 3 Welcome from the President Commencement is the high point of the academic year and has always been a special day at Tufts. While this year’s virtual celebration makes us less anxious about the weather forecast, this moment is no less extraordinary and no less distinguished. After a period of rigorous study, intellectual pursuit, and personal growth, our students stand ready to graduate from their respective academic programs and this great university. Today, we celebrate their achievements and recognize all those who have helped make this day possible. -
1 : 45 000 000 E a CORONA D T N O M E Or E ASPASIA T Sa MM= KM S R
N N 80° 80° 80° Dennitsa D. 80° Y LO S Sz um U N éla yn H EG nya -U I BACHUE URO IA D d P ANAHIT CHKA PLANIT ors Klenova yr L CORONA M POMONA a D A ET CORONA o N Renpet IS r I R CORONA T sa T Mons EG FERONIA ET L I I H A . Thallo O A U u Tünde CORONA F S k L Mons 60° re R 60° 60° R a 60° . y j R E e u M Ivka a VACUNA GI l m O k . es E Allat Do O EARHART o i p e Margit N OTAU nt M T rsa CORONA a t a D E o I R Melia CORONA n o r o s M M .Wanda S H TA D a L O CORONA a n g I S Akn Mons o B . t Y a x r Mokosha N Rita e w U E M e A AUDRA D s R V s E S R l S VENUS FAKAHOTU a Mons L E E A l ES o GI K A T NIGHTINGALE I S N P O HM Cleopatra M RTUN A VÉNUSZ VENERA CORONA r V I L P FO PLANITIA ÂÅÍÅÐÀ s A o CORONA M e LA N P N n K a IT MOIRA s UM . a Hemera Dorsa A Iris DorsaBarsova 11 km a E IA TESSERA t t m A e a VENUŠE WENUS Hiei Chu n R a r A R E s T S DEMETER i A d ES D L A o Patera A r IS T N o R s r TA VIRIL CORONA s P s u e a L A N I T I A P p nt A o A L t e o N s BEIWE s M A ir u K A D G U Dan Baba-Jaga 1 : 45 000 000 E a CORONA D T N o M e or E ASPASIA t sa MM= KM S r . -
PDF Linkchapter
Index [Italic page numbers indicate major references] A arsenic, 116, 143, 168 brecciation, shock, 225, 231 Ashanti crater, Ghana. See Bosumtwi Brent crater, Ontario, 321 Abitibi Subprovince, 305 crater, Ghana bromine, 137 Acraman depression, South Australia, A thy ris Broodkop Shear Zone, 180 211, 212, 218 gurdoni transversalis, 114 Budevska crater, Venus, 24 geochemistry, 216 hunanensis, 114 Bunyeroo Formation, 209, 210, 219, geochronology, 219 aubrite, 145 220, 221, 222 melt rock, 216, 218 augite, 159 Bushveld layered intrusion, 337 paleomagnetism, 219 Australasian strewn field, 114, 133, See also Acraman impact structure 134, 137, 138, 139, 140, 143, Acraman impact structure, South C 144, 146 Australia, 209 australite, 136, 141, 145, 146 Cabin-Medicine Lodge thrust system, Adelaid Geosyncline, 210, 220, 222 Austria, moldavites, 142 227 adularía, 167 Cabin thrust plate, 173, 225, 226, Aeneas on Dione crater, Earth, 24 227, 231, 232 aerodynamically shaped tektites, 135 B calcite, 112, 166 Al Umchaimin depression, western Barbados, tektites, 134, 139, 142, 144 calcium, 115, 116, 128 Iraq, 259 barium, 116, 169, 216 calcium oxide, 186, 203, 216 albite, 209 Barrymore crater, Venus, 44 Callisto, rings, 30 Algoman granites, 293 Basal Member, Onaping Formation, Cambodia, circular structure, 140, 141 alkali, 156, 159, 167 266, 267, 268, 271, 272, 273, Cambrian, Beaverhead impact alkali feldspar, 121, 123, 127, 211 289, 290, 295, 296, 299, 304, structure, Montana, 163, 225, 232 almandine-spessartite, 200 307, 308, 310, 311, 314 Canadian Arctic, -
Fluid Outflows from Venus Impact Craters
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. E8, PAGES 13,643-13,665 AUGUST 25, 1992 Fluid Outflows From Venus Impact Craters' AnalysisFrom Magellan Data PAUL D. A SIMOW1 Departmentof Earth and Planeta .rySciences, ttarvard Universi.ty,Cambridge, Massachusetts JOHN A. WOOD SmithsonianAstrophysical Observato .rv, Cambridge, Massachusetts Many impactcraters on Venushave unusualoutflow features originating in or underthe continuousejecta blanketsand continuing downhill into the surroundingterrain. Thesefeatures clearly resulted from flow of low- viscosityfluids, but the identityof thosefluids is not clear. In particular,it shouldnot be assumeda priori that the fluid is an impact melt. A numberof candidateprocesses by which impact eventsmight generatethe observedfeatures are considered,and predictionsare made concerningthe theologicalcharacter of flows producedby each mechanism. A sampleof outflowswas analyzedusing Magellan imagesand a model of unconstrainedBingham plastic flow on inclinedplanes, leading to estimatesof viscosityand yield strengthfor the flow materials. It is arguedthat at leasttwo different mechanismshave producedoutflows on Venus: an erosive,channel-forming process and a depositionalprocess. The erosivefluid is probablyan impactmelt, but the depositionalfluid may consistof fluidizedsolid debris, vaporized material, and/or melt. INTRODUCTION extremelydiverse in appearanceand may representmore than one distinctprocess and/or material. Recentlyacquired high-resolution radar images of Venusfrom the Magellan spacecraft have revealed surface features in unprecedenteddetail. In addition to new views of previously SETtING AND MORPHOLOGY OF VENUS CRATER OUTFLOW known features,a seriesof completelynew and often enigmatic FEATURES features have been discovered. Among the new phenomena Over 800 impactcraters were identifiedin imagesproduced by observed,the characterof ejecta depositsaround impact craters the Magellan missionduring its first cycle of orbital mapping, ranks as one of the most enigmatic. -
The Depths of the Largest Impact Craters on Venus; B
LPSC XXIV 689 THE DEPTHS OF THE LARGEST IMPACT CRATERS ON VENUS; B. A. Ivanov, Institute for Dynamics of Geospheres, Russian Academy of Sciences, Moscow P. G. Ford, Center for Space Research, Massachusetts Institute of Technology The largest impact craters on Venus may be used as witnesses of various geological processes within the Venusian crust. We seek to continue the task (I), of constructing a data base for the further investigation of large craters on Venus (LCV), hoping to find evidence of crater relaxation that might constrain the thickness and thermal gradient of the crust, as proposed in (2). The current work concentrates on 27 impact craters with diameters (d) larger than 70 km, i.e., large enough that the footprint of the Magellan altimeter (3) has a good chance of sampling the true crater bottom. All altimeter echoes from points located within (d/2)+70 km from the crater center have been inspected. In practice, many of the footprints studied contain multiple echoes. For this reason, the data for each crater were first arranged as a table containing the coordinates of each footprint, a main echo altitude, and, in cases where multiple echoes exist, two leading echo altitudes (preceding the main echo) and two trailing echo altitudes (following the main echo). The data were then analyzed by hand, locating the altimeter footprints on radar images of the craters. In many cases, this technique was useful in the interpretation of multiple-echo altimeter data. For instance, a leading echo might be identified as coming from the near-crater terrain and a delayed echo from the deeper crater floor. -
Mantegna's Mars and Venus
Abstract Title of Document: Mantegna’s Mars and Venus: The Pursuit of Pictorial Eloquence Steven J. Cody, Master of Arts, 2009 Directed By: Professor Meredith J. Gill, Department of Art History and Archeology This paper examines the pictorial composition of Andrea Mantegna’s Mars and Venus and its relation to the culture of letters and antiquarianism present in the studiolo of Isabella d’Este Gonzaga. By analyzing Mantegna’s use of contrapposto, a visual motif stemming from the rhetorical figure of “antithesis,” I argue that the artist formally engages Classical rhetoric and the principles of Leon Battista Alberti’s De Pictura. Mantegna’s dialogue with Albertian and rhetorical theory visually frames the narrative of Mars and Venus in a way that ultimately frames the viewer’s understanding of Isabella’s character as a patron of the arts. But it also has ramifications for how the viewer understands Mantegna’s activities as a painter. By focusing my investigation on the significance of pictorial form and Mantegna’s process of imitation, I look to emphasize the intellectual nuances of Isabella’s approach to image making and to link Mantegna’s textual knowledge to his visual recuperation of Classical art. MANTEGNA’S MARS AND VENUS: THE PURSUIT OF PICTORIAL ELOQUENCE By Steven J. Cody Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Arts 2009 Advisory Committee: Professor Meredith J. Gill, Chair Professor Anthony Colantuono Professor Arthur K. Wheelock, Jr. © Copyright by Steven Joseph Cody 2009 Disclaimer The thesis document that follows has had referenced material removed in respect for the owner’s copyright.